• Nenhum resultado encontrado

Illumina sequencing and assessment of new cost-efficient protocol for metagenomic-DNA extraction from environmental water samples

N/A
N/A
Protected

Academic year: 2021

Share "Illumina sequencing and assessment of new cost-efficient protocol for metagenomic-DNA extraction from environmental water samples"

Copied!
8
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Illumina

sequencing

and

assessment

of

new

cost-efficient

protocol

for

metagenomic-DNA

extraction

from

environmental

water

samples

Mariam

Hassan

a,∗

,

Tamer

Essam

a

,

Salwa

Megahed

a,b

aCairoUniversity,FacultyofPharmacy,DepartmentofMicrobiologyandImmunology,Cairo,Egypt

bOctoberUniversityforModernSciencesandArts(MSA),FacultyofPharmacy,DepartmentofMicrobiologyandImmunology,Cairo,

Egypt

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21October2017

Accepted14March2018

Availableonline3April2018

AssociateEditor:NiltonLincopan

Keywords: Bioinformatics Method Microbiome Next-generationsequencing QIIME

a

b

s

t

r

a

c

t

Inthisstudy,thedevelopmentandassessmentofamodified,efficient,andcost-efficient

protocolformDNA(metagenomicDNA)extractionfromcontaminatedwatersampleswas

attempted. Theefficiency ofthedeveloped protocolwasinvestigatedincomparison to

awell-establishedcommercialkit(Epicentre,MetagenomicDNAIsolationKitforWater).

Thecomparisonwasintermsofdegreeofshearing,yield,purity,duration,suitabilityfor

polymerasechainreactionandnext-generationsequencinginadditiontothequalityof

next-generationsequencingdata.The DNAyieldobtained fromthedeveloped protocol

was2.6foldshigherthanthatofthecommercialkit.Nosignificantdifferenceinthealpha

(Observedspecies,Chao1,SimpsonandPDwholetree)andbetadiversitywasfoundbetween

theDNAsamplesextractedbythecommercialkitandthedevelopedprotocol.Thenumber

ofhigh-qualitysequencesofthesamplesextractedbythedevelopedmethodwas20%higher

thanthoseobtainedbythesamplesprocessedbythekit.Thedevelopedeconomicprotocol

successfullyyieldedhigh-qualitypuremDNAcompatiblewithcomplexmolecular

applica-tions.Thusweproposethedevelopedprotocolasagoldstandardforfuturemetagenomic

studiesinvestigatingalargenumberofsamples.

©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis

anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Abbreviations:NGS,next-generationsequencing;PCR,polymerasechainreaction;mDNA,metagenomicDNA.

Correspondingauthorat:FacultyofPharmacyCairoUniversity,KasrEl-AiniStreet,11562Cairo,Egypt.

E-mail:maryam.hiekal@pharma.cu.edu.eg(M.Hassan).

https://doi.org/10.1016/j.bjm.2018.03.002

1517-8382/©2018SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC

(2)

Introduction

Recently,theevolutionofthe disciplineof“Metagenomics”

hasgraspedconsiderableattentionworldwidewith

tremen-dousexpectations.1Severalecosystemsarestilluntappedand

willbestudiedandexploredthroughmetagenomicstudies.

Thishasbeenfacilitatedbythevastadvancesinmolecular

toolssuchasthenext-generationsequencing(NGS).2,3

However, an important prerequisite for a successful

metagenomic analysis is the use of an efficient protocol

forextracting whole community DNA from environmental

samples.4 Therefore, a mDNA (metagenomic DNA)

extrac-tion protocolhasbeen considered tobethemilestone and

themaingatetoaccurate,reliable, andsuccessful

metage-nomic analyses.5 Accordingly,the isolation ofhigh-quality

DNAthatcoversthewholemicrobialdiversityintheoriginal

samplewas phrasedasalimiting stepfortheconstruction

ofmetagenomiclibrariesandotherDNAbasedmetagenomic

projects.6

Intheseregards,manystudies havereportedthe

devel-opment of methods and even commercial kits for mDNA

extraction.5,6 However,still, thereis asurge indeveloping,

improving,andoptimizingneworcurrentprotocolsformDNA

extractionfromdifferenttypesofsamples.Ametagenomic

DNAextractionmustbefollowedbyaqualitycontrolofthe

extractedDNA.Despitetherecentadvancesinthe

molecu-lartools,many researchersstilluserelatively conventional

moleculartechniquessuchasPCR,restrictiondigestion,and

cloningfortestingthequalityoftheextractedmDNA.7–9In

thisperspective,thecurrentstudydevelopedamodified

pro-tocolfortheextractionofmDNA fromcontaminatedwater

sampleswiththeintroductionofNGSasaqualitycontroltool

tomeasuretheefficiencyoftheextractionprotocolandthe

qualityoftheextractedDNA.ThequalityoftheextractedDNA

wascomparedtothatofawellestablishedcommercialkitin

termsofdegreeofshearing,yield,purity,timerequirement,

suitabilityforPCRandNGS,andthequalityofNGSdata.

