• Nenhum resultado encontrado

Enumerating the maximal cliques of a circle graph

N/A
N/A
Protected

Academic year: 2021

Share "Enumerating the maximal cliques of a circle graph"

Copied!
10
0
0

Texto

(1)

ENUMERATING THE HAXIMAL

CLIGUES OF A CIRCLE GRAPH

Jayme L. SzNarciter ..

Magali H. Araújo Barroso <*>

NCE-i4/88

Dezembro/88

Un ivrf?;,idade Ff,der',;\l (jo I j(') df: Janeiro NI,Áclo de C(:)mpllta(;:ii\o 1=:Itrôrji(::a

(,.ai:,(,;\ ' pos:a t '

i

.')i:.,,:r,.'3ri

4

..;'000j, -Rio (je ".lc\neirOo 0- RJ

l

R{-.Bll

!.

<*> Universidade Federal de Minas Geraisr Departamento de Ciência

da Co..putaç:ão.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

(2)

RESUMO

Descrevemos a noção de orientação localmente transitiva de um

um grafo não direcionado, como uma generalização de orientação tra

sitiva ordinária. Como ap'iaçãQ QbtmQs um o'9QTitmD põTõ à 9

ração de todas as cliques maximais de um grafo circular G, cuja com

plexidade é O(n(m+a)), onde n,m e a são o número de vértices, ares

tas e cliques maximais de G. Em adição, mostramos que o número exa

to de tais cliques pode ser computado em tempo O{nm}.

AB'SrRACr

We describe the notion of locally transitive orientations of

an undirected graph, as a generalization of ordinary transitive

orientations. As an application, we obtain an algorithm for generating

all maximal cliques of a circle graph G in time O(n(m+a)), where

n,m and a are the number of vertices, edges and maximal cliques of

G. In addition, we show that the actual number of such cliques can

(O, ..

(3)

1. INTRODUCTION

We descr;be an algor;thm for generat;ng all max;mal cl;ques of

a c;rcle graph hav;ng t;me complex;ty O(n(m+a)), where n,m and a

are respect;vely the number of vert;ces, edges and max;mal cl;ques

of the graph. The al gor; thm i s an appl i cati on of a speci al or;entation

of a graph called locally transitiv, a generalization of transitive

or;entat;ons.

t.; C 1 e a r 1 y , t h e m a x; m a 1 c 1 ; q u e s o f a 9 e n e r a 1 9 r a p h c a n b e enumerated

by the algor;thm of Tsuk;yama et al. [7J, but it would require O(nm1a)

J'.

time, where ml is the number of edges of tne cf)mplement [)f tne 9rapn.

As for cl;ques of c;rcle graphs, the following are some knMlresults.

Rotem and Urrutia [6J generate all the maximum (largest max;mal)

cliques ;n O(n(n+a*)) t;me, a* be;ng the number of such cl;ques. Al

gor;thms for comput;ng one max;mum cl;que ;nclude that of Rotem and

Urrutia l6J, Gavri1 l3J and BucKin9ham [11, rspct,,'y Qf t,m

complex;t;es O(n2), O(n3) and O(n+m log w), where w ;s the s;ze of the

max;mum cl;que. A max;mum we;ghted cl;que can be computed by the al

gor;thms of Hsu [4] and Buck;ngham [1J ;n time O(n2+m log log n) and

O(n+mô), respectively where ô ;s the maximum degree of the graph.

In addition, we show that the exact number a of max;mal cliques

of a circle graph can be computed in O(nm) time. Observe that a can

be large compared to n. In fact, the examples by Moon and Moser [5J

" of graphs having a maximum number:' of maximal cl iques are circle graphs. ,

Therefore it might be h;ghly innefic;ent to compute a by generating

all max;mal cliques and counting them. This is a motivation for

f:!

describ;ng a polynomial time algor;thm for computing such number.

The following are the terminology and notation employed.

G denotes an undirected graph with vertex set VG) anà edge set

E(G). If Z c V(G) then G<Z> denotes the subgraph ;nduced in G by Z.

A clique ;s a complete subgraph of G and a maximal clique ;s one not

(4)
(5)

-2. LOCALLY TRANSITIVE ORIENTATIONS

-+

Let G be an undirected graph, IV(G) I 1, and G an acyclic ori

-+

entation of it. Let v,w V(G), v a proper ancestor of w in G, and

denote by Z(v,w) C V(G) the subset of vertices which are simultane

ously descendants of v and ancestors uf w in G. An edge (v,w) E(G)

-+

induces local sitivity when G<l(v,w)) is a transitive digraph.

-+

Clearly, in this case the vertices of any path from v tow in G<Z(v,w»

induce a clique in G. In addition, (v,w) induces maximal local

transitivity (or shortly, is a maximal ) when there is no edge

-+

(v' ,w' ) E(G) different from (v,w) such that simultaneously v' is

-+ -+

an ancestor of v and w' a descendant of w tn G. The ortentatton G ts

locally transitive when each of its edges induces local transitivity.

As an example, the digraph of figure 1(b) is a locally transitive

orientation of the graph shown in 1 (a).

The application of locally transitive orientations to the enu

meration of maximal cliques is based on the following theorem.

Theorem 1: Let G be an undirected graph, G a locally transitive

orientation of it and GR the transitive reduction of G. Then there

exists a one-to-one correspondence between maximal cliques of G and

-+ -+

v-w paths in G., for a11 maxima1 edges (v,w) E [(G) .

