• Nenhum resultado encontrado

Contribuição ao estudo de fusão de mapas auto organizáveis de Kohonen com ponderação por meio de índices de validação de agrupamentos

N/A
N/A
Protected

Academic year: 2021

Share "Contribuição ao estudo de fusão de mapas auto organizáveis de Kohonen com ponderação por meio de índices de validação de agrupamentos"

Copied!
95
0
0

Texto

(1)UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. U NIVERSIDADE F EDERAL DO R IO G RANDE DO N ORTE C ENTRO DE T ECNOLOGIA P ROGRAMA DE P ÓS -G RADUAÇÃO EM E NGENHARIA E LÉTRICA E DE C OMPUTAÇÃO. Contribuição ao Estudo de Fusão de Mapas Auto Organizáveis de Kohonen com Ponderação por meio de Índices de Validação de Agrupamentos. Leandro Antonio Pasa. Orientador: Prof. Dr. José Alfredo Ferreira Costa. Tese de Doutorado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica e da Computação da UFRN (área de concentração: Engenharia de Computação) como parte dos requisitos para obtenção do título de Doutor em Ciências.. Número de ordem PPgEEC: D163 Natal, RN, Fevereiro de 2016..

(2) Seção de Informação e Referência Catalogação da publicação na fonte. UFRN / Biblioteca Central Zila Mamede Pasa, Leandro Antonio. Contribuição ao Estudo de Fusão de Mapas Auto Organizáveis de Kohonen com Ponderação por meio de Índices de Validação de Agrupamentos / Leandro Antonio Pasa. - Natal, 2016. 95 f.: il. Orientador: José Alfredo Ferreira Costa. Tese (Doutorado em Engenharia Elétrica e de Computação) - Universidade Federal do Rio Grande do Norte. Centro de Tecnologia - Programa de PósGraduação em Engenharia Elétrica e de Computação. 1. Comitês de máquinas - Tese. 2. Mapas auto-organizáveis de Kohonen Tese. 3. Índice de validação de agrupamentos - Tese. I. Costa, José Alfredo Ferreira. II. Título. RN/UF/BCZM. CDU 621.3:004.

(3) Contribuição ao Estudo de Fusão de Mapas Auto Organizáveis de Kohonen com Ponderação por meio de Índices de Validação de Agrupamentos Leandro Antonio Pasa. Tese de Doutorado aprovada em 19 de fevereiro de 2016 pela banca examinadora composta pelos seguintes membros:.

(4)

(5) Este trabalho é dedicado à querida Carine e ao querido Eduardo..

(6)

(7) Agradecimentos. A Deus, pela força e iluminação sempre presentes em nossas vidas. A minha esposa Carine, pelo apoio, amor, paciência e compreensão durante a realização deste trabalho. À minha família, pelo apoio durante esta jornada, principalmente à minha mãe Teresinha (sempre presente) e ao meu pai Evaristo, que sempre incentivaram os seus filhos a estudar. Ao meu orientador, Professor José Alfredo Ferreira Costa, pela amizade e por compartilhar seus conhecimentos, me orientando neste caminho. Ao amigo Marcial Guerra de Medeiros, pela amizade, estímulo, contribuições fundamentais e todo o tempo dedicado para auxiliar neste trabalho. Ao amigo Fábio Augusto Procópio de Paiva, pela amizade e pelas sugestões para este trabalho. À Universidade Tecnológica Federal do Paraná, pelo apoio e tempo concedidos para a realização deste trabalho..

(8)

(9) Resumo. A quantidade de informações coletadas e armazenadas cresce a cada dia nas mais diversas áreas do conhecimento e técnicas de mineração de dados são aplicadas a estes conjuntos de dados com o objetivo de extrair conhecimento útil. A utilização de um ou outro algoritmo, ou o mesmo algoritmo com diferentes atributos pode levar a diferentes resultados, devido à diversidade dos conjuntos de dados. Na busca por soluções eficientes para este problema, foram desenvolvidos métodos de comitês de máquinas. Um comitê de máquinas é um conjunto de redes neurais trabalhando independentemente cujos resultados são combinados em uma única saída, alcançando uma melhor generalização do que cada uma das redes trabalhando separadamente. A proposta deste trabalho é desenvolver um novo método para comitês de mapas de Kohonen, em que a combinação (fusão) dos mapas seja ponderada por índices de validação de agrupamentos, que seja válido para combinação de mapas de tamanhos iguais e mapas de tamanhos diferentes. O algoritmo proposto foi testado em variados conjuntos de dados provenientes do repositório UCI e do Conjunto de Problemas Fundamentais de Agrupamento. As simulações computacionais demonstram que o método proposto neste trabalho é capaz de alcançar resultados promissores, conseguindo elevar a performance em comparação com um único mapa de Kohonen. Palavras-chave: Comitês de máquinas, Mapas auto-organizáveis de Kohonen, Índice de validação de agrupamentos..

(10)

(11) Abstract. The amount of collected and stored information is growing every day in several areas of knowledge and data mining techniques are applied to these datasets in order to extract useful knowledge. One or another algorithm, or the same algorithm with different attributes, can lead to different results due to the dataset diversity. To solve this problem, machines committees methods were developed. A machine committee is a set of neural networks working independently and the results are combined into a single output, achieving a better generalization. The purpose of this work is to develop a new method for Kohonen maps ensemble, where the maps fusion is weighted by cluster validation indices and is suitable for equal size maps fusion and for different size maps fusion. The proposed algorithm has been tested in multiple data sets from the UCI Machine Learning Repository and Fundamental Clustering Problems Suite. Computer simulations show the proposed method is able to reach encouraging results, obtaining raising performance compared with a single Kohonen map. Keywords: Machine committee, Kohonen Self Organizing Maps, Cluster validity index..

