• Nenhum resultado encontrado

Roles of quorum sensing molecules from Rhizobium etli RT1 in bacterial motility and biofilm formation

N/A
N/A
Protected

Academic year: 2021

Share "Roles of quorum sensing molecules from Rhizobium etli RT1 in bacterial motility and biofilm formation"

Copied!
7
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Bacterial

Molecular

Pathogenesis

Roles

of

quorum

sensing

molecules

from

Rhizobium

etli

RT1

in

bacterial

motility

and

biofilm

formation

Swarnita

Dixit

a

,

Ramesh

Chand

Dubey

a

,

Dinesh

Kumar

Maheshwari

a

,

Prahlad

Kishore

Seth

b

,

Vivek

K.

Bajpai

c,∗

aDepartmentofBotanyandMicrobiology,GurukulKangriUniversity,Haridwar,Uttrakhand,India bBiotechPark,SectorG,Jankipuram,KursiRoad,Lucknow,UP,India

cDepartmentofAppliedMicrobiologyandBiotechnology,SchoolofBiotechnology,YeungnamUniversity,Gyeongsan,Gyeongbuk,

RepublicofKorea

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received10June2015 Accepted31August2016 Availableonline8July2017 AssociateEditor:CristianoGallina Moreira Keywords: Rhizobiumetli Quorumsensing Motility Biofilm Lensculinaris

a

b

s

t

r

a

c

t

StrainRT1wasisolatedfromrootnodulesofLensculinaris(alentil)andcharacterizedas

Rhizobiumetli(aGram-negativesoil-bornebacterium)by16SrDNAsequencingand phyloge-neticanalysis.ThesignalingmoleculesproducedbyR.etli(RT1)weredetectedandidentified byhigh-performanceliquidchromatographycoupledwithmassspectrometry.Themost abundantandbiologicallyactiveN-acylhomoserinelactonemolecules(3-oxo-C8-HSLand

3-OH-C14-HSL)weredetectedintheethylacetateextractofRT1.Thebiologicalroleof

3-oxo-C8-HSLwasevaluatedinRT1.Bacterialmotilityandbiofilmformationwereaffectedor

modifiedonincreasingconcentrationsof3-oxo-C8-HSL.Resultsconfirmedtheexistenceof

cellcommunicationinRT1mediatedby3-oxo-C8-HSL,andpositivecorrelationswerefound

amongquorumsensing,motilityandbiofilmformationinRT1.

©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Introduction

Severalendophyticbacteriaresidewithinthelivingtissuesof hostplantsandcarryoutanumberofbeneficialfunctions.1

RhizobiumetliisaGram-negative␣-proteobacteriumfoundin soilthatformsrootnodulesinlentils(LensculinarisMedik.) andinotheragriculturallyimportantlegumes,suchas Phase-olusvulgaris.L.culinarisisaneconomicallyimportantlegume cropcultivatedintropical,sub-tropical,andtemperateareas worldwide.2 Many endophytic bacterial isolates(RT1–RT27)

havepreviouslybeenscreenedandcharacterizedfromlentil rootnodules.3

Correspondingauthor.

E-mail:vbajpai04@yahoo.com(V.K.Bajpai).

Swarmingmotilityenablesgroupsofbacteriatomovein a coordinated manner on solid surfaces, and the swarm-ing phenomenon has been demonstrated for a number of bacteria,includingthemembersofAzospiriillum,Aeromonas, Burkholderia,Bacillus,Chromobacterium,Clostridium,Escherichia, Proteus,Pseudomonas,Rhizobium,Salmonella,Serratia, Sinorhizo-bium,Vibrio,andYersinia.4–7Bacterialmotilityprobablyoccurs

asa dispersalstrategy innutrient-limitedenvironments or forlocatinganewhost.8,9 Normallyswarmingrequires the

differentiationofvegetativecellsintoaspecializedcelltype called swarmercells.Surface contact(changein viscosity), physiological parameters, and chemicalsignals (nutritional status)providethestimulithattriggerthedifferentiationof

http://dx.doi.org/10.1016/j.bjm.2016.08.005

1517-8382/©2017SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

swarmercells.Although,pathwaysresponsibleforsignal inte-grationarepoorlyunderstood,itisbelievedthatsignalsare sensedand transmittedbytwo-component regulatory sys-tems, cytosolic regulators or flagella leading to a complex network.Differentiatedswarmercellsareoftenhyper flagel-latedandelongated,andthesecellsmoveingroupsorrafts organizedin parallelto the long axisof cells tomaximize cell–cellcontactand maximallycolonizeavailablesurfaces. Themigrationfrontisprecededbyavisiblelayerofslime-like extracellularmaterial,andasaresultofembeddinginthis extracellularslimematrix,populationdensitiesarenormally extremelyhigh.10

