Evapotranspiration in the context of land use and land cover changes in MATOPIBA, Brazil

13  Download (0)

Full text



Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.

Evapotranspiration in the context of land use and land cover changes in MATOPIBA, Brazil; A theoretical approach

Arão de Moura Neto1, Gabriel Siqueira Tavares Fernandes2, Edivania de Araujo Lima3, Pabrício Marcos de Oliveira Lopes4, Laís Samara Rodrigues5, Angelo da Silva Gonçalves Junior6, Jéssica Rafaelly Almeida Lopes7, Laila Lúcia

Sousa e Silva8, Raiany Oliveira da Silva9

1Graduando em Engenharia Agronômica pela Universidade Federal do Piauí, Bom Jesus, PI, Brasil. E-mail correspondente araomoura10@hotmail.com

2Doutorando em Agronomia, Universidade Federal Rural da Amazônia, Belém, PA, Brasil. https://orcid.org/0000-0002-0781-1696

3Professora Doutora Associada I, Universidade Federal do Piauí, Bom Jesus, PI, Brasil. https://orcid.org/0000-0002-9634-9180

4 Professor Doutor, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil. https://orcid.org/0000-0002-6632-4062

5Graduanda em Engenharia Agronômica, Universidade Federal do Piauí, Bom Jesus, PI, Brasil. https://orcid.org/0000-0001-5100-5862

6 Graduando em Engenharia Agronômica, Universidade Federal do Piauí, Bom Jesus, PI, Brasil. https://orcid.org/0000-0003-1907-5718

7 Mestra em Engenharia Ambiental, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil. https://orcid.org/0000-0003-0732-8781

8 Graduanda em Engenharia Agronômica, Universidade Federal do Piauí, Bom Jesus, PI, Brasil. https://orcid.org/0000-0001-6253-2203

9 Graduanda em Engenharia Florestal, Universidade Federal do Piauí, Bom Jesus, PI, Brasil. https://orcid.org/0000-0002-8141-1025 Artigo recebido em 06/11/2022 e aceito em 18/12/2022


Evapotranspiration is an important process for nature and for human activities that involve the soil-plant-atmosphere complex, and knowledge about the topic of evapotranspiration is crucial. The MATOPIBA region occupies areas of the states of Maranhão, Tocantins, Piauí and Bahia and occupies a significant part of the Cerrado region. Currently, this region has been undergoing major changes in its vegetation cover caused by the opening of areas for the implementation of agricultural crops. In this sense, the objective of this review was to discuss the topic of evapotranspiration and native vegetation of the Cerrado, as well as to present the importance of remote sensing for estimating evapotranspiration and monitoring changes in land use and cover in the Cerrado. It can be seen how important the natural vegetation of a region is, showing its importance in the most different environmental spheres, being fundamental for the hydrological cycle and other environmental processes. In this sense, deforestation actions are too harmful to the natural environment, contributing to damages related to local and regional fauna, flora and hydrology. In this scenario, it is necessary and fundamental to carry out actions that aim to contain and reduce deforestation.

Keywords: Cerrado, MapBiomas, Deforestation, Meteorological elements.

Evapotranspiração no contexto das mudanças de uso e cobertura da terra no MATOPIBA, Brasil; Uma abordagem teórica


A evapotranspiração é um importante processo para a natureza e para as atividades humanas que envolvem o complexo solo-planta-atmosfera, sendo crucial o conhecimento acerca do tema da evapotranspiração. A região do MATOPIBA ocupa áreas dos estados do Maranhão, Tocantins, Piauí e Bahia e ocupa parte significativa da região dos Cerrados;

Atualmente, essa região vem passando por grandes mudanças em sua cobertura vegetal ocasionadas pela abertura de áreas para a implantação de culturas agrícolas. Nesse sentido, objetivou-se com a presente revisão discorrer sobre o tema evapotranspiração e vegetação nativa do Cerrado, bem como apresentar a importância do sensoriamento remoto para as estimativas de evapotranspiração e no acompanhamento das mudanças de uso e cobertura dos solos do Cerrado. Vê-se quão importante é a vegetação natural de uma região, evidenciando sua importância nas mais diferentes esferas ambientais, sendo fundamental para o ciclo hidrológico e demais processos ambientais. Nesse sentido, ações de desmatamento são demasiado prejudiciais ao ambiente natural contribuindo para prejuízos relativos à fauna, à flora e à hidrologia locais e regionais. Nesse cenário, faz-se necessária e fundamental a realização de ações que visem conter e reduzir o desmatamento.

Palavras-chave: Cerrado, Mapbiomas, Desmatamento, Elementos meteorológicos.


Revista Brasileira de Geografia Física




Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.


The agricultural activities carried out in Brazil have, recently, become increasingly important for the country's economy, being a key factor in the trade balance (Ferreira et al., 2022). In this scenario, with the growing demand for food and other products derived from agriculture, commodity crops have grown in Brazil, especially in the Cerrado savannas, an important biome with great biodiversity of fauna and flora. However, much of the Cerrado is in the region known as MATOPIBA (Lopes; File; Kings, 2021). The MATOPIBA region is an agricultural frontier that has been highlighted and involves the states of Maranhão, Tocantins, Piauí and Bahia (Freitas, 2021). In the MATOPIBA region, Matricardi et al.

(2019) analyzing through data and remote sensing methods the dynamics in the use and cover of soil and irrigated agriculture areas between 2000 and 2016, verified an increase of 40.9% of agricultural areas and soil exposure and an increase of 154% of irrigated agricultural areas. They also identified changes in land use throughout the studied area, with the most significant changes being observed in the southern part, due to soil aptitudes for more technical agriculture.

In the state of Piauí, the agricultural development center encompasses 33 municipalities in the Gurguéia River basin region (Oliveira;

Aquino, 2020). According to Fernandes et al.

(2021), agricultural development in southwest Piauí has enabled intense changes in the native vegetation of the Cerrado. These changes cause several environmental impacts, such as biodiversity reduction, increased greenhouse gas emissions, soil exposure, enhancing soil degradation, as well as water pollution and changes in water and carbon cycles (Polizel et al., 2021).

In addition, the replacement of the Cerrado biome by agricultural areas leads to impacts on radioactive components acting on the surface, generating an increase in surface and albedo temperature, decreasing the availability of energy on the surface and altering the energy balance and all dynamics in vegetation-atmosphere interaction, also affecting the evaporative processes and interfering in local evapotranspiration (Fernandes et al., 2021; Yassen et al., 2020).