Materials

and

methods

SamplescollectionsandpreparationforDNAextraction

Industrial wastewater from a coal coking factory in Egypt

(sampleA)wasusedinthisstudy.Thesampleswerecollected

from the biologicalwastewatertreatment plantatthe

fac-tory.Otherwatersamples(13samples,namedasB–N)were

alsocollectedfromaphoto-bioreactorusinganalgal-bacterial

systemtotreatcokingwastewater.

The sufficient volume of the samples was calculated

accordingtoapredeterminedrelationshipbetweenthedry

weightofbiomassand thesamplevolumetoreach afinal

biomassdryweightof1.7mgfortheDNAextraction.These

volumeswere immediately filteredusingasterilefiltration

unit (Glassco®, India) and vacuum pump (Pro-set, CPS®,

Germany). The samples were filtered using sterile 0.2␮m

poresizecellulosenitratemembranefilters(47mmdiameter,

Sartorius®,Germany).Themembranefilterswerethenstored

frozenat–20◦CtillDNAextraction.

DNAextractionusingcommercialkit

Metagenomic DNA isolation kit for water (Epicentre®, USA)

wasusedaccordingtothemanufacturer’sinstructions.The

extractedDNApelletswerere-suspendedinmoleculargrade

water(DNaseandRNasefreewater)andstoredat−20◦Ctill

furtheruse.

DNAextractionbythedevelopedapproach(chemical protocol)

Severaltrialswereattemptedtooptimizeaprotocolforthe

extractionofenvironmentalmDNA.Theoptimizedprotocol

was achieved throughthe followingsteps: a 0.2-␮m

mem-branefiltercarryingthemDNAwasasepticallyplacedatthe

centerofasterile15-mLfalcontube.Then5mLofextraction

buffer(1%,w/vcetyltrimethylammoniumbromide(CTAB),3%,

w/vsodiumdodecylsulfate(SDS),100mMTris–HCl,100mM

NaEDTA,1.5MNaCl,pH8.0)wasaddedtothefalcontube.The

resulting solutionwas incubatedin awaterbath(65–70◦C)

for 60min with intermittent vortexing. The content was

centrifuged for15minat4500×g andthe supernatantwas

transferredintoanewsterilefalcontube.Isopropanol(4mL)

was liquated to the supernatant and incubated on icefor

20min.The content was centrifuged at−4◦C and 4500×g

for15minandthesupernatantwascarefullyaspiratedand

discarded.TheDNApelletswerewashedwith200␮Lof70%

ethanolandcentrifugedat−4◦Cand4500×gfor10min.Again

thesupernatantwasdiscardedbycarefulaspirationandthe

DNApelletswerefully driedinalaminarflowcabinet.The

dried pellets were re-suspended in100␮L moleculargrade

water(DNaseandRNasefreewater)andstoredat−20◦Ctill

furtheruse.

FurtherpurificationoftheextractedmDNA

Thepreviouslymentionedprotocolwasusedforfurther

purifi-cationoftheextractedmDNAusinggelpurificationtechnique.

Where 25␮L of the extracted mDNA was resolved on an

agarosegelin0.8%TAEbufferedagarosegelandvisualized

usingethidiumbromide.DNAbandwasthensliced

(Supple-mentary Fig. S1-A) and purifiedusing UltraClean® 15 DNA

Purification Kit (Mo Bio®, USA) according to the

manufac-turer’sinstructions.

DNAdetectionbygelelectrophoresisandnanophotometer

ThesizeanddegreeofshearingoftheextractedDNAwere

val-idatedbycomparisontoafosmidcontrolDNAwithasizeof

40kbandconcentration100ng/␮L(providedinthe

Metage-nomic DNA Isolation Kit forWater, Epicentre). Thefosmid

controlDNAandtheextractedmDNAwereelectrophoresed

in0.8%TAEbufferedagarosegelandwere visualizedusing

ethidiumbromide.