(12)

(13) Sumário. Sumário. i. Lista de Figuras. iii. Lista de Tabelas. v. List of Algorithms. vi. 1. Introdução. 1. 1.1. Motivação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2. 1.2. Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2. 1.3. Organização do documento . . . . . . . . . . . . . . . . . . . . . . . . .. 3. 2. Fundamentação Teórica. 5. 2.1. Mapas Auto-organizáveis de Kohonen . . . . . . . . . . . . . . . . . . .. 5. 2.1.1. Treinamento do Mapa . . . . . . . . . . . . . . . . . . . . . . .. 6. Índices de Validação . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8. 2.2.1. O índice de Dunn . . . . . . . . . . . . . . . . . . . . . . . . . .. 8. 2.2.2. O índice de Calinski e Harabasz . . . . . . . . . . . . . . . . . .. 9. 2.2.3. O índice Davies-Bouldin . . . . . . . . . . . . . . . . . . . . . .. 10. 2.2.4. O índice PBM . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11. 2.2.5. O índice CDbw . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11. 2.3. Modificação de índices de validação . . . . . . . . . . . . . . . . . . . .. 14. 2.4. Comitês de máquinas . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15. 2.4.1. Construção de um comitê de máquinas . . . . . . . . . . . . . .. 16. 2.4.2. Algumas aplicações de comitês de máquinas . . . . . . . . . . .. 18. Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20. 2.2. 2.5 3. Materiais e Métodos. 21. 3.1. Fusão de mapas de tamanhos iguais . . . . . . . . . . . . . . . . . . . .. 21. 3.1.1. 22. Seleção e dos candidatos . . . . . . . . . . . . . . . . . . . . . . i.

(14) 3.2. 3.3 3.4 3.5 4. 5. 3.1.2 Equações de fusão . . . . . . . 3.1.3 Experimento fatorial . . . . . . 3.1.4 Abordagens . . . . . . . . . . . 3.1.5 Algoritmo proposto . . . . . . . Fusão de mapas de tamanhos diferentes 3.2.1 Estrutura com 7 mapas . . . . . 3.2.2 Estrutura com 49 mapas . . . . 3.2.3 Validação Cruzada . . . . . . . Medida de performance . . . . . . . . . Teste estatístico . . . . . . . . . . . . . Resumo . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. Resultados 4.1 Conjunto de dados . . . . . . . . . . . . . . . . 4.2 Mapas de tamanhos iguais . . . . . . . . . . . . 4.3 Mapas de tamanhos diferentes . . . . . . . . . . 4.3.1 Estrutura com 7 mapas . . . . . . . . . . 4.3.2 Estrutura com 49 mapas . . . . . . . . . 4.3.3 Estrutura de fusão com validação cruzada 4.4 Resumo . . . . . . . . . . . . . . . . . . . . . . Conclusão 5.1 Considerações finais . . . . . . . . . 5.1.1 Mapas de tamanhos iguais . . 5.1.2 Mapas de tamanhos diferentes 5.2 Trabalhos futuros . . . . . . . . . . . 5.3 Publicações . . . . . . . . . . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . .. . . . . . . . . . . .. . . . . . . .. . . . . .. . . . . . . . . . . .. 22 24 24 26 27 28 30 32 34 34 35. . . . . . . .. 37 37 38 44 44 51 58 61. . . . . .. 63 63 64 64 65 66. Referências bibliográficas. 67. Apêndice A Conjuntos de dados utilizados. 73. Apêndice B Trabalhos publicados. 75.

(15) Lista de Figuras. 2.1. Diagrama esquemático bidimensional da Rede de Kohonen. (Mattos, 2011). 6. 2.2. Atualização do BMU e vizinhos. (Vesanto, 2002) . . . . . . . . . . . . .. 7. 2.3. Diagrama do cálculo do índice de Dunn. . . . . . . . . . . . . . . . . . .. 9. 2.4. Diagrama do cálculo do índice Davies-Bouldin. . . . . . . . . . . . . . .. 10. 2.5. Estrutura de um comitê de méquinas. (Coelho, 2006) . . . . . . . . . . .. 15. 3.1. Visão geral do processo. . . . . . . . . . . . . . . . . . . . . . . . . . .. 21. 3.2. Seleção e combinação dos mapas. . . . . . . . . . . . . . . . . . . . . .. 23. 3.3. Estrutura do experimento fatorial. . . . . . . . . . . . . . . . . . . . . .. 24. 3.4. Abordagens para a fusão dos mapas. . . . . . . . . . . . . . . . . . . . .. 25. 3.5. Estrutura com 7 mapas. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29. 3.6. Estrutura com 49 mapas. . . . . . . . . . . . . . . . . . . . . . . . . . .. 30. 4.1. Acurácia média para mapas de tamanhos iguais. . . . . . . . . . . . . . .. 41. 4.2. Acurácia para mapas iguais - BC Wisconsin. . . . . . . . . . . . . . . . .. 42. 4.3. Acurácia para mapas iguais - Chainlink. . . . . . . . . . . . . . . . . . .. 42. 4.4. Acurácia para mapas iguais - Column. . . . . . . . . . . . . . . . . . . .. 42. 4.5. Acurácia para mapas iguais - Engytime. . . . . . . . . . . . . . . . . . .. 42. 4.6. Acurácia para mapas iguais - Heart. . . . . . . . . . . . . . . . . . . . .. 43. 4.7. Acurácia para mapas iguais - Ionosphere. . . . . . . . . . . . . . . . . .. 43. 4.8. Acurácia para mapas iguais - Iris. . . . . . . . . . . . . . . . . . . . . . .. 43. 4.9. Acurácia para mapas iguais - Lsun. . . . . . . . . . . . . . . . . . . . . .. 43. 4.10 Acurácia para mapas iguais - Pimaindians. . . . . . . . . . . . . . . . . .. 43. 4.11 Acurácia para mapas iguais - Seeds. . . . . . . . . . . . . . . . . . . . .. 43. 4.12 Acurácia para mapas iguais - Tetra. . . . . . . . . . . . . . . . . . . . . .. 44. 4.13 Acurácia para mapas iguais - Wine. . . . . . . . . . . . . . . . . . . . .. 44. 4.14 Acurácia para mapas iguais - Two diamonds. . . . . . . . . . . . . . . .. 44. 4.15 Acurácia para mapas iguais - Wingnut. . . . . . . . . . . . . . . . . . . .. 44. 4.16 Acurácia para 7 mapas diferentes - BC Wisconsin. . . . . . . . . . . . . .. 49. 4.17 Acurácia para 7 mapas diferentes - Chainlink. . . . . . . . . . . . . . . .. 49. iii.