In this sense, evapotranspiration represents an important component of the water balance, since it demonstrates the loss of water from surface evaporation along with water loss by plant transpiration. Thus, evapotranspiration is an important indicator for the planning of irrigation

projects, plant management and for the efficient use of water resources (Cabral Júnior et al., 2021;

Santiago; Barbosa, "Barbosa". Correia Filho, 2021).

Thus, remote sensing has been assisting in the search for a more sustainable and efficient agriculture, favoring the monitoring of water resources, besides allowing to verify the interactions between surface and atmosphere, being considered a fundamental technological device for the correct estimation and application of resources (Cavalcante et al., 2022).

Thus, the present study aimed to present a review on the theme evapotranspiration and native vegetation of the Cerrado, as well as to present the importance of remote sensing for evapotranspiration estimates and in the monitoring of changes in land use and cover of the Cerrado.


Evapotranspiration and estimation methods Water is one of the predominant factors for plant growth and production (Nonato et al., 2020).

On the other hand, water resources are becoming increasingly scarce, requiring rigorous studies on productivity, rationalization and more efficient use of water (Albuquerque; Durães, 2013). In this sense, the correct management of water can lead to excellent results in food production, but its inadequate use causes degeneration of the natural physical environment (Paz; Teodoro; Mendonça, 2000). Thus, the use of management techniques aimed at maximizing water use efficiency and reducing water losses by crops is fundamental (Murga-Orrillo et al., 2016).

In this sense, the estimation of evapotranspiration helps researchers and professionals in the area in the implementation and execution of agricultural and environmental projects being necessary for studies of water balance, irrigation projects and management, modeling of climatological processes and planning of the use of water resources, configuring itself as an important tool (Ongaratto; Bortolin, 2021).

Evapotranspiration is the variable that has the most activity in the hydrological cycle and is the main component of climatological water balance in agricultural ecosystems (Franco et al., 2019), it is defined as being a process resulting from the sum of water lost by evaporation of the soil surface and by crop transpiration (Allen et al., 1998). The main controlling elements of evapotranspiration include solar radiation, air temperature, wind speed, relative air humidity and atmospheric pressure, in



Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.

addition to the precipitation that is responsible for the entry of natural water into the system, for making it available to plants and to the occurrence of evaporation (Martins; Pink, 2019).

The analysis of potential evapotranspiration (ETP) allows estimating, through the water balance, the surplus and water deficiency of a given region, being an important aid tool for the management of water resources (Castiglio; Campagnolo; Kobiyama, 2021).

Another important factor is the culture evapotranspiration (ETc) which is determined through the multiplicative interaction between ETP and Kc which is a representative coefficient of culture, thus varying according to the crop and according to the phenological state of this (Bernardo et al., 2019). As a result, studies on potential evapotranspiration (ETP) are important elements for research on hydrology and irrigation (Castiglio; Campagnolo; Kobiyama, 2021).

The most accurate direct methodology for estimating ETP is soil water balance, which is performed through the use of lysimeters. However, due to the limitations related to the use of this method, the estimation of evapotranspiration via physical-mathematical models has been a practical alternative. Thanks to several studies carried out recently, the combined Penman-Monteith FAO equation is the one that best represents the physical and physiological factors that govern the evapotranspiration process (Carvalho et al., 2015).

Regions where this method is not recommended are rare. However, although much publicized and recommended, it is still possible to find variations of this method aiming at improvement or to supply the absence of unavailable meteorological data. In this case, if input data is unavailable for the use of the Penman-Monteith FAO method, the use of alternative methods is justified. In this sense, different methods are developed or recommended for different regions and climatic conditions, depending on the availability of data, required accuracy and timescale, such as the Penman- Monteith FAO 56, Blaney-Criddle, Jensen-Haise, Camargo, Linacre, Benavides Lopez, among others (Coutinho et al., 2020; Castiblanco; Quiñones, 2021; Ongaratto; Bortolin, 2021).

Agricultural production systems have been undergoing changes that aim to reduce the labor force and, simultaneously, the intensification of its use. Therefore, precision agriculture is presented as a management technique that considers spatial variability and allows the more rational application of the insums (Bassoi et al., 2019). Precision agriculture most often aims to increase the quality

and quantity of agricultural production by using fewer amounts of insums. Considering water as a significant factor for agricultural management and high consumption by the sector, water management becomes an important tool to ensure resource availability (Ezenne et al., 2019).

As a result, evapotranspiration estimation models based on remote sensing technologies, such as the Surface Energy Balance Algorithm for Land (SEBAL), MODIS (Moderate Resolution Imaging Spectroradiometer), the METRIC (Mapping Evapotranspiration at HighResolution with Internalized Calibration) algorithm, and others have been accepted as effective alternatives to large-scale estimates (Bezerra; Heifer; Rego, 2021;

Martins; Rosa, 2019; Diniz et al., 2021).

Evapotranspiration in the Cerrado biome Several interactive processes between the biosphere, lithosphere and atmosphere account for the balance of water balance, and among these processes is evapotranspiration, in addition to temperature and vegetation cover of the surface (Sousa; Moura, 2022). In the Cerrado, water losses are mainly related to evapotranspiration, which allows the proper development of vegetation, provided that jointly to a correct management (Furquim et al., 2020). The vegetation directly influences evapotranspiration patterns due to albedo, plant species and plant height and its Leaf Area Index - LAI (Martins; Rosa, 2019), so the high spatial heterogeneity of evapotranspiration is mainly due to the various forms of land use and occupation (Lopes; Andrade; Teixeira, 2020).

Evapotranspiration tends to be enhanced by the land use of a surface and evapotranspirative efficiency associated with water availability, solar radiation and nutrients necessary to allow biological processes of vegetation cover (Leite et al., 2019). Thus, tropical forests, such as those of the Cerrado, are ecosystems that play an important role in regulating the local and regional climate (Sabino et al., 2019). In this sense, evapotranspiration in tropical forests is an element responsible for recycling a large part of the rains in the tropics and contributes strongly to carbon assimilation (Moreira; Ruhoff, 2019). In addition, forests play a vital role, since the transpiration of forest vegetation together with the evaporation of the land surface and the surface of lakes, rivers and oceans feed the formation of clouds and the occurrence of rains (Campos; Higuchi, 2009).

From 1977 to 2010, there was a reduction of 8.4% in the average precipitation in the Cerrado, and the most important decreases were recorded in



Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.

the central and western parts of the biome. These changes are caused by global climate change and the relevance of the effects of deforestation on rainfall in the Cerrado, since more than half of its native vegetation has been converted to other uses (Campos; Keys, 2020). In this sense, forest conservation plays a fundamental role in climate stabilization, since the substitution of the native forest by plantations of exotic species interferes with biophysical parameters and evapotranspiration of local areas, in addition to deforestation contributing to the increase in albedo and surface temperature (Sabino et al., 2019).