The quantification of the extracted mDNA was done

by a spectrophotometric method using nanophotometer

(Implen, NanoPhotometer® P-330, Germany).10 The purity

(3)

ratios at 260/230nm and 260/280nm calculated using the

nanophotometer.10–12

PCRamplification

The quality of the extracted mDNA was also assessed

by its liability to enzymatic reactions using PCR. This

also tested the presence of any impurities that might

inhibit the enzymatic reactions. Two universal 16S

ribo-somal DNA primers 28F 5AGAGTTTGATCCTGGCTCAG-3

(positions 8–28 in Escherichia coli numbering) and 1512R

5ACGGCTACCTTGTTACGACT-3(positions1512–1493inE.coli

numbering)wereused.13 Thepositivecontrolemployedthe

genomicDNAextractedfrom Pseudomonasaeruginosa(ATCC

9027),whilethenegativecontrolwasdevoidofanyDNA

tem-plate.

DNAsequencing

Illumina-MiSeqTM sequencing (2×300bp paired-end

protocol) was performed using the universal primers

341F 5-CCTACGGGNGGCWGCAG-3 and 805R 5

-GACTACHVGGGTATCTAATCC-3 to target the V3 and V4

regionsofthe16SrRNAgene.14Theusedsequencingkitwas

MiSeqReagentKitV3,600cycle(Illumina,USA).

Availabilityofsequencingdata

The 16S sequence data were submitted to the Sequence

Read Archive (SRA) under Bioproject (PRJNA353621) and

SRAstudy(SRP093422).ThedatahavebeenreleasedbyNCBI

(https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP093422)

and assigned the accession numbers: SRR5028842,

SRR5028843, SRR5029151, SRR5029152, SRR5029153,

SRR5029154,SRR5029155,andSRR5029156.

NGSdataanalysis

Illuminasequencingreadswereprocessedusingthesoftware

QIIME“QuantitativeInsightsIntoMicrobialEcology”,version

1.9.1 as described in detail in the supplementary data.15

Allstatisticalanalyses,unlessspecifiedotherwise,were

per-formedusingpythonscriptsimplementedinQIIMEversion

1.9.1(asdescribedindetailinthesupplementarydata).

Results

DetectionofextractedmetagenomicDNAandquality assurance

In this study, three sets of metagenomic DNA samples,

referredtoas thekit extracted samples,chemical protocol

extractedsamples,and gel-extractedsampleswere

consid-ered.Thethreeinvestigatedmethodsyieldedmetagenomic

DNAwithasizeintherangeof40kb,comparedtothefosmid

control (Supplementary Fig. S1-B). The extracted

metage-nomicDNAshowedasinglebandwhenresolvedonanagarose

gel (Supplementary Fig. S1) with no other sheared bands.

Thehumiccontaminantswereseenintheagarosegelofthe

metagenomicDNAextractedbyboththeEpicentrekitandthe

chemicalprotocols,yetthishumicsubstancewascompletely

absentinthegelextractedDNAsamples(SupplementaryFig.

S1-B).

ThedevelopedchemicalprotocolrecordedthehighestDNA

yieldof21±5␮g/mgbiomass,whiletheEpicentrekitrecorded

significantly lower DNA yield of 8±2␮g/mg biomass (one

wayANOVA,p-value=0.0026) (Fig. 1-A).Onthe otherhand,

themetagenomicDNAextractionbygelpurificationmethod

showed asignificantly lowyieldof4±1␮g/mgofbiomass,

when comparedtothe yieldofthe chemical protocol(one

wayANOVA,p-value=0.0026).Yet,there wasno significant

difference between the DNA yieldedbyboth the Epicentre

kitandgelpurificationmethod(t-test,p-value=0.1032).The

same pattern was observed with the DNA concentrations,

wherethechemicalprotocolsignificantlyrecordedthehighest

DNA concentration of 690±180ng/␮L (one way ANOVA,

p-value=0.0007)(Fig.1-B).WhilethelowestDNAconcentration

(33±9.6ng/␮L)wasrecorded bythegelpurificationmethod

(Fig.1-B).

Theefficiencyofremovingproteincontaminationfromthe

metagenomic DNA wasvalidated bythe absorbance ratios

at 260/280nm and was greater than 1.7for all three used

extractionmethods(Fig.1-C).Therecordedabsorbanceratios

at260/230nm fortheEpicentre kit protocol andthe

devel-opedchemicalprotocolwere1.5±0.1and1±0.1,respectively

(Fig.1-D).However,thegelpurificationmethodshowed

sig-nificantlylowabsorbanceratiosat260/230nmof0.1±0.2(one

wayANOVA,pvalue<0.0001)(Fig.1-D).

The quality ofthe extracted metagenomic DNA and its

suitability fordownstreamprocessingwere investigatedby

usingPCR.ThemetagenomicDNAextractedbythethree

eval-uated methods(kit, chemical and gel purification) showed

successfulPCRamplificationofthetargetedsequencesof16S

ribosomalDNA(SupplementaryFig.S2).