Bacteriamaydevelopwithinplantrootsasisolatedcells, micro-colonies,aggregates,orbiofilms.11Biofilmsare

bacte-rial communitiessurrounded byaself-produced polymeric matrixattachedtoinertorbioticsurfaces.12Bacterialsurface

components, particularlyexopolysaccharides (EPS),flagella, andlipopolysaccharides(LPSs),incombinationwithbacterial functionalsignals,arecrucialfortheformationofrhizobial biofilmsinallspeciesstudiedtodate,13andpolysaccharides atrhizobialsurfacesplayimportantrolesinsymbiosisandin formationofactiverootnodules.

Bacteriacanmonitorandrespondtochangesin environ-mentalconditionsviaacell density-related processknown as quorum sensing.14 Quorum sensing (QS) is a form of

cell–cell communication regulated at the gene expression level and employed by several bacterial species to coordi-nate behavior at a community level. QS depends on the production of various signaling molecules, though N-acyl homoserinelactones(AHLs)aremostcommonlyutilizedby Gram-negativebacteria.Furthermore,thepresenceof AHL-likesignalmoleculesinGram-negativebacteriamaybedueto theactiveparticipationoftheLuxlfamilyofAHLsynthases, whichdifferinsidechainlength,degreeofsubstitution,and saturation.15ThephenotypesregulatedbyAHLsinRhizobium

species are remarkably diverse and of profound biological andecologicalsignificance.Thesephenotypesinclude motil-ityandbiofilmformation,theproductionsofantibioticsand exo-enzymes,synthesisoftheplantgrowthpromotingauxin indole-3-aceticacid (IAA),thepromotion ofplant coloniza-tion, and biocontrol against several plant diseases. Some previousreportshavedemonstratedtheproductionofQS sig-nalingmoleculesbyvariousrhizobia,14,16butlittleisknown

regardingthemechanismsofcommunicationamong lentil-nodulatingstrains.

Hence,theobjectiveofthepresentstudywastoidentify andcharacterizeQSsignalingmoleculesproducedbyR.etli

RT1andtoevaluatethebiologicaleffectsofoneAHLmolecule, namely,3-oxo-C8-HSLonprocessesrelatedtocell

communi-cation.

Materials

and

methods

Microorganisms

TheisolatesRT1–RT27werescreenedfromtherootnodules ofL.culinariscollectedfromafarmer’sfieldinUttarPradesh (India).IsolateRT1wasidentifiedasRhizobiumspeciesbased

onitsphenotypicandbiochemicalcharacteristics.3Since

iso-lateRT1hadthebestplantgrowthpromoting(PGP)attributes, itwasfurtherstudiedindetail.RT1wasgrownat30◦Cfor24h intryptonesoyandyeastextractmannitolmediaforfurther use.

GenomicDNAextraction

GenomicDNAofRT1wasextractedasdescribedbySambrook and Russel (2001).17 Briefly, a bacterial culture was grown

overnight in5mLtryptonesoybroth,stirredat150rpmfor 24hat30◦C.Theculturewasthencentrifuged at10,000×g

for 2min and the pellets so obtained were re-suspended in 50␮L 1× TE buffer (10mM Tris–HCl, 1mM EDTA), cen-trifugedat10,000×gfor2min,re-suspendedin350␮L1×TE buffer containing5␮Llysozyme(50mg/mL)and2␮LRNAse A(10mg/mL),andincubatedat37◦Cfor10min.Finally,3␮L proteinase K (20mg/mL) and 30␮L SDS (10%) were added and incubatedat37◦Cfor35min.ThecrudeDNAtemplate wasPCI(phenol–chloroform–isoamylalcohol)(25:24:1)andCI (chloroform–isoamylalcohol)(24:1)extracted,precipitatedin 1mLabsoluteethanol,washedwith500␮L70%ethanol, re-suspendedin50␮Lofsterilizedultrapurewater,andstoredat −20◦C.