Remote sensing and Google Earth Engine With the advent of technologies, the use of new aerial platforms, such as satellites, has been one of the main tools for analysis and more advanced studies on the earth's surface, such research is relevant for the detection and monitoring of changes, enabling better evaluation, management and management of natural resources.

In this sense, precision agriculture emerges as an important tool in the optimization of natural resources and for obtaining better results (Oliveira et al., 2020).

The monitoring of evapotranspiration, in a spatial and temporal way, represents a great challenge for understanding about the energy and hydrological partitioning between the surface and the atmosphere, especially in tropical areas that are the largest sources of evapotranspiration and that have strong control over atmospheric circulation processes (Ruhoff, 2011; Andrade et al., 2020).

Thus, remote sensing is a fundamental tool that contributes to the identification and monitoring of possible changes in natural resources (Panza et al., 2020). In remote sensing applied to environmental studies, Landsat is the main satellite used. Despite being images of medium spatial resolution, about 30 m of spatial resolution with 185 km of imaged range and 8 bands, landsat series stands out due to its history of scenes, since they contribute to the temporal monitoring of the surface (Borges; Rodrigues; Milk, 2019; Bezerra, 2018). On the other hand, the MODIS sensor, which is on board terra and AQUA satellites, also has advantageous characteristics such as the generation of images of different products encompassing not only the earth's surface, has high radiometric sensitivity (12 bits), high spectral sensitivity (36 bands), as well as images with spatial resolution of 250 m, 500 m and 1000 m, in addition to other characteristics (Gouveia et al., 2021).

Thus, remote sensing is a tool that through the use of different techniques related to algorithms, such as the ALGORITHM SEBAL (Surface Energy Balance Algorithm for Land) the METRIC algorithm (Mapping Evapotranspiration at HighResolution with Internalized Calibration), provides the spatial-temporal monitoring of heterogeneous areas with high precision (Bezerra et al., 2020; Heifer; Heifer; Rego, 2021; Diniz et al., 2021). In addition, it allows the generation of space-time series of important variables for the management of irrigated agriculture and for the monitoring of biophysical variables, such as rainfall, real evapotranspiration, air temperature, wind speed, relative humidity, solar radiation and other variables that help to manage water use spatially (Silva; Magnoni; Manzione, 2021; Saints;

Wedge; Ribeiro-Neto, 2019; Sousa et al., 2021;

Rampazo; Picoli; Cavaliero, 2019).

Another platform that has been standing out is Google Earth Engine (GEE), a tool that was launched in 2010, considered an important tool for scientists and researchers due to the ease in obtaining valuable information in a large data set, serving as an important element for detecting environmental changes and monitoring changes in the landscape over several years (Amani et al., 2020). Through GHG, it is possible to obtain evapotranspiration databases, in addition to other variables such as precipitation, air temperature, elevation and climatic data, among others, in a simplified way, which makes the GHG environment interesting, since its computational cost is relatively low when compared to conventional models (Silva; Magnoni; Manzione, 2021; Oak; Magellan Son; Santos, 2021).

Expansion of agriculture in MATOPIBA and its environmental impacts

Lately, the MATOPIBA region has gained relevance in the Brazilian agricultural sector, becoming a large Brazilian agricultural frontier with high rates in grain and agricultural commodities' production (Reis et al., 2020). This region covers the entire state of Tocantins (TO) and areas of the states of Maranhão, Piauí and Bahia, thus being 90% of MATOPIBA inserted in the Cerrado biome and is characterized, in productive terms, by the increase in specialization in grain production and by the deepening of land speculation (Guerra; Schultz; Sanches, 2017;

Souza; Silva, 2019). Some technological advances in Brazilian agriculture, such as new cultivars adapted to the edaphoclimatic conditions of the Cerrado, mechanization and automation of grain



Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.

production, intensification of land use, more than one annual cycle of production per area, the integration between tillage, livestock and forest, among others, made the region one of the preferred places for agribusiness expansion (Esquerdo et al., 2015).

Agribusiness plays a fundamental role in the Brazilian economy due to the generation of employment and income and because it plays an active role in the positive balance of trade, highlighting the country in international trade. Due to its economic importance, agribusiness has been the main recipient of government investments, which encourages the expansion of the market for new monoculture technologies (Gomes, 2019).

Despite all the importance of the sector, its unbridled growth has caused, in the Cerrado region, serious environmental damage that has compromised the maintenance of natural resources and, causing severe changes in the landscape, such as the alteration of hydrological behavior, soil exposure and triggering of erosive processes, in the silting of water bodies, in reducing the flow of rivers, in addition to other associated processes (Oliveira; Aquino, 2020).

The Cerrado supply three of the largest hydrographic basins in South America, being the Amazon/Tocantins, the São Francisco and the Prata, which makes it considered as the cradle of the waters, providing the reproduction of several species of plants and animals in its ecosystem.

However, this biome has undergone transformations in the occupation and exploitation of its areas due to the practice of agribusiness. Such changes are caused by the modernization of agriculture, intensify the environmental problems of the region, compromising the sustainability of the ecosystem and causing serious environmental damage such as the degradation of the water system, the extinction of animal and plant species, as well as damage to the soil (Oliveira, 2018).

These processes of changes in the relations of land use and cover directly impact on the hydrological cycle, since biophysical parameters are modified that act on the balance of radiation on the surface and, with this, there are changes in heat and evapotranspiration flows. Therefore, it is observed that land use and land cover is an essential element in the regulation of the water cycle, due to its influence on the processes of evapotranspiration, infiltration, runoff and storage of water in the soil. In addition, there are indications that such environmental changes may cause changes in rainfall regime on several scales, such as local and regional, and may be changes in

volume and intensity, or even in the annual cycle of flows. This is justified by the increase in surface albedo, which is caused by the conversion of areas with natural vegetation in areas of agricultural production, also reflected in increased surface temperature and decrease in evapotranspiration volumes, which affects the entire cycle, culminating in interference in water availability (Martins; Galvani, 2020).

Fernandes et al. (2020), observing the interdecadal behavior of climatic elements and identifying their variations in the state of Piauí, noticed a remarkable change in the average behavior of the climatic elements air temperature and rainfall in the climatology observed in the State, with an increase in the average air temperature and a reduction in rainfall totals.