MetagenomicDNAsequencing

In order to test the suitability of the extracted

metage-nomic DNAtomorechallenging and complexdownstream

processingandfurthervalidatethepurityandqualityofthe

extractedDNA,thesamplesweretestedfortheirfitnessto

Illu-minaMiSeqTMnext-generation sequencing(NGS).Sincethe

DNAextractedbygelpurificationmethodresultedinthe

low-estconcentration(Fig.1-B),thismethodwasexcludedfrom

theNGSanalysis.FourmetagenomicDNAsamples(A,B,C,

and D) processedby each Epicentre kit and the developed

chemicalprotocolwereconsideredinthisinvestigation(atotal

of8samples).

Thenumberofhigh-qualitysequencesobservedwiththe

metagenomic DNAsamplesextracted bythechemical

pro-tocol(101,109±3563) washigherthan thatobservedbythe

Epicentrekit samples(85,026±12,320).However,this

differ-encewasnotsignificant(t-test,p-value=0.0711).Again,there

wasnosignificantdifferencebetweenthenumberofobserved

OTUs in the metagenomic DNA samples extracted by the

developedchemicalprotocol(1718±365.1)andthatextracted

bytheEpicentrekit(1796±373.2)(t-test,p-value=0.886).

Atotalof44phylawereidentifiedinboththe groupsof

(4)

Kit Chemical Gel 0 20 40 60 80 ug / mg

Yield(ug DNA /mg Biomass)

*

A

* Kit Chemical Gel 0 2 4 6 8 10 12 14 16 18 A 260 /280 A 260 / 280 * *

C

Kit Chemical Gel 0 300 600 900 1200 1500 1800 ng/ul

DNA Conc. (ng/ul)

*

B

*

Kit Chemical Gel 0.0 0.5 1.0 1.5 2.0 2.5 A260 /230 A 260 / 230 * * *

D

Fig.1–ScatterdotplotsofcomparativeanalysisofthemetagenomicDNAextractedusingthethreestudiedmethods(kit, chemicalprotocol,andgelextractionmethod).(1-A)DNAyieldexpressedasmicrogramsofDNApermilligramofbiomass. (1-B)DNAconcentrationexpressedasng/␮L.(1-C)Absorbanceratiosat260/280nm.(1-D)absorbanceratiosat260/230nm. (*)meansthatthereisasignificantdifferenceatp-value<0.05(One-wayANOVA,Tukey’smultiplecomparisontest).

significantdifferenceintherelativeabundanceofeach

phy-lumbetweenthetwogroupsofthesamples(Kruskal–Wallis

testwithgroupsignificance.py,p-value>0.05)(Fig.2).Thefour

majorbacterialphylaidentifiedinthesampleswere

Proteobac-teria(Gram-negative),Firmicutes(Gram-positive),Bacteroidetes

(Gram-negative),andDeferribacteres(Gram-negative)(Fig.2).

Thealphadiversity (withincommunity diversity)inthe

samplesextractedbybothprotocols(kitandchemical

proto-col)wasdeterminedandcompared.Therewasnosignificant

difference (non-parametric Kruskal–Wallis test with

com-pared alpha diversity.py, p-value=0.682) in the observed

species richness (number of unique OTUs per number of

sequences)betweenthe samplesextracted byEpicentrekit

andthechemicalprotocol(Fig.3-A).Therarefactioncurvesof

thetruerichness(Fig.3-A)werecomparedtothecurvesofthe

estimatedspeciesrichness(indicatedbychao1richness

esti-mator)(Fig.3-B).Therarefactioncurvesshowingtheestimated

richness(Fig.3-B)ofbothprotocols(kitandchemicalprotocol)

weresuperimposedandnosignificantdifferencewasrecorded

betweenthetestedprotocols(non-parametricKruskal–Wallis

testwithcomparealphadiversity.py,p-value=0.962).

Simpson’s index rarefaction curves for both methods

(kit and chemical protocol) were completely superimposed

(Fig. 3-C), with no significant difference (non-parametric

Kruskal–Wallis test with compare alpha diversity.py,

p-value=0.952).Thesamplesextractedbybothmethods(kitand

chemicalprotocol)reachedaplateauafter>16,000sequences

(Fig.3-C).Thisindicatedthatthesequencingdepthwas

suc-cessfulincapturingtheexistingmicrobialdiversityinallthe

investigatedsamples.

The PD whole tree (alpha diversity measure) was used

to represent the phylogenetic diversity between samples

extractedbyEpicentrekit andthe developedchemical

pro-tocol(Fig.3-D).Therewasnosignificantdifferencebetween

the two investigated protocols in terms of PD whole tree

(non-parametric Kruskal–Wallis test with compared alpha

diversity.py,p-value=0.984).