(16) 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26 4.27 4.28 4.29 4.30 4.31 4.32 4.33 4.34 4.35 4.36 4.37 4.38 4.39 4.40 4.41 4.42 4.43 4.44 4.45 4.46. Acurácia para 7 mapas diferentes - Column. . . . . . Acurácia para 7 mapas diferentes - Engytime. . . . . Acurácia para 7 mapas diferentes - Heart. . . . . . . Acurácia para 7 mapas diferentes - Hepatitis. . . . . Acurácia para 7 mapas diferentes - Ionosphere. . . . Acurácia para 7 mapas diferentes - Iris. . . . . . . . Acurácia para 7 mapas diferentes - Lsun. . . . . . . . Acurácia para 7 mapas diferentes - PimaIndians. . . . Acurácia para 7 mapas diferentes - Seeds. . . . . . . Acurácia para 7 mapas diferentes - Tetra. . . . . . . Acurácia para 7 mapas diferentes - Two Diamonds. . Acurácia para 7 mapas diferentes - Wine. . . . . . . Acurácia para 7 mapas diferentes - Wingnut. . . . . . Acurácia para 49 mapas diferentes - BC Wisconsin. . Acurácia para 49 mapas diferentes - Chainlink. . . . Acurácia para 49 mapas diferentes - Column. . . . . Acurácia para 49 mapas diferentes - Engytime. . . . Acurácia para 49 mapas diferentes - Heart. . . . . . . Acurácia para 49 mapas diferentes - Hepatitis. . . . . Acurácia para 49 mapas diferentes - Ionosphere. . . . Acurácia para 49 mapas diferentes - Iris. . . . . . . . Acurácia para 49 mapas diferentes - Lsun. . . . . . . Acurácia para 49 mapas diferentes - PimaIndians. . . Acurácia para 49 mapas diferentes - Seeds. . . . . . Acurácia para 49 mapas diferentes - Tetra. . . . . . . Acurácia para 49 mapas diferentes - Two Diamonds. Acurácia para 49 mapas diferentes - Wine. . . . . . . Acurácia para 49 mapas diferentes - Wingnut. . . . . Acurácia com validação cruzada estratificada. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49 49 50 50 50 50 50 50 51 51 51 51 51 56 56 56 56 57 57 57 57 57 57 58 58 58 58 58 61. A.1 Conjunto de dados UCI. . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 Conjunto de dados do FCPS. (Ultsch, 2005) . . . . . . . . . . . . . . . .. 73 74.

(17) Lista de Tabelas. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9. Conjuntos de dados utilizados. . . . . . . . . . . . . . . . Resultados da fusão de mapas de tamanhos iguais . . . . . Resultados da fusão de 7 mapas com a Equação 3.1 . . . . Resultados da fusão de 7 mapas com a Equação 3.2 . . . . Resultados da fusão de 7 mapas com a Equação 3.3 . . . . Resultados das fusões para os 49 mapas com a Equação 3.1 Resultados das fusões para os 49 mapas com a Equação 3.2 Resultados das fusões para os 49 mapas com a Equação 3.3 Resultados para a validação cruzada estratificada . . . . .. v. . . . . . .. . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. 37 40 46 47 48 53 54 55 60.

(18)

(19) Lista de Algoritmos. 1 2 3 4 5. F USÃO DE MAPAS DE TAMANHOS IGUAIS . . . . . F USÃO DE 7 MAPAS DE TAMANHOS DIFERENTES . F USÃO DE 49 MAPAS DE TAMANHOS DIFERENTES F USÃO ATRAVÉS DA VALIDAÇÃO CRUZADA . . . . T ESTE DE W ILCOXON . . . . . . . . . . . . . . . .. vii. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. . . . . .. 26 29 31 33 35.

(20)

(21) Capítulo 1 Introdução. Em várias áreas do conhecimento, cresce a cada dia a quantidade de informações coletadas e armazenadas e devido ao volume e dimensionalidade, estes dados acabam ficando sem uma análise e interpretação adequadas. A diversidade de características dos conjuntos de dados pode fazer com que a utilização de um ou outro algoritmo de agrupamento, ou o mesmo algoritmo, mas com diferentes atributos, resulte em diferentes resultados. O aumento do desempenho de sistemas de classificação, agrupamentos e análise de dados é uma busca constante em Mineração de Dados e áreas correlatas. Algoritmos novos ou variações de algoritmos já existentes são publicados na literatura constantemente. Algoritmos não supervisionados são empregados quando não há um conhecimento prévio sobre a estrutura e a distribuição do conjunto de dados. Dentre os algoritmos não supervisionados, destaca-se a Rede de Kohonen, com aprendizado competitivo e não supervisionado, capaz de projetar um mapa bidimensional de um conjunto multidimensional de dados, preservando as relações topológicas destes dados. Na busca por soluções eficientes na exploração do conhecimento embutido nas massas de dados, foram criados métodos de comitês de máquinas (ensemble), onde combinamse os resultados de várias redes neurais artificiais em um só. Esta abordagem tem sido muito explorada, pois trata-se de uma técnica simples e que pode aumentar o poder de generalização das redes neurais. A combinação de múltiplos componentes é vantajosa, uma vez que componentes diferentes podem implicitamente representar aspectos distintos e, ao mesmo tempo, relevantes para a solução de um dado problema. Esta técnica é capaz de fornecer um melhor resultado do que cada componente individualmente. Duas características são fundamentais para o bom desempenho de um comitê de máquinas: diversidade de resultados e erros descorrelacionados dos componentes. É preciso que os componentes do comitê apresentem resultados diferentes, pois de nada adianta.

(22) 2. CAPÍTULO 1. INTRODUÇÃO. combinar soluções iguais. Também é necessário que os erros apresentados pelos componentes sejam independentes uns dos outros, pois não há ganho para o comitê se os todos os componentes, por exemplo, errarem a mesma classificação de um padrão de entrada. Para os mapas auto-organizáveis de Kohonen (Kohonen Self-Organizing Maps - SOM) (Kohonen, 1982), erros descorrelacionados podem ser obtidos, por exemplo, utilizando diferentes conjuntos de treinamento ou variando parâmetros de treinamento para cada rede neural. A combinação das saídas dos mapas SOM em uma única saída pode ser feita a partir da fusão dos neurônios dos mapas que compõem o comitê de máquinas.. 1.1. Motivação. Tanto a abordagem de comitês de máquinas quanto o uso de Mapas Auto Organizáveis de Kohonen têm sido muito explorados nos últimos anos. Comitês de máquinas são relativamente simples em seu conceito e complexos em sua implementação, mas são capazes de aumentar a capacidade de generalização de um modelo. As Redes de Kohonen trabalham com dados multidimensionais, projetando-os em um mapa bidimensional, preservando a topologia dos dados. A motivação deste trabalho é desenvolver um novo método para combinação de mapas de Kohonen que empregue a ponderação por índices de validação de agrupamentos, com o objetivo de aumentar a acurácia desse método em relação a uma única rede de Kohonen.. 1.2. Objetivos. A proposta deste trabalho é apresentar um método para fusão de Mapas de Kohonen por meio de comitês de máquinas e com ponderação por índices de validação de agrupamentos. Os objetivos específicos desta pesquisa são: 1. Propor uma metodologia para implementar o comitê de máquinas de mapas de Kohonen de tamanhos iguais e de tamanhos diferentes; 2. Verificar a influência da quantidade de hits e BMUs no resultado final do comitê de máquinas; 3. Verificar a eficácia em empregar índices de validação de agrupamentos na seleção de componentes do comitê de máquinas..