16SrRNAgeneamplification

Theamplificationofa1492bpregionofthe16SrRNAgenewas performedusing5-GGCTCAGAACGAACGCTGGCGGC-3asthe forwardprimerand5-CCCACTGCTGCCTCCCGTAGGAGT-3as thereverseprimer.18ThePCRprocedureconsistedof

prepar-ingamastermixcontainingpolymerasebuffer(2.5␮L),10mM MgCl2(1.5␮L),10mMdNTP(1.2␮L)andsteriledistilledwater.

Thegenefragmentwasamplifiedusing5–25ngofbacterial DNA,100ngofeachprimer mentionedaboveand 0.3␮Lof

Taq polymerase(1U/␮L).Thereactionvolumewasadjusted to25␮Lusingsteriledistilledwater.Thechemicalsusedfor PCRwere acquired from BangaloreGenei(India). The reac-tion conditionsusedwere:initialdenaturationfor7minat 94◦C,then29amplificationcycles{denaturationfor1minat 94◦C,extensionfor1minat72◦C,annealingat54◦Cforseven cycles,at53◦Cand52◦Cforonecycleeach,andat51◦Cfor20 cycles}andafinalextensionfor10minat72◦C.Theamplified genewasvisualizedin0.8%agaroseafterelectrophoresis,and thePCRproductwassequencedattheInstituteofMicrobial Technology(IMTECH),Chandigarh,India.

Phylogeneticanalysis

Phylogenyandevolutionaryanalysiswere carriedoutusing theMEGA6.0package.19The16SrDNAsequenceofRT1was

alignedusingCLUSTALW20againstcorrespondingnucleotide

sequencesofRhizobium(typestrain)retrievedfromGenBank (NCBI). Theevolutionarydistancematrix was generatedas described by Jukes and Cantor (1969),21 and the

phyloge-netictreewasinferredbytheneighbor-joiningmethod.22Tree

topologieswereevaluatedbybootstrapanalysisbasedon1000 re-samplingsoftheneighbor-joiningdataset.

(3)

Nucleotideaccessionnumber

Thesequence of16S RNAgene ofRT1hasbeen deposited intheGenBankdatabaseunderaccessionnumberR.etliRT1 (KC762618).

ExtractionanddetectionofQSsignalmolecules

AHLmolecules were extractedas described byShaw etal. (1997).23 R. etli RT1 was grown in 500mL of AB minimal

mannitol liquid medium for 48h to the stationary phase. Aftercentrifugationat7400×g,thesupernatantwasextracted twicewithanequalvolumeofethylacetatecontaining1.5mL ofacetic acid perliter.Theextractwasthenevaporated to drynessusingavacuumrotatorat42◦Candre-dissolvedin asmall volumeof ethylacetate. Thisculture extractof R. etliRT1wasthenanalyzedbyliquidchromatography/positive electrosprayionization(ESI+)multipleMS.Liquid

chromatog-raphyandelectrospraymassspectrometry(LC-ESI–MS)were conductedusingaThermoFinniganLCQadvantagemaxion trapmassspectrometerandaFinniganSurveyorHPLCsystem. Thecolumnwasthermo ODS-2, 250×4.6, 5␮m andeluted withacetonitrile and waterat 800␮L/min. A 20␮L sample was introduced into the ESI source using a Finnigan Sur-veyorAutosampler.Massspectrawerescannedintherange of150–2000Th.Maximumioninjectiontimewassetat150ns, ionsprayvoltageat5.3kV,andcapillaryvoltage at40VA.A generalelutionprogramwasusedtoeluteallputativeAHLs.

Bacterialmotilityassay

Forthe swarmingexperiment,yeastextractmannitol (con-taining0.4g/LMgSO4·7H2O)softagarplates(0.75%;60/15mm)

supplementedwith3-oxo-C8-HSLatdifferentconcentrations

(0.05, 0.5, or 5.0␮M), were driedat 16◦C for5h and spot-inoculatedcentrally on theirsurfaces withthe appropriate RT1culture(1.2␮L,ODofovernightculture5950.7).Swarming behaviorwasanalyzedonswarmerplatescontaining 3-oxo-C8-HSL.Inoculatedplateswereincubatedat30◦Cfor24h,24

andswarminghalozonesweremeasured.Experimentswere performed4times.

Biofilmformationassay

Biofilmformationwas assayed quantitativelyas previously describedbyO’TooleandKolter(1992)25bystainingbiofilms

with crystal violet. RT1 was grown in 96-well polystyrene platesat30◦Cfor24hwithoutshakingintrypticsoybroth (TSB)mediumcontaining0.05,0.5,or5.0␮Mof3-oxo-C8-HSL.