To investigate the beta diversity (between community

diversity)betweenthemetagenomicDNAsamplesextracted

by the Epicentre kit and developed chemical protocol, the

UniFrac distancemetrics were used,as UniFractakes

phy-logenetic relatedness into account while computing beta

diversity.Toexplorethedifferencesinoverallmicrobial

com-munitycompositionacrossthe metagenomicDNAsamples

extractedbythetwoinvestigatedprotocols,boththe

phyloge-neticunweightedUniFracdistances(Fig.4-A)(consideronly

thepresenceorabsenceoftaxa)andweightedUnifrac(Fig.4

-B)(considertaxonrelativeabundance)werecomputed.The

principal coordinatesanalysisplot(PCoA),showedthat the

metagenomic DNAfrom the samesamplesourceclustered

togetherregardlessoftheusedmethodofextraction(Fig.4).

Similarly,thebetadiversityanalysisofthesamplesshowed

thateach samplesourcerepresentedadistinctmicrobiome

(5)

0ther — Ar matimonadetes Actinobacter ia Acidobacter ia BRC1 AC 1 WWE1 WS6 WS5 Verr u comicrobia Unass ign ed Ther motog ae Ther mi Tener icutes TP D-58 TM7TM6 SynergistetesSpirochaetes SR1 SAR406 0% 10% 20% 30% 40% Proteobacteria 60% 70% 80% 90% 100% Planctom ycetes 0P8 0P3 0P11 0P1 0D1 Nitrospir a e NKB19 0p9 0% 10% 20% 30 % 40 % 50 % 60% 70% 80% 90% 100 % Gemmatimonadetes GN02 Fusobacter ia Firm icutes Elusimicrobia EM3 0% 10% 20% 30% 40% Developed.protocol 60% 70% 80% 90% 100% Def eribacteres Cy anobacter ia Chlorofle xi Chlorobi Chlam ydiae Caldiser ica Bacteroidetes 100% 90% 80% 70% 60% 40% 30% 20% 10% 0% K it — — — — — — — — — — — — — — —— — — — — — — — — — — — — — — — — —— — — —

Fig.2–Therelativeabundanceoftheidentifiedphylainthesamplesextractedbythedevelopedchemicalprotocol

(Chemical)andthoseextractedbythecommercialEpicentrekit(Kit).Inthefigureeachphylumisrepresentedbyacircularly arrangedribbon,whosewidthisproportionaltoitsrelativeabundance.

Thesignificanceofthe usedDNAextractionmethodon

the overall microbial community composition was tested

usingpermutationalmultivariateANOVA.Therewasno

sig-nificanteffectofthemetagenomicDNAextractionmethods

usedintheoverallcommunitycompositionwithinthe

indi-vidualsamples (PERMANOVA, pvalue=0.816 and ANOSIM,

p-value=0.813).

Discussion

Cokingwastewaterisacomplexhighlycontaminated

indus-trialeffluent,whichhasbeenstudiedinagreatdetail.16Hence,

cokingwastewatersamplesfrombothcoalcokingfactoryand

photosyntheticallyaeratedbioreactorwereselectedforthis

study.Thedevelopedchemical protocolforthe isolationof

metagenomicDNAfromthecontaminatedwatersampleswas

comparedtoacommercialkit(MetagenomicDNAisolationkit

forwater,Epicentre,USA),asitisawell-establishedkitthat

hasbeenusedthroughrecentmetagenomicstudies.17

Inthedevelopedprotocol,CTABandSDSwereusedas

puri-fyingagentsfortheremovalofphenoliccontaminantsand

humicsubstancesasdescribedearlierinmanyDNA

extrac-tionprotocols.8TheinclusionofpurifyingagentsintheDNA

extractionbufferissufficienttoyieldDNAwithanadequate

puritythatcomplieswiththedifferentmolecularapplications.

Thiseliminatestheneedforfurtherstepswithaseparate

puri-fyingbufferoranyadditionalpurificationstepsasreportedby

otherpreviouslystudiedDNAextractionprotocols.5,9,11

There-fore,thisaddsextrabenefitsofthedevelopedprotocolinterms

oftimeandmoneysaving.

Althoughtheuseoforganicsolvents(phenol/chloroform)

iscommon inthe previouslydevelopedmetagenomic DNA

extractionprotocols,18yettheuseofsuchhazardoussolvents

wasavoidedintheprotocoldevelopedinthisstudy.Several

studieshaveattemptedtoenhancethequalityandyieldof

themetagenomicDNAextractedfromenvironmentalsamples

byusingphysicaltreatments(beadbeatingand sonication)

intheextractionprotocols.However,theseharshtreatments

usuallycause shearing ofDNA,which makesit unsuitable

forfurtherdownstreamprocessing.8Accordingly,thesesevere

treatmentswerenotincludedinthedevelopedchemical

pro-tocol,yieldingun-shearedmetagenomicDNAwithasizeof

≈40kb.