(23) 1.3. ORGANIZAÇÃO DO DOCUMENTO. 1.3. 3. Organização do documento. Este documento está organizado da seguinte forma: no Capítulo 1 é apresentada uma breve descrição da proposta desta tese, bem como os aspectos que motivaram o seu desenvolvimento e os objetivos. No Capítulo 2 os conceitos principais que serão utilizados neste trabalho são descritos e são apresentados alguns trabalhos relacionados. No Capítulo 3 é apresentada a proposta para a fusão de mapas de Kohonen de tamanhos iguais e de tamanhos diferentes. No Capítulo 4 são apresentados os resultados obtidos na aplicação dos algoritmos propostos para a fusão de mapas de Kohonen. Por fim, no Capítulo 5 são apresentadas as conclusões e os trabalhos futuros..

(24) 4. CAPÍTULO 1. INTRODUÇÃO.

(25) Capítulo 2 Fundamentação Teórica. Neste capítulo são apresentados os conceitos utilizados no desenvolvimento deste trabalho. Uma visão geral sobre mapas auto organizáveis de Kohonen é vista na Seção 2.1. Já na Seção 2.2, são apresentadas descrições simplificadas de alguns índices de validação e na Seção 2.3 temos a modificação dos índices de validação modificados para uso com o SOM. Ao final, na Seção 2.4 temos uma introdução aos métodos de comitês de máquinas.. 2.1. Mapas Auto-organizáveis de Kohonen. Os mapas auto-organizáveis de Kohonen (Self-Organizing Maps - SOM) (Kohonen, 1982) tornaram-se um modelo de rede neural muito popular. Constituem uma rede neural artificial, com aprendizado competitivo e não supervisionado, que realiza uma projeção não-linear de um espaço de entrada ℜ p , sendo p >> 2, em uma grade de neurônios dispostos em um arranjo, normalmente, bidimensional, tendo apenas duas camadas: uma de entrada de dados e outra de saída de dados. As entradas da rede x são vetores no espaço p-dimensional. Os neurônios i da camada de saída são conectados a todas as entradas da rede, representados por um vetor de pesos sinápticos no espaço p-dimensional, wi = [wi1 , wi2 , ..., wi p ]T . Estes neurônios são conectados aos neurônios adjacentes por uma relação de vizinhança que descreve a estrutura topológica do mapa. A Figura 2.1 mostra um diagrama representativo da arquitetura da Rede de Kohonen. Na fase de treinamento, em uma sequência aleatória, os padrões de entrada x são comparados com os neurônios da camada de saída. O neurônio vencedor, chamado de BMU (Best Match Unit), representa o vetor peso com a menor distância, usualmente a Euclidiana, em relação ao padrão de entrada x. Chamando o neurônio vencedor de c, ele pode ser formalmente definido de acordo com a Equação 2.1..

(26) 6. CAPÍTULO 2. FUNDAMENTAÇÃO TEÓRICA. Figura 2.1: Diagrama esquemático bidimensional da Rede de Kohonen. (Mattos, 2011). kx − wc k = argmini kx − wi k. (2.1). Os pesos do neurônio vencedor são ajustados de acordo com a Equação 2.2, juntamente com os pesos dos neurônios vizinhos. wi (t + 1) = wi (t) + α (t) hci (t) [x (t) − wi (t)]. (2.2). Onde t indica a iteração (ou época), x(t) é o padrão de entrada, hci (t) é a função de vizinhança, centrada no neurônio vencedor ix , enquanto que α(t) é a taxa de aprendizado, com valores entre 0 e 1. Na Figura 2.2 é ilustrado o processo de atualização de pesos do neurônio vencedor e sua vizinhança. As linhas sólidas correspondem à situação antes da atualização dos pesos e as linhas tracejadas mostram a mudança devido à aproximação do BMU e seus vizinhos do padrão de entrada x. Os círculos escuros e claros representam, respectivamente, os neurônios antes e depois do ajuste dos pesos.. 2.1.1. Treinamento do Mapa. São duas as maneiras de treinamento de um Mapa de Kohonen: treinamento sequencial e treinamento em lote. O processo de treinamento sequencial dos mapas autoorganizáveis consiste em três etapas, segundo Haykin (2001): 1. Competição: a cada padrão de entrada que é apresentado para a rede, os neurônios da camada de saída competem entre si, (esta competição é baseada em uma medida de similaridade), Geralmente a menor distância euclidiana entre os pesos sinápticos dos neurônios e o padrão de entrada determinará o único vencedor (BMU)..

(27) 2.1. MAPAS AUTO-ORGANIZÁVEIS DE KOHONEN. 7. Figura 2.2: Atualização do BMU e vizinhos. (Vesanto, 2002) 2. Cooperação: escolhido o neurônio vencedor, este torna-se o centro de uma vizinhança topológica de neurônios excitados. 3. Adaptação: os neurônios da vizinhança topológica determinada na fase de cooperação têm seus pesos sinápticos ajustados, de maneira que os neurônios mais próximos ao BMU sofrem ajustes maiores do que os neurônios mais distantes. A função gaussiana é utilizada para descrever a influência do BMU sobre seus vizinhos (atualização dos pesos sinápticos), pois apresenta um significado biológico coerente: o neurônio ativado tende a excitar com maior intensidade os neurônios na sua vizinhança imediata e decai suavemente com a distância lateral (Haykin, 2001). A Equação 2.3 mostra como é calculada a excitação do neurônio j, em relação ao neurônio vencedor i, sendo d ji a distância entre eles (normalmente, a distância euclidiana é utilizada). hi j = exp −. di2j 2σ2. ! (2.3). Com o fim do processo de aprendizagem, os vetores de código do SOM constituem uma aproximação não-linear dos padrões de entrada. O processo busca manter a preservação topológica dos padrões, isto é, padrões próximos no conjunto de entrada da rede permanecerão relacionados a neurônios próximos na grade de saída. O processo de treinamento em lote difere do treinamento sequencial por apresentar todos os vetores de entrada para a rede. de uma única vez. Assim, não é necessário o parâmetro taxa de aprendizagem, α(t), da Equação 2.2 e também não se faz necessária aleatoriedade para a apresentação dos vetores de entrada. Na próxima seção, serão apresentados os índices de validação de agrupamentos utilizados como ponderação na fusão dos mapas de Kohonen..