Planktoniccellswerethengentlyremoved,and180␮Lofan aqueoussolutionofcrystalviolet(0.1%,w/v)wasaddedfor 15min.Eachcrystalviolet-stainedwellwasthenrinsedthree timeswithsteriledistilledwaterandscoredforbiofilm for-mation by adding 150␮L of95% ethanol. Opticaldensities ofsolubilizedcrystalvioletwere measuredat560nmusing a Micro ELISA Auto Reader (Biotek).Non-inoculated YEMB mediumwasusedasacontrol.Controltubeswerevortexedfor 30s,andtheinitialopticaldensitywasdeterminedat600nm. Experimentswereperformed4times.

Effectof3-oxo-C8-HSLonthegrowthofRT1

Abacterialbrothco-inoculationassaywasperformedto visu-alizetheeffectof5␮M3-oxo-C8-HSLintrypticsoybroth(TSB)

mediuminordertoconfirmitseffectonthegrowthrateofRT1. Controlsetswerepreparedwithoutinoculating3-oxo-C8-HSL

andopticaldensitiesweremeasuredat600nm.

Statisticalanalysis

One-way analysisofvariance(ANOVA)followed bypost hoc

Fisher’s least-significant difference (LSD) test was used to determine the significances of the different effects treat-ments.All statisticalanalyses wereperformed usingPrism version6.03.

Results

and

discussion

Phylogeneticanalysis

Sequencing of the 16S rRNA gene provided a1492bplong sequence ofRT1. Aphylogenetic treeconstructedbasedon this sequence showedclustering ofthe RT1isolatewithR. etli CFN 42 (confidence=99%) (Fig. 1), and thus, RT1 was tentativelyclassifiedasR.etli.Basedonmorphologicaland bio-chemicalcharacteristics,3andcomparativeanalysisofthe16S

rRNAgenesequence,thestrainwasunequivocallyidentified asR.etliRT1.Itisgenerallyacceptedthatorganismsdisplaying 16SrRNAgenesequencesimilarityvaluesof≥97%belongto thesamespecies.26Therefore,RhizobiumRT1wasconsidered

tobeR.etli,sinceitexhibited99.3%similaritywithR.etliCFN 42.

Liquidchromatographyelectrospraymassspectrometry

(LC–MS)

The AHL molecules 3-oxo-C8-HSL and 3-OH-C14-HSL were

detectedintheextractofRT1.Therelativeabundance(RA)of 3-oxo-C8-HSLwas100%ataretentiontimeof9.82–10.07min

(Fig. 2), and that of 3-OH-C14-HSL was 20% at an RT of

14.36–14.62min.Comparativeanalysis ofthe AHLprofileof RT1byusingLC–MSshowedthepresenceofabroadrange ofAHLmoleculeswithdifferentacylchains.AHLmolecules are widelyknowntobeintercellularcommunicationsignal moleculesinbacterialpopulations.27Severalresearchershave

reportedthepresenceofAHL-likesignalmoleculesinan Acine-tobacterstrainsthatthestrainsareabletoproducebiofilms andthatAHL-likemoleculesplayasubstantialroleinquorum sensinginthecontextofmetaltolerance.28,29

Motilityassay

ThemotilityofRT1increasedonincreasingtheconcentration of3-oxo-C8-HSLmolecule.Ataconcentrationofonly0.05␮M,

3-oxo-C8-HSLsignificantlyincreasedmotility,andathigher

auto-inducerconcentrations(0.5or5.0␮M)motilityincreased dose-dependently(Fig.3).Microorganismswiththeabilityto move are moreefficient atfinding morefavorable or less-hazardous niches forcolonization intheir environments,27

(4)

Rhizobium tropici CIAT 899(T) Rhizobium freirei PRF 81(T)

Rhizobium miluonense CCBAU 41251(T) Rhizobium leucaenae USDA 9039(T) Rhizobium paranaense PRF 35(T) Rhizobium vallis CCBAU 65647(T)

Ensifer numidicus ORS 1407(T) Ensifer sesbaniae CCBAU 65729(T) Rhizobium endophyticum CCGE2052(T)

Rhizobium grahamii CCGE 502(T)

Rhizobium tubonense CCBAU 85046(T) Rhizobium etli CFN 42(T)