TheyieldofDNAinthedevelopedchemicalprotocolwas

significantlyhigher(2.6folds)thanthatoftheEpicentrekit

(one-wayANOVA,p-value=0.0026).Similarobservationshave

(6)

Observed species: protocol Chaol: protocol

A

C

D

B

3000 4000 3500 3000 2500 2000 1500 1000 500 0 0 2500 2000 1500 1000 500 1.0 150 100 50 0 0 0.8 0.6 0.4 0.2 0.0 0 20000 40000 60000 80000 100000 20000 40000 60000 80000 100000 0 0 20000 40000 60000 80000 100000 20000 40000 60000 80000 100000 Sequences per sample

Sequences per sample Sequences per sample Sequences per sample Simpson: protocol

PD whole tree: protocol Ch Ep Ch Ep Ch Ep Ch Ep Raref action measure: obser v ed_species Raref action measure: PD_whole_tree Raref action measure: simpson Raref action measure: chaol

Fig.3–RarefactioncurvesofalphadiversitymeasuredforthemetagenomicDNAsamplesextractedbythedeveloped chemicalprotocol(Ch)andthecommercialEpicentrekit(Ep).(3-A)Theobservedspeciesindicatingthetruespecies richness,(3-B)Chao1richnessestimatorindicatingestimatedspecies’richness,(3-C)Simpson’sindexindicatingspecies’ evennessand(3-D)PDwholetreeindicatingthephylogeneticdiversity.

A

B

PC2 (24.49 %) PC3 (16.84 %) PC1 (38.04 %) PC3 (18.26 %) PC1 (46.07 %) PC2 (31.46 %) A.kit B.Kit A.ch A.kit A.ch C.kit C.ch B.Ch C.Kit C.Ch D.Kit D.Ch B.Kit B.Ch D.KitD.Ch Ch Ep Ch Ep

Fig.4–Principalcoordinatesanalysis(PCoA)representingthebetadiversityestimatedbytheunweightedUNIFRAC(4-A) andweightedUNIFRAC(4-B)method.Individualdatasetsarerepresentedasspheres,whicharecoloredaccordingtotheir samplesourceasfollows;Blue:metagenomicDNAsamplesextractedbythecommercialEpicentrekit,Red:metagenomic DNAsamplesextractedbythedevelopedchemicalprotocol.(4-A)Thethreeprincipalcoordinates(PC1–PC3)explain38.03, 24.49and16.84%,respectively.(4-B)Thethreeprincipalcoordinates(PC1–PC3)explain46.07,31.46and18.26%,respectively.

chemicalprotocolsyieldedhigherDNAthan theused

com-mercial kits.8 The three protocols used in this study (kit,

chemical, and gel purification) achieved sufficient removal

ofproteinsfrom the extractedmetagenomic DNAwiththe

absorbanceratiosat260/280nm>1.8.10,11However,the

high-estabsorbanceratios(260/280nm)wererecordedbythegel

purificationmethod, indicatingthatthe metagenomicDNA

extracted by this method had the lowest protein

concen-trations. The metagenomic DNA extracted by the kit and

the developed chemical protocol recorded the absorbance

ratiosat260/230nm<2,thisindicatedthepresenceofhumic

substances.9,11

Relatively high metagenomic DNA concentrations and

reasonableabsorbanceratiosdonotalwaysindicatethe

suit-abilityofextractedDNAforenzymaticreactions.Forinstance,

a previous study8 investigated five different metagenomic

DNA extraction methods but none of the extracted DNA

samples was suitable for PCR and/or restriction digestion

and thesamplesrequiredfurtherpurificationsteps.

(7)

ofthe metagenomic DNA, aspositive PCR results indicate

the absence of any impurities that may inhibit enzymatic

reactions.8,11Inthisregard,themetagenomicDNAextracted

bythechemicalprotocoldevelopedinthisstudyshowed

pos-itivePCRresultsemphasizingtheefficiencyofthedeveloped

protocol.

The development of a sensitive, reproducible, and

pre-cisemetagenomicDNAextractionprotocolisessentialfora

successfulmetagenomicanalysis.Manyearlierstudieshave

useddifferentmoleculartechniquesasPCR,restriction

diges-tion, and cloning for testing the quality of the extracted

metagenomicDNA,8,9,11butnonereachedtheextentoftesting

the quality of the extracted DNA by applying the

down-streamanalysisoftheNGSoutputdata.Besides,metagenomic

DNA extraction protocols intended for the application in

NGSrequirehigh-qualitystandards.Specifically,NGSrequires

reproducible precise protocols that provide adequate read

length,numberofsequencespersample,andconsequently

thehighqualityofNGSdata.Inthisperspective,thecurrent

study adoptedaninitiative approachtoapplying NGSas a

qualitycontroltoolfordevelopingandoptimizingthe

metage-nomicDNAextractionprotocol.