(28) 8. 2.2. CAPÍTULO 2. FUNDAMENTAÇÃO TEÓRICA. Índices de Validação. Devido às diferentes geometrias e dimensionalidades dos conjuntos de dados, não existe um algoritmo único que possa agrupar, de forma não supervisionada, um conjunto de dados qualquer. Os índices de validação são necessários para avaliar e validar os resultados destes algoritmos de agrupamentos, auxiliando na tomada de decisão quanto à definição da quantidade correta, ou natural, de grupos formados a partir de um conjunto de dados. Existe, na literatura, uma variedade muito grande de índices de validação de agrupamentos, cada um com características próprias para aplicação em conjuntos de dados com determinadas características. Alguns aplicam-se à conjuntos de dados que apresentam boa separação entre os agrupamentos, outros se destinam a dados de alta dimensionalidade, outros não apresentam boa resposta na presença de ruídos. Para cada tipo de aplicação, um método para validar os agrupamentos foi desenvolvido. Na validação de agrupamentos podem ser abordados três critérios: o externo, o interno e o relativo (Theodoridis e Koutroumbas, 2009). No critério externo a estrutura dos grupos é avaliada em termos de uma estrutura independente, imposta ao conjunto de dados a priori. No critério interno a estrutura dos grupos é avaliada em base em informações estatísticas dos dados de cada grupo (por exemplo, a matriz de proximidade). No critério relativo a estrutura dos grupos é avaliada por comparação com outras estruturas de agrupamentos, resultantes da aplicação do mesmo algoritmo (mas com parâmetros com diferentes valores), ou comparada com outros algoritmos de agrupamentos. Como exemplos de índices de validação que utilizam critérios relativos, temos: o índice de Dunn, o índice de Calinski e Harabasz o índice Davies-Bouldin, o índice PBM e o índice CDbw. Nas seções 2.2.1, 2.2.3 e 2.2.5 estes índices serão explicados.. 2.2.1. O índice de Dunn. O índice de Dunn (Dunn, 1973) é calculado pela razão entre a mínima distância entre dois pontos pertencentes a dois diferentes grupos (δ(Ci ,C j )) e a máxima distância entre dois pontos pertencentes ao mesmo grupo (∆(Ck )), como ilustra a Figura 2.3. É adequado para conjunto de dados que possuam grupos compactos e bem separados. É sensível a ruídos, pois eles interferem no cálculo do diâmetro do grupo, e seu custo computacional é elevado..

(29) 2.2. ÍNDICES DE VALIDAÇÃO. 9. Figura 2.3: Diagrama do cálculo do índice de Dunn. Fonte: Elaborada pelo autor. O seu cálculo é mostrado na Equação 2.4  D = min. 1≤i≤c.  min. 1≤ j≤c,i6= j. δ(Ci ,C j ) max1≤k≤c ∆(Ck ).  (2.4). No artigo de Bezdec (Bezdek e Pal, 1998) são propostas generalizações do Índice de Dunn, para melhor adequação às diferentes geometrias dos agrupamentos. Estas generalizações são obtidas pelas variações nos cálculos dos diâmetros dos grupos e das distâncias entre grupos. Valores elevados para o Índice de Dunn indicam a existência de grupos compactos (diâmetro pequeno) e bem separados (distâncias grandes entre os grupos).. 2.2.2. O índice de Calinski e Harabasz. O índice de Calinski e Harabasz (Calinski e Harabasz, 1974) avalia a quantidade de grupos presentes em um conjunto de dados por meio de medidas de dispersão entre e intra grupos. O seu cálculo é mostrado na Equação 2.5. CH(k) =. B(k)/(k − 1) W (k)(n − k). Onde: • • • •. k indica a quantidade de grupos no conjunto de dados. n é a quantidade de pontos no conjunto. B(k) é a dispersão entre os grupos. W (k) é a soma das dispersões intra-grupos.. O número de ótimo de grupos é o valor de k que maximiza a função 2.5.. (2.5).

(30) 10. CAPÍTULO 2. FUNDAMENTAÇÃO TEÓRICA. 2.2.3. O índice Davies-Bouldin. O índice Davies-Bouldin (Davies e Bouldin, 1979) é uma função da razão entre a soma da dispersão interna dos grupos e a separação entre eles. Na Figura 2.4, as linhas vermelhas no interior do grupo Ci , ilustram a dispersão interna, enquanto a linha verde que une os centroides dos grupos Ci e C j representa a separação entre eles.. Figura 2.4: Diagrama do cálculo do índice Davies-Bouldin. Fonte: Elaborada pelo autor. A dispersão interna de um grupo é dada pela Equação 2.6: S (Ci ) =. 1 c. ∑ kx − c k. (2.6). i. c∈Ci. Onde: • • • •. c indica a quantidade de elementos do grupo. ci representa o centroide do grupo. x representa cada ponto do grupo. k.k é a distância Euclidiana.. A separação entre os grupos é dada pela distância Euclidiana entre os centroides dos grupos, como mostra a Equação 2.7:.  δ Ci ,C j = ci , c j . (2.7). Por fim, a Equação 2.8 calcula o índice Davies-Bouldin k. 1 DB = k. ∑ i=1 i6= j. S (Ci ) + S C j  max δ Ci ,C j.  (2.8). Onde k é o número de agrupamentos, S representa a dispersão interna do agrupamento (distância intra-grupos), com relação ao centroide e δ corresponde à distância inter-.