Rhizobium sp. RT1

Rhizobium leguminosarum USDA 2370(T) Rhizobium llaguerreae FB206(T)

Rhizobium phaseoli ATCC 14482(T) Rhizobium pisi DSM 30132(T)

Rhizobium mesosinicum CCBAU 25010(T) Rhizobium sullae IS 123(T)

Rhizobium mongolense USDA 1844(T)

Rhizobium rhizoryzae J3-AN59(T) Rhizobium flavum YW14(T)

Rhizobium halotolerans AB21(T) 0.005

Fig.1–Neighbor-joiningphylogenetictreebasedon16SrDNAgenesequences,showingtherelationshipbetweenstrain RT1andthemostcloselyrelatedtypestrainsofRhizobiumetliCFN42.Thebarrepresents0.005substitutionspernucleotide position.

andalthoughmotilityinrhizobiaisnotessential,itisneeded to enable bacteria to find a specific host legume.27

Evi-dencehasbeenpreviouslypresentedregardingaconnection betweenquorumsensingandmotilitycontrolinR.etli,6andin

Pseudomonasfluorescens.30Inaddition,Ahmer(2004)reported

thataquorumsensingsystem(theLuxS/AI-2system)present inEscherichiacoli,31synthesizedAI-2toincreasemotilityand

stimulatebiofilmformationbywild-typeE.coliK-12strain.32

Biofilmformationassay

On polystyrene RT1 developed a sessilebiomass with val-ues rangingfrom0.4to∼2.0ODat570nminthepresence ofexogenous 3-oxo-C8-HSL (Fig. 4),and athigh

concentra-tion (5␮M), 3-OH-C12-HSL caused a significant 3- to 5-fold

increase inbiofilm formation. Lowerconcentrations (0.5 or 0.05␮M)hadslighteffectsonbiofilmformation(Fig.4).When

3-oxo-C8-HSL

3-OH-C14-HSL

100

100

80

80

60

60

40

40

20

20

0

0

200

200

400

m/z ratio

m/z ratio

m/z ratio 227 199 171 129 101 313 285 257 229 201 173 129 101 143 187 215 243 271 299 328 143 185 213 242

Relative abundance

288

298

Relative abundance

215

272

302

329

485

262

245

199

227

171

300

Fig.2–LC–MSspectrashowingtherelativeabundancesofthemolecularionsofthemostabundantAHLmolecules, 3-oxo-C8-HSL(a)and3-OH-C14-HSL(b)inR.etliRT1supernatantafter48hofgrowth.

(5)

6 5 4 3 2 1 0 Control 0.05 Halo diameter (cm) 3-oxo-C8-HSL (µm) 0.5 5

Fig.3–Effectof3-oxo-C8-HSLonswimmingmotilitybyR.

etliRT1.Valuesaremeansofexperimentsperformedin quadruplicate.BarsrepresentSEMs(p<0.05).

1.5 1 0.5 0 Control 0.05 3-oxo-C8-HSL (µM) OD 570 nm 0.5 5.0

Fig.4–Effectofdifferentconcentrationsof3-oxo-C8-HSL onbiofilmformationbyR.etliRT1after24hofgrowth. Valuesaremeansofexperimentsperformedin quadruplicate.BarsrepresentSEMs(p<0.05).

exogenous3-oxo-C8-HSLwasadded0.05␮Manon-significant

3-foldincreaseinbiofilmformationwasobservedversusthe non-treatedcontrol(non-inoculatedYEMBmedium).Itis con-ceivablethatoneormoreofthemolecularsignalsmayimpact biofilmphysiology.33,34 ExposureofRT1toexogenous

addi-tionsof3-oxo-C8-HSLor3-OH-C14-HSLhadpositiveeffectson

physiologicalprocessesrelatedtosurvivaland colonization ability,particularlythemotility andbiofilm formation. Rin-audiandGonzalez(2009)35exploredtheroleplayedbyAHL

molecules inbiofilm formation and their importance with respecttosymbioticrelationshipswiththehost.