Interestingly, the number of high-quality sequences

obtainedfrom themetagenomicDNAsamplesextractedby

thechemicalprotocolwas20%higherthanthatofthesamples

extracted by the Epicentre kit. This occurred as the

con-centrationof DNA extracted bythe chemical protocol was

significantlyhigherthan thatextractedbytheEpicentrekit

(t-test,p-value=0.0425).Therewasnosignificantdifference

(Kruskal–Wallistest,p-value=0.682)intheobservedspecies

richness between the samplesextracted by bothmethods.

However,thesequencingdepth didnotcompletelycapture

the whole OTU richness in the kit samples, since,with a

highernumberofsequences inthechemicalprotocol

sam-ples,the curvewas stillrisingand didnotreachaplateau

inthe“observedspeciescurve”.Theimportanceofadequate

sequencingdepthforobtaininganaccurateestimationofthe

diversityinasamplewasstudiedpreviously,anditwas

indi-catedthatanincreasedsequencingdepthmarkedlyimproves

theestimatesofdiversity.19

Therewasnosignificantdifferenceinboththewithin

com-munitydiversity(alphadiversity)andthebetweencommunity

diversity(betadiversity)between thesamplesextracted by

bothmethods.Alltheseresultsindicateagreaterefficiency

of the developed chemical protocol to yield high-quality

metagenomicDNAcomparabletothatextractedbythe

well-establishedEpicentrekit.

When the tentative cost estimation of the optimized

method was attempted, it was found tobe approximately

0.125USDforprocessingonesample(SupplementaryTable

S1); this may beattributed to the use of low-cost

materi-als.Thepurifyingagentsusedinthedevelopedprotocolare

relatively inexpensive compared to other purifying agents

asanionresinsandhydroxyapatitecolumns.Incomparison

with any other commerciallyavailable kit, the cost of the

high-qualityDNAisolationfrom environmentalwater

sam-pleusingthedevelopedchemicalprotocolisremarkablylow

(processingonesampleusingEpicentrekitcostsabout6.85

USD).Ontheotherhand,thetimerequiredformetagenomic

DNAextractiondidnotvarymuchforeitherofthe studied

protocols; Epicentrekit and the developedchemical

proto-colrequired1.5hand2h,respectively,formetagenomicDNA

isolation.

In conclusion, acost and time-efficientchemical

proto-col for the extractionof mDNA from environmentalwater

sampleshasbeendeveloped.Theefficientrecoveryandhigh

qualityoftheextractedDNA usingthedevelopedchemical

protocolmakesitcompatiblewithhigh-resolutionmolecular

applicationsincludingnext-generationsequencing.This

pro-posesthedevelopedchemicalprotocoltobeagoldstandard

infuturemetagenomicstudiesinvestigatingalargenumber

ofsamples.

Authors’

contributions

MariamHassanandTamerEssamconceivedanddesignedthe

study.MariamHassanperformedthe experiments.Mariam

Hassan and Tamer Essamanalyzedthe data. Mariam

Has-san preparedthefigures and illustrations. MariamHassan,

Tamer Essam,and SalwaMegahed draftedthe manuscript.

MariamHassanandTamerEssamwrotethepaperinfinal

for-mat.Allauthorsreadandapprovedthefinalversionofthe

manuscript.

Funding

This work did notreceive any specific grant from funding

agenciesinthepublic,commercial,ornot-for-profitsectors.

Conflicts

of

interest

Allauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgement

TheauthorsaredeeplygratefultoDr.AlexMira,Departmentof

GenomicsandHealth,CenterforAdvancedResearchinPublic

Health(CSISP),Valencia,Spain,forsequencingthesamples.

Appendix

A.

Supplementary

data

Supplementarydataassociatedwiththisarticlecanbefound,

intheonlineversion,atdoi:10.1016/j.bjm.2018.03.002.

r

e

f

e

r

e

n

c

e

s

1.MedeirosJD,CantãoME,CesarDE,etal.Comparative metagenomeofastreamimpactedbytheurbanization phenomenon.BrazJMicrobiol.2016;47:835–845.

2.YangR,LiuP,YeW.Illumina-basedanalysisofendophytic bacterialdiversityoftreepeony(PaeoniaSect.Moutan)roots andleaves.BrazJMicrobiol.2017;48:695–705.