Changes in land use and cover

Changes in land use and cover are a natural phenomenon that, in general, are born according to the needs and standards imposed by the global economy that have different effects on ecosystems and society (Galherte; Villela; Crestana, 2014;

Souza; Nóbrega; Ribeiro, 2019). In this sense, the current land uses have generated different levels of environmental impacts, examples of these effects are the increase in pollution, waterproofing and soil erosion, water pollution by toxic agents, the devastation and fragmentation of forested areas, the loss of biological and genetic diversity of the species, as well as other damage to the environment (Santos; Santos, 2010). Confirming that land use and occupation in urban, agricultural and forest areas, when carried out indiscriminately, are responsible for harmful effects to the environment and are considered one of the main factors responsible for global changes and generate impacts on terrestrial ecosystems and geosystems (Ferreira et al., 2021; Molena et al., 2021).

Despite the economic and productive importance of the MATOPIBA region, environmental concern with the region is relevant, since about 90% of its extension is located in the territory of the Cerrado biome. It is worth noting that much of the deforestation that occurs in the biome is related to activities to expand the production of agricultural commodities (Matricardi et al., 2019). In the Brazilian Cerrado, there is a high concentration of fires in the dry season and, over time, the greatest number of fires occurs mainly in the states of Maranhão, Tocantins and Mato Grosso, a territorial strip understood along the agricultural border located in the MATOPIBA region and near the Region of the Arc of



Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.

Deforestation, in the region between Cerrado, Amazon and Pantanal. This is due to the burning being strictly related to deforestation and agricultural activities in Brazilian biomes (Rocha;

Birth, 2021).

Based on economic projections and deforestation rates, computational models show that the advance of MATOPIBA occupation is in the range of 40,000 km² per decade (Mendes, 2018). These degrading phenomena become worrisome, since the Cerrado biome has more than 4,800 endemic plant species, being an important region for biodiversity (Lima et al., 2020). In addition, the Cerrado was and has been replaced mainly by pastures and agricultural crops. The states of Piauí and Bahia have been leading the agricultural production, and with this, have the

highest conversion rates of the Cerrado. According to data from the Mapbiomas Project, deforestation in the state of Piauí is increasing (MapBiomas, 2022) (Figure 1).

A worrying scenario, since the Cerrado regions in Piauí are promising for agricultural crops and this use has been explored and expanded in these regions. Such land use compromises local natural resources and biodiversity, and harms them (Mendes; Trindade, 2021). Furthermore, there is a correlation between environmental and climatic variables in the agricultural frontier of MATOPIBA, with a decrease in soil moisture due to the reduction of vegetation cover, which provides an increase in soil temperature and a reduction in soil moisture (Lima, 2020).

Figure 1. Temporal evolution of deforestation in the state of Piauí, Brazil.1 Source: Own.

In addition, the maximum average deforestation speed for a single deforestation event in Brazil was observed in the municipality of Baixa Grande do Ribeiro, with an area of 1,428 ha (Figure

2), with this phenomenon happening between January 14 and 31, 2020, obtaining an average of 89 ha/day (MapBiomas, 2021).

Figure 2. Deforestation alert for the municipality of Baixa Grande do Ribeiro, Piauí, Brazil.2 Source: Adapted from MAPBIOMAS (2021).



Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.

According to MapBiomas (2022), in Baixa Grande do Ribeiro, as well as in the state of Piauí, deforestation has grown unbridled (Figure 3), with outbreaks in the areas of primary and secondary vegetation (Figure 4). Moreover, it is known that the Cerrado, from the 1970s on, has become a new and relevant Brazilian agricultural frontier, associated with increasing pressure to open new areas, and there is a progressive depletion of the region's natural resources, and in the last 30 years, the Cerrado has been degraded due to the

expansion of the Brazilian agricultural frontier (Maurano; Almeida; Meira, 2019).

There are several impacts of deforestation, encompassing the loss of opportunities for the sustainable use of forests and the production of traditional goods. Deforestation is an environmental problem that destroys natural resources affecting not only local ecosystems, but having repercussions on global implications (Fearnside, 2006; Dietrich; Almeida, 2020).

Figure 3. Temporal evolution of deforestation and the advance of agriculture in the municipality of Baixa Grande do Ribeiro, Piauí, Brazil.3

Source: Own.

Figure 4. Spatial distribution of deforestation outbreaks in 2019 in the municipality of Baixa Grande do Ribeiro, Piauí, Brazil.4

Source: Own



Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.

In this context, with the loss of natural ecosystems for the advancement of agribusiness, attention is needed regarding sustainable development in the southern region of Piauí. The prioritized optimization of the use of suitable land that has already been used for agricultural activities in the region, due to the environmental collapse that the progressive and indiscriminate exploitation of new areas can cause (Lima et al., 2020).

Climatic elements and absence of native vegetation

Research on biosphere-atmosphere interactions allows describing and characterizing the main forms of energy and mass transfers, related to the particularities of vegetation, soil properties and climate characteristics of a given location.

Thus, current interactions in a forest area can be affected by impacts arising from climate changes and changes in land use (Wanderley; Miguel, 2019).

Environmental transformations cause several effects that lead to the increase or reduction of environmental quality (Jardim; Moura, 2018). In this sense, the removal of vegetation without any replacement, causes impacts on meteorological elements, since the absence of vegetation cover influences the increase in temperature given the heating of the surface throughout the day and the reduction of evaporation surfaces that perform wet thermal exchanges with the environment (Shinzato;

Duarte, 2018). In addition, it is emphasized that the change in natural cover by monoculture substantially modifies biophysical indices, causing, among other changes, land use on a local scale, in the municipality of Alta Floresta, concluded that the occupation of deforestation resulting from deforestation and fires tied to land occupation by agriculture were determinant for changes in the local climate, increasing temperature and reducing relative air humidity and precipitation indexes.

In addition to these aspects, the increase in temperature drops in the increase in potential evapotranspiration. However, there was no increase in precipitation to compensate for the higher atmospheric demand, providing a relevant increase in water deficiency (Bolfe; Sano; Campos, 2020).

increase in albedo and surface temperature and the decrease in surface radiation balance leading to impacts that can reach agricultural productivity, biological production, pastures and areas of native vegetation (Martins et al., 2015; Edwards; Cruz, 2022).

Santos, Oliveira and Ignotti (2021) studied climate change and its relationship with land use on a local scale, in the municipality of Alta Floresta.

They found that occupation resulting from deforestation and fires is linked to land occupation by agriculture and livestock. Were decisive for the changes in the local climate, making evident the increase in temperature and the reduction in the relative humidity of the air and precipitation. In addition to these aspects, the increase in temperature leads to an increase in potential evapotranspiration.