TheabilityofrhizobiatoproduceAHLsiswellknowntobe speciesandstrain-dependent.6,36Thereareseveraldifferent

typesofQSsignalingmechanismsthatusearangeof differ-entsignaltypesanddetectionmechanisms.37Oneofthemost

commonofthesemechanismsinvolvesacyl-homoserine lac-tone(AHL)signalmolecules.Furthermore,AHL-basedquorum sensingappearstobehighlyconservedamongbacteria,and morethan50specieshavebeenidentifiedtoproduceAHLs. AHLmoleculesare described asamphipathic because they containbothpolarandnon-polarregions,sincethe homoser-inelactoneringishydrophilicandthefattyacidsidechainis hydrophobic,andthisamphipathicityappearstofacilitatethe freediffusionofAHLswithintheaqueousintra-and extracel-lularenvironments,andacrossthephospholipidbilayer.37

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 Time (h)

Without AHL molecule With AHL molecule

OD at

600

nm

10 15 20 24

Fig.5–GrowthcurveofR.etliRT1straininTSBbrothwith orwithouttheadditionof3-oxo-C8-HSL(5␮M).Valuesare means±SEMsofexperimentsperformedinquadruplicate (p<0.05).

Inadditiontocellsignaling,AHLscarryinglongacyl-side chainspossesssignificantsurfaceactivitiesatbiologically rel-evantconcentrations.24Generallyswarmingmotilityislinked

with biofilm formation, although the relationship between these phenomenaappearstoberatherdual.14 Attachment

is pre-requisite ofbiofilm formation as it governs interac-tionsbetweenbacterialandplanttissues,andhasbeenshown torelyonquorumsensing.Venturi(2006)reportedthatthe extentofswarmingdependsonthestructureofbiofilms dur-ingtheearlystageofformation.38

Bacterialgrowthanalysis

As shown in Fig. 5, the growth rate ofRT1 was enhanced slightlybythepresenceof3-oxo-C8-HSLat5␮M.Furthermore,

co-inoculationofRT1with3-oxo-C8-HSLcausednosignificant

growthdifference.Overall,ourfindingssuggestthat3-oxo-C8

-HSLneitherpromotesnorinhibitsbacterialgrowth.Increased celldensity(exponentialphase)favorsthereleaseofchemical signalsforsocialinteractionsinbiofilms,whichaddsanother level ofcomplexity.39 Idealapproachuse toconfirmthat a

moleculeisaquorumsensingmoleculeistoconfirmthatthe moleculehasnoimpactonfinaldensityafterasuitable incu-bationperiodandthatithasnoeffectongrowthkineticsat definedconcentrations.40

Conclusions

Thisstudy showsendophyticRT1fromthe rootnodulesof lentilsproduceshighlevelsofAHLsandthattheseregulate QScontrolofswarmingmotilityandbiofilmformation.Based onourfindings,weconcludethatquorumsensing,motility and biofilmformationobservedinvitroareaffected byAHL moleculetypeandconcentration,andthattheoverall behav-ioroflentil-nodulatingsoilrhizobialpopulationsissubjected to the fine and coordinated regulationof the synthesis of AHLsinresponsetospecificenvironmentalfactors.Further

(6)

studies are in progressto determine the putative quorum sensingmechanismofRT1.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgements

Oneofus(SwarnitaDixit)isthankfultotheChiefExecutive Officer,BiotechPark,Lucknow(India)forprovidinglaboratory facilities.

r

e

f

e

r

e

n

c

e

s

1. RyanRP,GermaineK,FranksA,RyanDJ,DowlingDN.

Bacterialendophytes:recentdevelopmentsand

applications.FEMSMicrobiolLett.2008;278:1–9.

2. RibeiroRA,Ormeno-OrrilloE,DallAgnolRF,GrahamPH,

Martinez-RomeroE,HungriaM.NovelRhizobiumlineages

isolatedfromrootnodulesofthecommonbean(Phaseolus

vulgarisL.)inAndenandMesoamericanareas.ResMicrobiol.

2013;164:740–748.

3. DixitS,DubeyRC,SethPK.Characterizationofplantgrowth

promotingendophyticbacteriaisolatedfromLensculinaris

Medik.withantagonisticpotentialagainstFusarium

oxysporum.IntJBioinformBiolSci.2014;2:95–109.

4. BelasR,SchneiderR,MelchM.CharacterizationofProteus

mirabilisprecociousswarmingmutants:identificationof

rsbA,encodingaregulatorofswarmingbehavior.JBacteriol.

1998;180:6126–6139.

5. KearnsDB,LosickR.Swarmingmotilityinundomesticated

Bacillussubtilis.MolMicrobiol.2003;49:581–590.

6. BraekenK,DanielsR,VosK,etal.Geneticdeterminantsof

swarminginRhizobiumetli.MicrobEcol.2008;55:54–64.