(31) 2.2. ÍNDICES DE VALIDAÇÃO. 11. grupos, baseada nos centroides. Valores pequenos para o Índice Davies-Bouldin indicam grupos compactos cujos centros estão bem separados entre si. O valor de k que minimiza o índice representará o valor mais provável do número real de grupos no conjunto de dados. Este índice não depende do número de grupos no conjunto de dados e nem do algoritmo utilizado para formar estes grupos.. 2.2.4. O índice PBM. O índice PBM (Pakhira et al., 2004), (acrônimo formado pelas iniciais dos autores Pakhira, Bandyopadhyay and Maulik), baseia-se em compactação de grupos e separação entre grupos. A compactação é medida pela soma das distâncias entre cada ponto do grupo e seu centroide. A separação entre os grupos é medida pela máxima distância entre dois centroides.  PBM(k) =. 1 E1 · · Dk k Ek. 2 (2.9). Onde: • • • •. k indica a quantidade de grupos. E1 é a soma das distâncias entre cada ponto de um grupo e o centroide desse grupo. Ek é a soma das distâncias entre cada ponto e o centroide do conjunto de dados. Dk é a máxima distância entre dois quaisquer centroides de grupos.. Maximizando este índice, obtem-se o número ótimo de grupos em um conjunto de dados.. 2.2.5. O índice CDbw. Em Halkidi e Vazirgiannis (2008), foi proposto um índice de validação de agrupamentos chamado CDbw (Composing Density Between and With clusters). Este índice CDbw ajusta-se bem a geometrias não esféricas dos dados por considerar multi-representantes por grupos e não apenas o centroide, podendo ser aplicado a conjuntos de dados com alta dimensionalidade. Para um conjunto de dados particionados em c agrupamentos, definese um conjunto de pontos representativos Vi = {vi1 , vi2 , ..., vir } para o agrupamento i, sendo que r representa o número de pontos de representação do agrupamento i. Os representantes de cada grupo são assim determinados: na 1a iteração escolhe-se o ponto mais distante do centro. Nas seguintes iterações escolhe-se o ponto mais distante.

(32) 12. CAPÍTULO 2. FUNDAMENTAÇÃO TEÓRICA. do ponto escolhido previamente. Isso resulta em um conjunto de pontos r que representa a periferia, ou contorno, do grupo. O critério de parada é definido empiricamente, ou seja, escolhe-se previamente o número de representantes de cada grupo (Halkidi e Vazirgiannis, 2008). Este índice de validação baseia-se na densidade intra-grupos e na separação entre os grupos, conforme a Equação 2.10. CDbw(c) = DensIntra(c) × Sep(c). (2.10). Sendo DensIntra(c) a densidade intra-grupos e Sep(c) a separação entre os grupos. A densidade intra-grupos é definida como o número de pontos que pertencem à vizinhança dos pontos que representam os grupos r. A densidade intra-grupos é alta para grupos bem separados. c. 1 DensIntra(c) = c. 1 ri. ri. ∑ ∑density(v ), c > 1 ij. (2.11). i=1 i=1. Onde: • c é o número de grupos. • ri é número de pontos representativos. • vi j é j-ésima a representação do agrupamento i. Sendo a densidade:. ni. density(vi j ) =. ∑ f (x , v ) l. ij. (2.12). l=1. Onde: • xl pertence ao i-ésimo agrupamento. • ri é número de pontos representativos. • vi j é j-ésima a representação do agrupamento i. O termo do somatório é definido da seguinte maneira:  1, se f (xl , vi j )i j = 0, se. xl − vi j ≤ stdev, caso contrario.. Aqui, stdev corresponde à média dos desvios padrões de cada um dos c agrupamentos (desvio padrão dos pontos do grupo até o centroide deste grupo)..

(33) 2.2. ÍNDICES DE VALIDAÇÃO. 13. A densidade inter-grupos é definida como a densidade nas áreas entre os grupos. Essa densidade deve ser baixa quando temos grupos compactos e bem separados.. c. DensInter(c) =. c . ∑∑ i=1 j=1. close repi − close rep j · density(ui j ), c > 1 (kstdev(i)k + kstdev( j)k). (2.13). Onde: • close repi − close rep j representam o par de pontos de representação mais próximos entre o agrupamento i e j. • ui j é o ponto médio entre este par de pontos. Sendo esta densidade: ni +n j. density(ui j ) =. ∑ f (x , u ) k. ij. (2.14). k=1. Sendo xk o vetor de entrada que pertence ao grupo i ou j. Já o termo do somatório é assim definido:  1, se kx − vk ≤ 1 × (kstdev(i)k + kstdev( j)k), 2 f (xk , ui j ) = 0, caso contrario. A separação entre agrupamentos leva em conta a distância inter-grupos e a densidade inter-grupos. c. Sep(c) =. c . ∑∑. i=1 j=1 j6=i. close repi − close rep j ,c > 1 1 + Inter den(c). (2.15). Assim, o índice de validação de agrupamentos CDbw é dado por pela equação 2.10. O número ideal de grupos é indicado quando o valor do CDbw atinge o valor máximo, independente do algoritmo utilizado para o agrupamento dos dados. Este índice adapta-se bem a grupos com as mais variadas formas geométricas, uma vez que usa vários vetores representativos para cada grupo e não somente o centroide. Na seção seguinte será mostrada a modificação no cálculo dos índices de validação de agrupamentos, adaptados para uso com os mapas de Kohonen, proposto em (Gonçalves, 2009)..

(34) 14. CAPÍTULO 2. FUNDAMENTAÇÃO TEÓRICA. 2.3. Modificação de índices de validação. Devido à alta complexidade computacional exigida no cálculo dos índices de validação de agrupamentos, Gonçalves (2009) propôs em sua Tese de doutoramento uma modificação nos cálculos dos índices de validação, para aplicá-los em conjuntos de dados de imagens de sensoriamento remoto que, por sua natureza, são bastante volumosos. O autor modificou alguns índices de validação através da quantização vetorial produzida pelo SOM. Assim, não foram utilizados os padrões originais e sim os vetores de pesos sinápticos dos neurônios do SOM nos cálculos destes índices. Desta forma, diminui-se a quantidade de dados e, consequentemente, a complexidade computacional para o cálculo do índice de validação. Para contornar possíveis diferenças de valores entre o cálculo do índice considerando todos os dados e considerando apenas os protótipos, o autor também propôs que fossem utilizados os níveis de atividade conjuntamente com os vetores de pesos sinápticos. O nível de atividade significa a quantidade de padrões de entrada que foram associados a cada protótipo pelo processo de mapeamento do SOM. A modificação proposta no cálculo dos índices pode ser compreendida através de um exemplo no cálculo de distância entre dois agrupamentos CI e C j : δi, j =. 1

(35)

(36) |Ci |

(37) C j

(38). ∑ d (x, y). (2.16). x∈Ci y∈C j.

(39)

(40) Na Equação 2.16, d (x, y) é uma medida de distância e |Ci | e

(41) C j

(42) referem-se à quantidade de elementos dos grupos Ci e C j , respectivamente. Quando a quantidade de elementos do grupo é elevada, a complexidade computacional é elevada. A Equação 2.17 mostra a modificação do cálculo através da metodologia proposta em (Gonçalves, 2009) : δSOM i, j =. 1

(43)

(44) |Ci |

(45) C j

(46). ∑.   h (wi ) · h w j · d wi , w j. (2.17). wi ∈Wi w j ∈W j. Onde Wi e W j são os conjuntos de protótipos do SOM que representam os grupos Ci e C j , respectivamente, d (x, y) é a mesma medida de distância da Equação 2.16, h (wi ) é  o nível de atividade do protótipo wi pertencente a Wi e h w j é o nível de atividade do protótipo w j pertencente a W j . Assim o cálculo da distância apresenta um custo computacional mais baixo, uma vez.