However, no increase in precipitation was observed to compensate for the greater atmospheric demand, leading to a significant increase in water deficit (Bolfe et al., 2020)


The evapotranspiration process is of paramount importance for environmental balance, being an important part of the hydrological cycle, with vegetation playing one of the main roles in the evapotranspirative process. Thus, changes that have occurred in the MATOPIBA region significantly affect the meteorological elements and, consequently, the biophysical processes of the surface, and it is necessary to carry out studies related to the influence exerted by the alteration of soil cover in the agrometeorological elements of this region, since such changes have been occurring in a relevant way and, with this, seek means to reduce deforestation, as well as investigate environmental crimes.


Albuquerque, P.E.P., Durães, F.O.M. (Ed. Téc.).

2013. Uso e manejo de irrigação. 2. ed. Brasília:

Embrapa, 528.

Allen, R.G., Pereira, L.S., Raes, D., Smith, M. 1998.

Crop evapotranspiration: guidelines for computing crop water requirements. FAO - Irrigation and drainage paper, 56.

Amani, M.; Ghorbanian, A.; Ahmadi, S.A.;

Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.;

Moghaddam, S.H.A.; Mahdavi, S.;

Ghahremanloo, M.; PARSIan, S.; WU, Q.;

Brisco, B. 2020. Google Earth Engine Cloud Computing Platform for Remote Sensing Big Data Applications: A Comprehensive Review.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13,

5326-5350. DOI:

10.1109/JSTARS.2020.3021052. Acesso: 27 abr. 2022.

Andrade, R.G., Lima, E.P., Teixeira, A.H.C., Leivas, J.F., Victoria, D.C., Facco, A.G. 2020.

Mapeamento espaço-temporal da evapotranspiração na bacia do rio Paracatu



Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.

utilizando imagens MODIS e o algoritmo SAFER. Brazilian Journal of Animal and Environmental Research, 3, 3, 1729-1739. DOI:


Bassoi, L.H., Inamasu, R.Y., Bernardi, A.C.C., Vaz, C.M.P., Speranza, E.A., Cruvinel, P.E. 2019.

Agricultura de precisão e agricultura digital.

TECCOGS – Revista Digital de Tecnologias

Cognitivas, 20, 17-36. DOI:


Acesso: 27 abr. 2022.

Bernardo, S., Mantovani, E.C., Silva, D.D., Soares, A.A. 2019. Manual de irrigação. 9 ed. atual.

ampl. Viçosa: Editora UFV, 545.

Bezerra, A.C., Silva, J.L.B., Silva, D.A.O., Batista, P.H.D., Pinheiro, L.C., Lopes, P.M.O., Moura, G.B.A. 2020. Monitoramento Espaço-Temporal da Detecção de Mudanças em Vegetação de Caatinga por Sensoriamento Remoto no Semiárido Brasileiro. Revista Brasileira de Geografia Física, 13, 1, 286-301. DOI:

10.26848/rbgf.v13.1.p286-301. Acesso: 27 abr.


Bezerra, H.N.; Bezerra, J.M.; Rêgo, A.T.A. 2021.

Avaliação do método SEBAL para estimativa da evapotranspiração real diária no semiárido brasileiro. Revista Tecnologia e Sociedade, 17, 47, 183-201. DOI: 10.3895/rts.v17n47.12633.

Bezerra, U.A.; Oliveira, L.M.M.; Candeias, A.L.B.;

Silva, B.B.; Leite, A.C.L.S.; Silva, L.T.M.S.

2018. Comparativo do Índice de Vegetação de Diferença Normalizada (NDVI) entre os Sensores OLI - Satélite Landsat-8 e MSI – Satélite Sentinel-2 em Região Semiárida.

Anuário do Instituto de Geociências – UFRJ, 41,

3, 167-177. DOI:


Bolfe, E.L., Sano, E. E., Campos, S. K. (Ed. Tec.).

2020. Dinâmica agrícola no cerrado: análises e projeções. Brasília – DF: Embrapa, 312.

Borges, M.G., Rodrigues, H.L.A., Leite, M.E. 2019.

Sensoriamento remoto aplicado ao mapeamento do Cerrado no Norte de Minas Gerais e suas fitofisionomias. Caderno de Geografia, 29, 58,

819-835. DOI: 10.5752/p.2318-


Cabral Júnior, J.B., Lucena, R.L., Silva, H.J.F., Reis, J.S., Rodrigues, D.T. 2021. Considerações sobre a evapotranspiração estimada pelo algoritmo SEBAL no semiárido brasileiro.

Revista de Geociências do Nordeste, 7, 1, 45-51.

DOI: https://doi.org/10.21680/2447- 3359.2021v7n1ID21245.

Cabral Júnior, J.B.; Lucena, R.L. 2020. Análises das precipitações pelos testes não paramétricos de

Mann-Kendall e Kruskal-Wallis. Mercator, 19,

1-14. DOI:


Campos, J.O., Chaves, H.M.L. 2020. Tendências e Variabilidades nas Séries Históricas de Precipitação Mensal e Anual no Bioma Cerrado no Período 1977-2010. Revista Brasileira de Meteorologia, 35, 1, 157-169. DOI:


Campos, M.T., Higuchi, F.G. 2009. A floresta amazônica e seu papel nas mudanças climáticas.

Manaus: Secretaria de Estado do Meio Ambiente e Desenvolvimento Sustentável, 36.

Carvalho, D.F., Rocha, H.S., Bonomo, R., Souza, A.P. 2015. Estimativa da evapotranspiração de referência a partir de dados meteorológicos limitados. Pesquisa Agropecuária Brasileira, 50,

1, 1-11. DOI: 10.1590/S0100-


Carvalho, W.S.; Magalhães Filho, F.J.C.; Santos, T.L. 2021. Uso e cobertura do solo utilizando a Plataforma Google Earth Engine (GEE): Estudo de caso em uma Unidade de Conservação.

Brazilian Journal of Development, 7, 2, 15280- 15300. DOI:10.34117/bjdv7n2-243. Acesso: 27 abr. 2022.

Castiblanco, C.J.M., Quiñones, A.J.P. 2021.

Reference evapotranspiration estimation by different methods for the sucroenergy sector of Colombia. Revista Brasileira de Engenharia Agrícola e Ambiental, 25, 9, 583-590. DOI:

http://dx.doi.org/10.1590/1807- 1929/agriambi.v25n9p583-590.

Castiglio, V.S.; Campagnolo, K.; Kobiyama, M.