7. Garcia-HerediaA,GarciaS,Merino-MascorroJA,FengP,

HerediaN.Naturalplantproductsinhibitsgrowthandalters

theswarmingmotility,biofilmformation,andexpressionof

virulencegenesinenteroaggregativeandenterohemorrhagic

Escherichiacoli.FoodMicrobiol.2016;59:124–132.

8. HussainMBBM,ZhangH,XuJ,LiuQ,JiangZ,ZhangLH.The

acyl-homoserinelactone-typequorum-sensingsystem

modulatescellmotilityandvirulenceofErwiniachrysanthemi

pv.zeae.JBacteriol.2008;190:1045–1053.

9. ShroutJD,ChoppDL,JustCL,HentzerM,GivskovM,Parsek

MR.Theimpactofquorumsensingandswarmingmotility

onPseudomonasaeruginosabiofilmformationisnutritionally

conditional.MolMicrobiol.2006;62:1264–1277.

10.HuberB,RiedelK,HentzerM,etal.Thecepquorum-sensing

systemofBurkholderiacepaciaH111controlsbiofilm

formationandswarmingmotility.Microbiology.

2001;147:2517–2528.

11.FarrandSK,QinY,OgerP.Quorum-sensingsystemof

Agrobacteriumplasmids:analysisandutility.Methods Enzymol.2002;358:452–484.

12.WatersCM,BasslerBL.Quorumsensing:cell-to-cell

communicationinbacteria.AnnuRevCellDevBiol.

2005;21:319–346.

13.MarketonMM,GronquistMR,EberhardA,GonzálezJE.

CharacterizationoftheSinorhizobiummelilotisinR/sinIlocus

andtheproductionofnovelN-acylhomoserinelactones.J

Bacteriol.2002;184:5686–5695.

14.DanielsR,VanderleydenJ,MichielsJ.Quorumsensingand

swarmingmigrationinbacteria.FEMSMicrobiolRev.

2004;28:261–289.

15.SarkarS,ChakrabortyR.Quorumsensinginmetaltolerance

ofAcinetobacterjuniiBB1AisassociatedwithBiofilm

production.FEMSMicrobiolLett.2008;282:160–165.

16.Wisniewski-DyéF,DownieJA,Wisniewski-dyF,DownieJA.

Quorum-sensinginRhizobium.AntVanLeeuwen.

2002;81:397–407.

17.SambrookJ,RusselD.MolecularCloning:ALaboratoryManual.

ColdSpringHarbor,NY,USA:ColdSpringHarborLaboratory

Press;2001.

18.YoungJ,DownerH,EardlyB.Phylogenyofthephototrophic

RhizobiumstrainBTAilbypolymerasechainreaction-based

sequencingofa16SrRNAgenesegment.JBacteriol.

1991;173:2271–2277.

19.TamuraK,StecherG,PetersonD,FilipskiA,KumarS.MEGA6:

molecularevolutionarygeneticsanalysisversion6.0.MolBiol

Evol.2013;30:2725–2729.

20.ThompsonJD,HigginsDG,GibsonTJ.CLUSTALW:improving

thesensitivityofprogressivemultiplesequencealignment

throughsequenceweighting,position-specificgappenalties

andweightmatrixchoice.NucleicAcidsRes.

1994;11:4673–4680.

21.JukesTH,CantorCR.Evolutionofproteinmolecules.In:

MunroHN,ed.MammalianProteinMetabolism.NewYork:

AcademicPress;1969:21–123.

22.SaitouN,NeiM.Theneighbor-joiningmethod:anew

methodforreconstructingphylogenetictrees.MolBiolEvol.

1987;4:406–425.

23.ShawPD,PingG,DalySL,etal.Detectingandcharacterizing

N-acyl-homoserinelactonesignalmoleculesbythin-layer

chromatography.ProcNatlAcadSciUSA.1997;94:6036–6041.

24.DanielsR,ReynaertS,HoekstraH,etal.Quorumsignal

moleculesasbiosurfactantsaffectingswarminginRhizobium

etli.ProcNatlAcadSciUSA.2006;103:14965–14970.

25.O’TooleGA,KolterR.Flagellarandtwitchingmotilityare

necessaryforPseudomonasaeruginosabiofilmdevelopment.

MolMicrobiol.1998;30:295–304.