(47) 2.4. COMITÊS DE MÁQUINAS. 15. que as quantidades envolvidas, Wi e W j , são menores do que Ci e C j . Com a inclusão dos níveis de atividades h (.) dos protótipos no cálculo, obtém-se uma minimização dos erros causados pela quantização vetorial que o Mapa de Kohonen produz, já que introduz no cálculo a aproximação da densidade de pontos no espaço de entrada ora representados pelos protótipos. Na sequência, os comitês de máquinas são introduzidos, abordando aspectos relativos à geração, seleção e combinação dos componentes destes comitês.. 2.4. Comitês de máquinas. Um comitê de máquinas, ou ensemble, pode ser visto como uma coleção de redes neurais artificiais individuais, que possuem diversidade entre si e que levam à uma maior capacidade de generalização do que quando trabalhando em separado (Dietterich, 2000). Cada componente atua independentemente dos outros e gera uma solução que é combinada pelo comitê, produzindo uma única saída. A Figura 2.5 mostra a estrutura geral de um comitê de máquinas.. Figura 2.5: Estrutura de um comitê de méquinas. (Coelho, 2006) O estudo de comitês de máquinas iniciou com o trabalho de Hansen e Salamon (1990), combinando redes neurais artificiais, treinadas separadamente, conseguindo melhorar a capacidade de generalização do sistema. Um comitê de máquinas baseia-se no princípio de "dividir-para-conquistar", buscando superar o desempenho de uma máquina de aprendizado operando de modo isolado (Haykin, 2001). Os comitês de máquinas podem ser divididos em dinâmicos e estáticos. No caso dinâmico, o comitê recebe o nome de mistura de especialistas, onde a divisão de tarefas e a síntese dos especialistas são realizadas simultaneamente e de forma automática pelo algoritmo de aprendizagem (Haykin, 2001). Nos comitês estáticos cada componente apresenta uma solução para o problema e estas soluções são agregadas fornecendo um só resultado. Desta forma, há um aumento.

(48) 16. CAPÍTULO 2. FUNDAMENTAÇÃO TEÓRICA. da capacidade de generalização, diminuição da variância do modelo e maior tolerância à ruídos quando comparados ao resultado de um único componente (Haykin, 2001). Um dos requisitos básicos para o bom resultado do comitê de máquinas é que os componentes generalizem de forma diferente, pois de nada adianta combinar modelos que adotam os mesmos procedimentos e hipóteses para a solução de um problema, sendo fundamental que os erros apresentados por cada um dos componentes sejam descorrelacionados (Perrone e Cooper, 1993). Isso pode ser obtido, por exemplo, utilizando diferentes conjuntos para o treinamento ou variando os parâmetros de treinamento de cada rede neural que compõe o comitê de máquinas, entre outras maneiras.. 2.4.1. Construção de um comitê de máquinas. As etapas da construção de um comitê de máquinas são: geração de componentes, seleção dos componentes e combinação dos componentes individuais (Villanueva, 2006). Inicialmente, geram-se os componentes candidatos a participarem do comitê. Na sequência, selecionam-se os componentes candidatos que irão contribuir realmente para a melhoria do desempenho do comitê. Por fim, combinam-se as saídas de cada componente em uma única saída. Na etapa da geração de componentes é preciso considerar um baixo erro de treinamento e uma descorrelação entre os erros de cada componente. Também é necessário que haja diversidade entre os componentes, para garantir que generalizem de modo diferente. Para garantir que as redes neurais tenham diversidade entre si, pode-se adotar como estratégias: • • • •. Inicialização aleatória dos pesos para cada componente. Variação na arquitetura da rede neural. Variação do algoritmo de treinamento. Re-amostragem dos dados.. No caso da re-amostragem dos dados duas técnicas são bastante utilizadas: Bagging e Boosting. Bagging (Breiman, 1996) é uma técnica de geração de conjuntos distintos de treinamento a partir de um único conjunto, através de re-amostragem com reposição. Por exemplo, considere um único conjunto de treinamento com N amostras, para treinar m componentes. O objetivo é construir m conjuntos de treinamento com N amostras cada um. Com uma distribuição de probabilidade uniforme para seleção das amostras a.

(49) 2.4. COMITÊS DE MÁQUINAS. 17. partir do conjunto fonte, teremos algumas amostras selecionadas mais de uma vez, pois há reposição. Há a possibilidade de os componentes não generalizarem de forma satisfatória, mas a combinação destes modelos pode resultar em uma generalização melhor do que cada componente individual. Boosting (Schapire, 1990) é um método em que os conjuntos de treinamento são gerados através de uma amostragem não uniforme, diferentemente do método Bagging. A probabilidade de uma dada amostra ser escolhida depende da contribuição desta para o erro dos componentes já treinados. Tomando como exemplo um problema de classificação, uma amostra que não seja corretamente classificada pelos componentes já treinados terá uma maior probabilidade de ser selecionada do que uma amostra que seja corretamente classificada. Assim, esta amostra terá uma chance maior de compor o conjunto de treinamento do próximo componente a ser treinado. Um dos problemas desta técnica é a necessidade de treinamento sequencial dos componentes do comitê, uma vez que as probabilidades devem ser redefinidas de acordo com o comportamento dos componentes já treinados. A versão mais popular do algoritmo de Boosting é chamada AdaBoost, na qual cada componente é treinado sequencialmente e a distribuição dos dados de treinamento é feita levando-se em consideração os erros do componente treinado no passo imediatamente anterior. Considerando a etapa da seleção de componentes, pode ser que nem todos os componentes contribuam para o desempenho global do comitê. Assim, é preciso identificar e descartar estes componentes, uma vez que a inclusão de todos eles no comitê pode degradar sua performance (Zhou et al., 2002). Uma maneira de selecionar os componentes é através de alguma medida de erro, por exemplo. Dois são os métodos mais citados na literatura para seleção de componentes: o construtivo e o da poda. O método construtivo pode ser descrito desta maneira: os M candidatos a comporem o comitê são ordenados com base em algum critério, por exemplo medida de erro, que irá mensurar o desempenho individual de cada componente. O que tiver melhor desempenho individual é inserido no comitê. O próximo candidato (o de segundo melhor desempenho individual), é adicionado ao comitê. Se o desempenho do comitê de máquinas melhorar, o comitê passa a ter dois componentes. Caso contrário, o elemento recém-inserido é removido. Este processo se repete então para todos os demais candidatos restantes na lista ordenada gerada inicialmente..