2021. Análise da evapotranspiração potencial no município de Cambará do Sul/RS. Revista

Geonorte, 12, 39, 26-43.


Cavalcante, W.S.S., Silva, N.F., Teixeira, M.B., Zanotto Neto, G., Cabral Filho, F.R., Cunha, F.N., Corrêa, F.R. 2022. Tecnologias e inovações no uso de drones na agricultura.

Brazilian Journal of Development, 8, 1, 7108- 7117. DOI: https://doi.org/10.34117/bjdv8n1- 481. Acesso: 27 abr. 2022.

Coutinho, E.R., Madeira, J.G.F., Silva, R.M., Oliveira, E.M., Delgado, A.R.S. 2020.

Avaliação de Métodos de Estimativa da Evapotranspiração de Referência (ETo) Diária Para Regiões dos Estados do Rio de Janeiro e Espírito Santo. Revista Brasileira de Meteorologia, 35, 4, 649 657. DOI:


Dietrich, L.J., Almeida, N.M. 2020. Desmatamento da Amazônia, impactos ambientais e desafios



Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.

para a espiritualidade cristã: responsabilidade mundial para uma ecologia integral.

Franciscanum, 62, 173, 1-29. DOI:


Diniz, R.R.S.; Cordão, M.A.; Guerra, H.O.C.;

Oliveira, C.W. 2021. Evapotranspiração real da banana-nanica determinada pelo algoritmo METRIC no semiárido do Ceará. Irriga, 26, 3,

701-716. DOI:

http://dx.doi.org/10.15809/irriga.2021v26n3p70 1-716.

Esquerdo, J.C.D.M., Coutinho, A.C., Sanches, L.B., Ribeiro, B.M.O., Zakharov, N.Z., Terra, T. N., Manabe, V. D. Dinâmica da agricultura anual na região do Matopiba. In: SIMPÓSIO


REMOTO - SBSR, 17., 2015, João Pessoa.

Anais [...]. João Pessoa, 2015.

Esteves, P.M.S.V., Cruz, F.S. 2022. Avaliação dos impactos do processo de desertificação no Seridó Ocidental a partir de indicadores biofísicos e sociais. Research, Society and

Development, 11, 3. DOI:


Ezenne, G.I., Jupp, L., Mantel, S.K., Tanner, J.L.

2019. Current and potential capabilities of UAS for crop water productivity in precision agriculture. Agricultural Water Management,

218, 158–164. DOI:


Fearnside, P.M. 2006. Desmatamento na Amazônia:

dinâmica, impactos e controle. Acta Amazônica, 36, 3, 395-400.

Fernandes, G.S.T., Lima, E.A., Moura Neto, A., Gonçalves Júnior, A.S. 2020. Variação interdecadal de elementos climáticos no Estado do Piauí (Brasil). Revista Brasileira de Meio Ambiente, 8, 2, 136-146.

Fernandes, G.S.T., Lopes, P.M.O., Melo, C.G.B., Lima, R.L.F., Santos, A., Silva, D.A.O. 2021.

Balanço de radiação em áreas de expansão agrícola no Sudoeste do Piauí. Revista de Geociências do Nordeste, 7, 1, 13-20. DOI:

https://doi.org/10.21680/2447- 3359.2121v7n1ID19704.

Ferreira, A.B.R., Pereira, G., Fonseca, B.M., Cardozo, F.S. 2021. As mudanças no uso e cobertura da terra na região oeste da Bahia a partir da expansão agrícola. Revista Formação (Online), 28, 53, 389-412. DOI:


Acesso: 21 out. 2022.

Ferreira, I.C., Silva, J.C.L., Freitas Neto, L.B., Santos, T.J.L., Carvalho, J.C.A. 2022. A

contribuição e relevância do agronegócio para o Brasil. Revista CEDS, 2, 10, 1-21.

Franco, B.M., Ziani, F.A., Konrad, J., Andres, C.M.

2019. Comparação entre métodos de estimativa de evapotranspiração potencial e de referência.

Revista Brasileira de Ciência, Tecnologia e Inovação, 4, 2, 180-189. DOI:


Freitas, R.E. 2021. Expansão de área agrícola Mato Grosso e Matopiba. Revista de Política Agrícola, 30, 2, 34-44.

Furquim, L.C., Nuñez, D.N.C., Souza, E.J., Santini, J.M.K., Cabral, J.S.R., Stone, L.F. 2020.

Estimativa da evapotranspiração em sistemas integrados no Cerrado, utilizando o algoritmo SAFER. Irriga, 25, 3, 617-628. DOI:

http://dx.doi.org/10.15809/irriga.2020v25n3p61 7-628.

Galherte, C.A., Villela, J.M., Crestana, S. 2014.

Estimativa da produção de sedimentos em função da mudança de uso e cobertura do solo.

Revista Brasileira de Engenharia Agrícola e Ambiental, 18, 2, 194–201. DOI:

https://doi.org/10.1590/S1415- 43662014000200010.

Gomes, C.S. 2019. Impactos da expansão do agronegócio brasileiro na conservação dos recursos naturais. Cadernos do Leste, 19, 19, 63- 78.

Gouveia, J.R.F.; Nascimento, C.R.; Oliveira Júnior, J.G.; Moura, G.B.A.; Lopes, P.M.O. 2021.

Caracterização de Cicatrizes de Queimadas nas Mesorregiões do Sertão e São Francisco Pernambucano a partir de dados do Sensor MODIS. Revista Brasileira de Geografia Física, 14, 02, 881-996.

Guerra, J.B., Schultz, B., Sanches, I. D. 2017.

Mapeamento automático da expansão da agricultura anual no MATOPIBA entre 2002 e 2015 utilizando a plataforma Google Earth Engine. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO – SBSR, 18., 2017, Santos. Anais [...]. Santos.

Hendges, L.T., Reinher, R.C.R., Leichtweis, J., Fernandes, É.J., Tones, A.R.M. 2017.

Planejamento do uso do solo em bacias hidrográficas: áreas agrícolas; áreas urbanas e áreas de preservação permanente. In:

SEMINÁRIO DE INICIAÇÃO CIENTÍFICA, 25.; 2017, Ijuí. Anais [...]. Ijuí.

Jardim, C.H.; Moura, F.P. 2018. Variações dos totais de chuvas e temperatura do ar na bacia do Rio Pandeiros, norte do estado de Minas Gerais - Brasil: articulação com fatores de diferentes níveis escalares em área de transição climática



Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.

de cerrado para semiárido. Revista Brasileira de Climatologia, [S.l.]. ISSN 2237-8642.