3.RigonatoJ,KentAD,GumiereT,BrancoLHZ,AndreoteFD, FioreMF.Temporalassessmentofmicrobialcommunitiesin soilsoftwocontrastingmangroves.BrazJMicrobiol.2017.

(8)

4. HuY,LiuZ,YanJ,etal.AdevelopedDNAextraction methodfordifferentsoilsamples.JBasicMicrobiol. 2010;50:401–407.

5. BagS,SahaB,MehtaO,etal.Animprovedmethodforhigh qualitymetagenomicsDNAextractionfromhumanand environmentalsamples.SciRep.2016;6:67–75.

6. KathiravanMN,GimGH,RyuJ,KimPI,LeeCW,KimSW. EnhancedmethodformicrobialcommunityDNAextraction andpurificationfromagriculturalyellowloesssoil.J

Microbiol.2015;53:767–775.

7. KumarR,ShakyawarDB,PareekPK,etal.Developmentof PCR-basedtechniquefordetectionofpurityofpashmina fiberfromtextilematerials.ApplBiochemBiotechnol. 2015;175:3856–3862.

8. SagarK,SinghSP,GoutamKK,KonwarBK.Assessmentof fivesoilDNAextractionmethodsandarapid

laboratory-developedmethodforqualitysoilDNAextraction for16SrDNA-basedamplificationandlibraryconstruction.J

MicrobiolMethods.2014;97:68–73.

9. MiaoT,GaoS,JiangS,etal.AmethodsuitableforDNA extractionfromhumus-richsoil.BiotechnolLett. 2014;36:2223–2228.

10.Zelaya-MolinaLX,OrtegaMA,DorranceAE.Easyand efficientprotocolforOomyceteDNAextractionsuitablefor populationgeneticanalysis.BiotechnolLett.2011;33: 715–720.

11.YeatesC,GillingsMR,DavisonAD,AltavillaN,VealDA. MethodsformicrobialDNAextractionfromsoilforPCR amplification.BiolProcedOnline.1998;1:40–47.

12.MillerKE,HopkinsK,InwardDJG,VoglerAP.Metabarcoding offungalcommunitiesassociatedwithbarkbeetles.Ecol

Evol.2016;6:1590–1600.

13.EssamT,AminMA,TayebOE,MattiassonB,GuieysseB. Kineticsandmetabolicversatilityofhighlytolerantphenol degradingAlcaligenesstrainTW1.JHazardMater.

2010;173:783–788.

14.KlindworthA,PruesseE,SchweerT,etal.Evaluationof general16SribosomalRNAgenePCRprimersforclassical andnext-generationsequencing-baseddiversitystudies.

NucleicAcidsRes.2013;41:11–15.

15.CaporasoJG,KuczynskiJ,StombaughJ,etal.QIIMEallows analysisofhigh-throughputcommunitysequencingdata.

NatMeth.2010;7:335–336.

16.MaQ,QuY,ShenW,etal.Bacterialcommunity

compositionsofcokingwastewatertreatmentplantsinsteel industryrevealedbyIlluminahigh-throughputsequencing.

BioresourTechnol.2015;179:436–443.

17.Gatte-PicchiD,WeizA,IshidaK,HertweckC,DittmannE. FunctionalanalysisofenvironmentalDNA-derived microviridinsprovidesnewinsightsintothediversityofthe tricyclicpeptidefamily.ApplEnvironMicrobiol.

2014;80:1380–1387.

18.RanasingheCP,HardingR,HargreavesM.Animproved protocolfortheisolationoftotalgenomicDNAfrom

Labyrinthulomycetes.BiotechnolLett.2015;37:685–690.

19.SmithDP,PeayKG.Sequencedepth,notPCRreplication, improvesecologicalinferencefromnextgenerationDNA sequencing.PLoSONE.2014;9:e90234.

Referências

Documentos relacionados

DGGE fingerprints of 16S rDNA fragments amplified from cDNA and DNA obtained with the optimized protocol from soil and rhizosphere samples were comparable to the patterns observed

In terms of the regressors, we divide them in four main blocks: macroeconomic performance (per capita GDP, unemployment rate, inflation rate, real GDP growth), government

Além de chamar a atenção para os riscos do uso de substâncias como mercúrio, hidroquinona, cortisona, vitamina A e dermocorticoides, as autoras ressaltam que o uso destes

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

CONCLUSÕES • A gradagem do solo aumentou significativamente o incremento anual em DAP da rebrota de Eucalyptus saligna, um ano após o revolvimento; • A porosidade total do

Caso um utilizador não adote “(…) uma conduta de boas práticas põe em risco qualquer sistema” (Lopes, 2018), sendo “(…) a formação dos utilizadores […] indispensável