Proof: Let C be a maximal clique of G. Then the subdigraph in

duced j;1 by C is a tournment and therefore has a spanning path P.

Because G is locally transitive and C a maximal clique it follows

-+ -+

that no edge of p can be imp1ied by transitivity. Hence p is a1so a

-+ -+

spanning path of C in GR. Suppose. P is

-+ -+

the path in G from vertex v to w. Then (v,w) E(G) must be a imal

edge, otherwise C is not a maximal clique. Therefore we can choose

p as the v-w path corresponding to C satisfying the conditions of

-+

the theorem. Conversely, any maximal edge (v,w) E(G) defines a

-+

clique C formed by the vertices of a v-w path in GR. C must be a

maximalclique, otherwise (v,w) is not a maximal edge o.

(6)

-I. ,

(a) (b)

Figure 1: A Locally Transitive Orientation

3. CIRCLE GRAPHS

Theorem 1 suggests a method for enumerating the maximal cliques

-+-of a graph G, provided a locally transitive orientation G is given.

-+-The problem remains how to construct G. Below we show that if G is

a circle graph then it is always simple to compute such an orientation.

" .

..

The next lemma is immediate.

..

Lemma 1: Let G be a circle graph, S a circle sequence of it and

v1 ' ...,vk e: V(G) sati sfying S1 (vi) < S1 (vi+1 ) , 1i<k. Then {v1'...'vk }

induces a clique in G if and only if S1(vk) < S2(v2) <. ..< S2(vk).

Let G be a circle graph and S a circle sequence of it. A

1--+-

(7)

satisfies S1(v) < S1(w) .

-+

Lemma 2: If (v1'vk) is an edge of a S1-orientation G of G then

each path v1' ...,vk induces a clique in G.

-+ Proof: If follows S1{v1) <...< S1{vk). .l!.lso, since (v1'vk) e: E(G) we conclude that S1 (vk) < S2(v1) .Now, for i=1,...,k-1, (vi'vi+1) e: E(G)

and S1(i) < S1(vi+1) imply S2(vi) < S2(vi+1). Therefore,

S1( vk) < S2(v1) <. ..< S2(vk). By lemma 1 it follows that v1 ,. ..,vk

induces a clique in G o.

Theorem 2: Any S1-orientation is locally transitive.

Proof: Clearly, a S1-orientation G of the circle graph G is

always acyclic. Suppose it is not locally transitive. Then there

-+

exists an edge (v,w) e: E(G) which does not induce local transitivity.

-+

That is, there is a path from v to w in G which does not induce a

clique in G, contradicting lemma 2 D.

4. THE ALGORITHMS

The algorithm for finding all maximal cliques of a circle graph

G can now be described as follows:

1. Construct a S1-orientation G of G

2. Construct the transit;ve reduct;on GR

-+

3. Find al1 max;mal edges of G

-+

4. For each max;mal edge (v,w) e: E(G)

-+

f;nd all v-w paths ;n GR (each of them def;nes a maximal

clique of G).

We discuss below the steps involved ;n this algor;thm.

(8)
(9)
(10)

-REFERENCES

1. M.A. Buckingham, "Circle graphs", Comp.Sc.Rep. NSO-21, Courant

Institute of Mathematical Sciences, New York, NY, 1980;

2. C.P. Gabor, W.L. Hsu and K.J. Supowit, Recognizing circle graphs

in polynomial time, Proc. 26th Ann.Symp. on Foundat;ons of Com

puter Science, IEEE Computer Society, Los Angeles, CA, 1985;

3. F.Gavril, Algorithms for a maximum clique and maximum independent

set of a circle graph, Networks 3 (1973), 261-273;

4. W.L. Hsu, Maximum weight clique algorithms for circular-arc graphs

and circle graphs, SIAM J. Comput. 14 (1985), 224-231 ;

5. J.W. Moon and L.Moser, On cliques in graphs, Israel J. Math. 3

(1965), 23-28;

6. D. Rotem and J. Urrutia, Finding maximum cliques in circle graphs,

Networks 11 (1981), 269-278;

7. S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakama, A new algorithm

for generating all the maximal independent sets, SIAM J. Comput.

Referências

Documentos relacionados

Missão das Nações Unidas na República Democrática do Congo – MONUC 1999-2010: proteção de civis contra a violência A primeira missão das Nações Unidas na RDC no pós-Guerra

Na dimensão receptividade/presteza, a variável que obteve média mais alta no Grupo 1 jovens/adultos foi a questão 14 Os servidores/funcionários do CRAS de Sobradinho são dispostos

Tras haber presentado los principales resultados obtenidos en la información derivada de las distintas entrevistas, llegamos a las siguientes conclusiones: a) los

Figura 6.9 - Perfil final com suporte de baterias à esquerda e perfil da bateria ao longo do tempo à direita, com a carga inicial da bateria de 100%, para a semana de

Os operários não possuíam leis sociais e trabalhistas que lhes consentissem garantias de segurança, então as sociedades mutualistas puderam fazer isto, garantindo apoio ao operário

...38 Gráfico 9 - Distribuição dos participantes quanto ao fato do que as estratégias para o desenvolvimento sustentável não podem esquecer...39 Gráfico 10 -

sociais por meio de um conceito de direito perfeitamente delimitado em relação à moral e à política, resguardando o direito das ameaças representadas pelo pluralismo axiológico e

Durante muito tempo o controle operacional de sistemas de abastecimento, por parte das empresas de saneamento, foi executado com o apoio de equipamentos de comunicação, de controle