Disponível em:

<https://revistas.ufpr.br/revistaabclima/article/v iew/61013>. Acesso em: 25 fev. 2022.

Leite, E.M., Almeida, M.I.S., Silva, L.A.P., Leite, M.R. 2019. Quantificação da perda de água por evapotranspiração em diferentes usos da terra da Bacia do Rio Vieira. Caderno de Geografia, 29, 58, 746-764. DOI: 10.5752/p.2318- 2962.2019v29n58p746.

Lima, T.P.. 2020. Dinâmica espaço-temporal das alterações geoespacias na região do MATOPIBA, Brasil. 2020. Dissertação (Mestrado em Conservação em Recursos Naturais do Cerrado) – Instituto Federal de Educação, Ciência e Tecnologia Goiano, Urutaí.

Lima, T.P.; França, L.C.J.; Ferraz, F.T.; Aguiar, Júnior, A.L.; Silva, D.P.; AcerbI Junior, F.W.

2020. Dinâmica espaço temporal da cobertura da terra em uma bacia hidrográfica da região do MATOPIBA, Brasil. Anuário do Instituto de Geociências – UFRJ, 43, 1, 162-170. DOI:


Lopes, A.A., Andrade, R.G., Teixeira, A.H.C.

2020.Uso do algoritmo SAFERna análise espaço-temporal da evapotranspiração em áreas de produção agropecuária do município de Maracaju, MS. Brazilian Journal of Anima and Environmental Research, 3, 4, 3417-3426. DOI:


Lopes, G.R., Lima, M.G.B., Reis, T.N.P. 2021.

Revisitando o conceito de mau desenvolvimento: Inclusão e impactos sociais da expansão da soja no Cerrado do Matopiba.

World Development, 139. DOI:

https://doi.org/10.1016/j.worlddev.2020.105316 Mapbiomas. MAPBIOMAS. Disponível em:

<http://mapbiomas.org>. Acesso em: 6 fev.


Mapibomas. 2021. Relatório Anual do Desmatamento no Brasil 2020. São Paulo:

MapBiomas, 2021. 93p.

Martins, A.L.; Cunha, C.R.; Pereira, V.M.P.;

Danelichen, V.H.M.; Machado, N.G.; Lobo, F.A.; Musis, C.R.; Biudes, M.S. 2015. Mudanças em índices biofísicos devido à alteração da cobertura do solo em área nativa de Cerrado em Mato Grosso. Ciência e Natura, 37, 4, 152-159.


Martins, A.P., Galvani, E. 2020. Relação entre uso e cobertura da terra e parâmetros biofísicos no Cerrado Brasileiro. Revista do Departamento de Geografia, 40, 148-162. DOI:


Martins, A.P., Rosa, R. 2019. Estimativa de evapotranspiração real a partir de imagens do sensor MODIS/AQUA e do algoritmo SEBAL na bacia do Rio Paranaíba – Brasil. Caderno de Geografia, 29, 57, 351-367. DOI:


Matricardi, E.A.T., Mendes, T.J., Pereira, E.M., Vasconcelos, P.G.A., Ângelo, H., Costa, O.B.

2019. Dinâmica no uso e cobertura da terra na região do MATOPIBA entre 2000 e 2016.

Nativa, 7, 5, 547-555. DOI:


Maurano, L. E. P.; Almeida, C. A.; Meira, M. B.

2019. Monitoramento do desmatamento do cerrado brasileiro por satélite PRODES Cerrado.


SENSORIAMENTO REMOTO, 19, 2019, Santos. Anais [...]. Santos.

Mendes, M.C.A., Trindade, S.P. 2021. Mudanças de uso e cobertura do solo na paisagem de Orizona (GO) - 1985 a 2020. Revista Geográfica Acadêmica, 15, 1, 57-76.

Mendes, T.J. 2018. Fragmentação e viabilidade de corredores ecológicos na região do MATOPIBA. 2018. Dissertação (Mestrado em Ciências Florestais) – Universidade de Brasília, Brasília – DF.

Molena, C., Gavioli, F.R., Molin, P.G., Melillo, R.C.S. 2021. Análise das mudanças do uso e cobertura do solo entre 1985 e 2018 da bacia hidrográfica do Rio Jundiaí-Mirim – Jundiaí/São Paulo. Geografia, 46, 1, 1-22.

Murga-Orrillo, H.; Araújo, W.F.; Rodriguez, C. A.;

Sakazaki, R.T.; Lozano, R.M.B.; Vargas, A.R.P.

2016. Influência da cobertura morta na evapotranspiração, coeficiente de cultivo e eficiência de uso de água do milho cultivado em cerrado. Irriga, 21, 2, 352-364. DOI:

https://doi.org/10.15809/irriga.2016v21n2p352- 364.

Nonato, E.R.L., Santos, D.R., Leite, J.A., Silva, G.A., Pereira, C.T., Luz, M.N., Nóbrega, C.M.B.

2020. Crescimento da Craibeira inoculada com fungos micorrízicos sob diferentes regimes hídricos. Brazilian Journal of Development, 6, 12, 98929-98940. DOI:10.34117/bjdv6n12-399.

Acesso: 21 out. 2022.

Oliveira, A.J., Silva, G.F., Silva, G.R., Santos, A.A.C., Caldeira, D.S.A., Vilarinho, M.K.C., Barelli, M.A.A., Oliveira, T.C. 2020.

Potencialidades da utilização de drones na agricultura de precisão. Brazilian Journal of Development, 6, 9, 64140-64149.

DOI:10.34117/bjdv6n9-010. Acesso: 27 abr.




Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.

Oliveira, E.M. 2018. O significado do processo de modernização agrícola e os impactos ambientais em áreas de Cerrado. Revista Cerrados, 16, 1,

40-58. DOI:

https://doi.org/10.22238/rc24482692201816014 058.

Oliveira, L.N., Aquino, C.M.S. 2020. Dinâmica temporal do uso e cobertura da terra na fronteira agrícola do Matopiba: análise na sub-bacia hidrográfica do Rio Gurguéia - Piauí. Revista Equador (UFPI), 9, 1, 317-333. DOI:


Ongaratto, J.M.; Bortolin, T.A. 2021. Comparação entre métodos de estimativa de evapotranspiração de referência no município de São José dos Ausentes (RS), Brasil. Engenharia Sanitária e Ambiental, 26, 5, 979-987. DOI:


Panza, M.R., Donegá, M.V.B., Pacheco, F.M.P., Nagao, E.O., Hara, F.A.S., Carvalheiro, W.C.S., Vendruscolo, J. 2020. Características da paisagem para manejo dos recursos naturais na microbacia do Rio Jacuri, Amazônia Ocidental, Brasil. Brazilian Journal of Development, 6, 12, 101532-101558. DOI: 10.34117/bjdv6n12-592.