26.StackebrandtE,GoebelBM.Taxonomicnote:aplacefor

DNA–DNAreassociationand16SrRNAsequencesanalysisin

thepresentspeciesdefinitioninbacteriology.IntJSystEvol

Microbiol.1994;44:846–849.

27.NievasF,BoginoP,SorrocheF,GiordanoW.Detection,

characterization,andbiologicaleffectofquorum-sensing

signalingmoleculesinpeanut-nodulatingBradyrhizobia.

Sensors.2012;12:2851–2873.

28.GonzalezRH,NusblatA,NudelBC.Detectionand

characterizationofquorumsensingsignalmoleculesin

Acinetobacterstrains.MicrobiolRes.2001;155:271–277.

29.ShakeriS,KermanshahiRK,MoghaddamMM,EmtiaziG.

Assessmentofbiofilmcellremovalandkillingandbiocide

efficacyusingthemicrotiterplatetest.Biofouling.

2007;23:79–86.

30.KorberDR,LawrenceJR,CaldwellDE.Effectofmotilityon

surfacecolonizationandreproductivesuccessof

Pseudomonasfluorescensindual-dilutioncontinuousculture

andbatchculturesystems.ApplEnvironMicrobiol.

1994;60:1421–1429.

31.AhmerBMM.Cell-to-cellsignalinginEscherichiacoliand

Salmonellaenterica.MolMicrobiol.2004;52:933–945.

32.GonzálezBarriosAF,ZuoR,HashimotoY,YangL,Bentleyh

WE,WoodTK.Autoinducer2controlsbiofilmformationin

E.colithroughanovelmotilityquorum-sensingregulator

(MqsR,B3022).JBacteriol.2006;188:305–316.

33.LabbateM,QueckSY,KohKS,RiceSA,GivskovM,Kjelleberg

S.Quorumsensing-controlledbiofilmdevelopmentin

(7)

34.AlagelyA,KredietCJ,RitchieKB,TeplitskiM.

Signaling-mediatedcross-talkmodulatesswarmingand

biofilmformationinacoralpathogenSerratiamarcescens.

ISMEJ.2011;5:1609–1620.

35.RinaudiLV,GonzalezJE.Thelowmolecularweightfraction

ofexopolysaccharideIIfromSinorhizobiummelilotiisacrucial

determinantofbiofilmformation.JBacteriol.

2009;191:7216–7224.

36.VanHoudtR,GivskovM,MichielsCW.Quorumsensingin

Serratia.FEMSMicrobiolRev.2007;31:407–424.

37.ShroutJD,Tolker-NielsenT,GivskovM,ParsekMR.The

contributionofcell–cellsignalingandmotilitytobacterial

biofilmformation.MRSBull.2011;36:367–373.

38.VenturiV.RegulationofquorumsensinginPseudomonas.

FEMSMicrobiolRev.2006;30:274–291.

39.LiYH,TianX.Quorumsensingandbacterialsocial

interactionsinbiofilms.Sensors.2012;12:2519–2538.

40.DefoirdtT,BrackmanG,CoenyeT.Quorumsensing

inhibitors:howstrongistheevidence.TrendsMicrobiol.

Referências

Documentos relacionados

It has also been determined that quercetin and resveratrol, which gets the attention with their antioxidant properties, can be used in bacterial communication system inhibition,

A este respeito, devemos assinalar, na esteira do alerta de PEDRO BARRAMBANA SANTOS, que é importante perceber que a qualificação como danos morais permite

Segundo Mendonça (Citado por SALGADO; GALANTE; LEONARDI, 2004), é tendência do mercado o uso de protetores solares contendo filtros químicos tanto para UVA e UVB, de

Tendo em conta os resultados da análise dos regulamentos do PDM dos municípios envolventes à Ria de Aveiro e à Ria Formosa, em comparação com o regulamento

Relativamente à forma de divulgação quando utilizado o método do custo podemos recorrer aos parágrafos 77 e 79 da norma referida na secção anterior. Aí são descritos

biofilm formation in two bacterial strains Halomonas variabilis (HT1) and Planococcus rifietoensis (RT4) in response to varying salt stress.. We found that biofilm formation

It was observed that the mxa F gene was not induced in rice, only in eucalyp- tus, possibly due to the differences on plant-bacteria inter- action and on using different

We conclude that cuttings and grafting are potential techniques for Araucaria plants formation for wood production, and, in particular, grafting is recommended by the easiness of in