Acesso: 21 out. 2022.

Paz, V.P.S.; Teodoro, R.E.F.; Mendonça, F.C.

2000. Recursos hídricos, agricultura irrigada e meio ambiente. Revista Brasileira de Engenharia Agrícola e Ambiental, 4, 3, 465-473.

Polizel, S. P.; Vieira, R. M. da S P.; Pompeu, J.;

Ferreira, Y. da C.; Sousa-Neto, E. R.; Barbosa, A. A; Ometto, J. P. H. B. 2021. Analysing the dynamics of land use in the context of current conservation policies and land tenure in the Cerrado – MATOPIBA region (Brazil). Land Use Policy, 109, p.105713. DOI:

https://doi.org/10.1016/j.landusepol.2021.10571 3.

Rampazo, N.A.M.; Picoli, M.C.A.; Cavaliero, C.K.N. 2019. Comparação entre dados meteorológicos provenientes de sensoriamento remoto (modelados e de satélites) e de estações de superfície. Revista Brasileira de Geografia Física, 12, 02, 412-426. DOI:


27 abr. 2022.

Reis, L.C., Silva, C.M.S., Bezerra, B.G., Spyrides, M.H.C. 2020. Caracterização da variabilidade da precipitação no MATOPIBA, região produtora de soja. Revista Brasileira de Geografia e Física,

13, 4, 1425-1441. DOI:


Rocha, M.I.S., Nascimento, D.T.F. 2021.

Distribuição espaço-temporal das queimadas no

bioma Cerrado (1999/2018) e sua ocorrência conforme os diferentes tipos de cobertura e uso do solo. Revista Brasileira de Geografia Física,

14, 3, 1220-1235. DOI:

https://doi.org/10.26848/rbgf.v14.3.p1220- 1235.

Ruhoff, A.L. 2011. Sensoriamento remoto aplicado à estimativa da evapotranspiração em biomas tropicais. 2011. Tese (Doutorado Recursos Hídricos e Saneamento Ambiental) – Universidade Federal do Rio Grande do Sul, Porto Alegre.

Sabino, M.; Bouvié, M., Silva Junior, A.A., Machado, N.G., Biudes, M.S. 2019. Variação espaço-temporal de parâmetros biofísicos e da evapotranspiração em plantios de eucalipto.

Ciência e Natura, 41, 1-11.


Santiago, D.B., Barbosa, H.A., Correia Filho, W.L.F. 2021. Alterações na eficiência do uso da água relacionadas com fatores climáticos e uso e ocupação do solo, na região do MATOPIBA.

Research, Society and Development, 10, 9, 1-12.

DOI: http://dx.doi.org/10.33448/rsd- v109.17891.

Santos, A.L.C., Santos, F. 2010. Mapeamento das classes de uso e cobertura do solo da bacia hidrográfica do Rio Vaza-Barris, Sergipe.

Revista Multidisciplinar da Uniesp, 10, 57-67.

Santos, K.S.; Oliveira, B.F.A.; Ignotti, E. 2021.

Mudanças Climáticas e Suas Relações com o Uso da Terra no Município de Alta Floresta – Amazônia Meridional Brasileira. Biodiversidade Brasileira, 11, 3, 1-11. DOI:


Santos, S.R.Q.; Cunha, A.P.M.A.; Ribeiro-Neto, G.G. 2019. Avaliação de dados de precipitação para o monitoramento do padrão espaço- temporal da seca no Nordeste do Brasil. Revista Brasileira de Climatologia, 25, 80-100. DOI:


Shinzato, P., Duarte, D.H.S. 2018. Impacto da vegetação nos microclimas urbanos e no conforto térmico em espaços abertos em função das interações solo-vegetação-atmosfera.

Ambiente Construído, 18, 2, 197-215. DOI:

http://dx.doi.org/10.1590/s1678- 86212018000200250.

Silva, C.O.F., Magnoni, P.H.J., Manzione, R.L.

2021. Sensoriamento remoto orbital para modelagem da evapotranspiração: síntese teórica e aplicações em computação na nuvem.

Revista Brasileira de Engenharia de Biossistemas, 15, 3, 425-468. DOI:



Neto., A., M., Fernandes, G., S., T., Lima, E., A., Lopes, P., M., O., Rodrigues, L., A., Junior, A., S., G., Lopes., J., R., A., Silva, L., L., S., Silva., R., O.

http://dx.doi.org/10.18011/bioeng2021v15n3p4 25-468.

Sousa, F.A.; Moura, D.M.B. 2022.

Evapotranspiração potencial (ETp) e sua influência na vazão de rios do Cerrado Brasileiro. Elisée - Revista de Geografia da UEG, 11, 1, 1-23.

Sousa, L.B.; Montenegro, A.A.A.; Silva, T.G.F.;

Carvalho, A.A.; Silva Neto, M.A. 2021.

Estimativa da evapotranspiração real e mapeamento de áreas cultivadas em uma bacia do Projeto de Integração do São Francisco (PISF), semiárido pernambucano. Irriga, 26, 3, 565-583.

DOI:http://dx.doi.org/10.15809/irriga.2021v26n 3p565-583.

Souza, G.V.A., Silva, L.R. 2019. Agronegócio e dependência: uma perspectiva de análise sobre a região do Matopiba. Caminhos de Geografia, 20,

72, 149-168. DOI:


Souza, I.N.P., Nóbrega, R.A.A., Ribeiro, S.M.C.

2019. O Papel das Infraestruturas Ferroviárias nas Mudanças de Uso e Cobertura do Solo no MATOPIBA. Revista do Departamento de Geografia, 38, 123-136. DOI:


Wanderley, H.S., Miguel, V. C. 2019. Mudança dos elementos meteorológicos em função da degradação da floresta urbana. Ciência Florestal,

29, 2, 834-843. DOI:


Warren, M.S. 2013. Desagregação espacial de estimativas de evapotranspiração real obtidas a partir do sensor MODIS. Revista Brasileira de Meteorologia, 28, 2, 153-162. DOI:

https://doi.org/10.1590/S0102- 77862013000200004.

Yassen, A. N.; Nam, W. H.; Hong, E. M. 2020.

Impact of climate change on reference evapotranspiration in Egypt. Catena, 194, p.

104711. DOI:





Related subjects :