(50) 18. CAPÍTULO 2. FUNDAMENTAÇÃO TEÓRICA. O método da poda funciona de modo oposto ao método construtivo. Os M candidatos também são ordenados a partir de seu desempenho individual em relação à medida de erro, por exemplo. Todos os candidatos são inseridos no comitê. O candidato com pior performance individual é removido e o comitê de máquinas tem seu desempenho avaliado novamente. Se ocorrer uma melhora de seu desempenho em relação à configuração anterior, o comitê passa a contar então com M-1 componentes. Senão, o candidato retirado volta ao comitê e o processo se repete para os demais candidatos, exceto o de melhor desempenho individual, que nunca é removido do comitê de máquinas. A seleção de componentes é realizada basicamente para maximizar a generalização do modelo, descartando componentes que não contribuam para o desempenho do comitê. De acordo com Greene et al. (2004), a diversidade entre os componentes é necessária, porém não é suficiente para gerar uma solução melhor do que um único componente se não for utilizado um método de integração adequado para combinar estes componentes. De acordo com Villanueva (2006), a combinação dos componentes para obter o resultado final do comitê de máquinas pode ser baseada em técnicas de votação simples, para tarefas de classificação de dados ou média simples ou ponderada, para tarefas de regressão de dados. No caso de agrupamentos de dados, onde não há conhecimento à priori, uma opção é empregar a matriz de co-associação. Esta combinação dos componentes é feita através da chamada função consenso. Ela deve ser escolhida cuidadosamente, pois influencia diretamente o resultado do comitê de máquinas.. 2.4.2. Algumas aplicações de comitês de máquinas. É possível encontrar variações nas implementações dos métodos de comitês de máquinas e suas aplicações em diversas áreas do conhecimento: Wang (2006) empregou comitês para a classificação e predição de dados de expressão de genes, para a correta e confiável classificação de tumores, o que é essencial para o sucesso do tratamento. Outra aplicação médica é encontrada em Krawczyk et al. (2012), que utilizou comitês para reconhecimento não invasivo de fibrose hepática. Greene et al. (2004) também estudou as técnicas de comitês aplicadas em diagnósticos médicos. Em Villanueva (2006) e Chitra e Uma (2010) foram empregados comitês de máquinas para predição de séries temporais, obtendo um ganho significativo quando comparado com o uso de um único modelo preditor. Curiac e Volosencu (2012) utilizou comitês de classificadores para detecção de anomalias em redes de sensores sem fio. Comitês de máquinas também foram aplicados em previsão de tempo, com resultados satisfatórios (Maqsood et al., 2004)..

(51) 2.4. COMITÊS DE MÁQUINAS. 19. A abordagem de comitês demonstrou ser uma forma eficaz para aumentar a precisão e robustez de reconstrução de sinal de sensores em uma planta de geração de energia nuclear (Baraldi et al., 2010). Em seu trabalho, Coelho (2006), propôs uma metodologia de criação de comitês de máquinas para problemas de classificação, onde os componentes são redes neurais artificiais do tipo perceptron multicamadas. Para que fossem gerados bons candidatos a comporem o comitê, atendendo a critérios de desempenho e de diversidade, foi aplicada uma meta-heurística populacional imuno-inspirada, caracterizada por definir automaticamente o número de indivíduos na população a cada iteração, promover diversidade e preservar ótimos locais ao longo da busca. Os resultados obtidos indicam a validade da metodologia de criação de comitês de máquinas. Em Naldi (2011), o autor investigou as técnicas de combinação de agrupamentos, através de algoritmos evolutivos e de índices de validação aplicadas na seleção de agrupamentos para combinação e na mineração distribuída de dados, conseguindo partições de boa qualidade e com bom desempenho computacional. No trabalho de Ferreira (2012), o método para construção de comitês é baseado em rotação, que utiliza a técnica de extração de características da análise de componentes principais (PCA) como artifício para rotacionar os eixos formados pelos subgrupos de atributos para construção de comitês diversos e acurados. Até aqui foram relatados alguns trabalhos utilizando a técnica de comitês de máquinas, para demonstrar a diversidade e exito na aplicação desta técnica em diversas áreas do conhecimento. Neste trabalho são empregados comitês de Mapas de Kohonen. A seguir são descritos apenas alguns trabalhos para ilustrar o emprego do método em variadas áreas. Em Jiang e Zhou (2004), um método de segmentação de imagens, baseado em um conjunto de redes SOM é proposto. Os pixels são agrupados de acordo com a cor e características espaciais em cada rede SOM. Após combinam-se os resultados de agrupamento para dar a segmentação final. Os resultados experimentais mostram que o método proposto apresenta um desempenho melhor do que métodos baseados em segmentação de imagem. Georgakis et al. (2005) comparou um comitê de máquinas de SOM com o SOM tradicional em organização e recuperação de documentos. Como critério para combinação dos mapas, foi utilizada a distância euclidiana entre os neurônios, para determinar quais neurônios estavam alinhados, possibilitando a fusão. Os mapas foram avaliados dois a dois, até que todos os mapas foram combinados em um só. O comitê de SOM obteve um melhor resultado do que a aplicação tradicional. Para esta metodologia, todos os mapas.

(52) 20. CAPÍTULO 2. FUNDAMENTAÇÃO TEÓRICA. devem ter o mesmo tamanho. No trabalho de Saavedra et al. (2007), a fusão dos neurônios foi denominada FusionSOM e baseia-se nos polígonos de Voronoi - regiões do espaço de entrada às quais os neurônios do mapa de Kohonen podem ser associados, ou seja, para os neurônios serem combinados, precisam representar a mesma região do espaço de entrada. O trabalho de Low et al. (2005) apresenta uma abordagem de comitê chamada Mapa de Kohonen Extendido e Cooperativo (Cooperative EKM - Extendend Kohonen Maps) com mapeamento indireto aplicado a movimentação de robôs. No trabalho de DeLooze (2006) um conjunto de redes SOM são utilizadas para identificar e caracterizar adequadamente ataques a computadores. Tsai (2014) desenvolveu modelos de previsão de dificuldades no mercado financeiro, baseados em comitê de SOM, obtendo resultados melhores do que modelos individuais. Em Fustes et al. (2013) foi utilizado comitê de SOM, para análise não supervisionada de outliers, que permite a descoberta de conhecimento em bancos de dados astronômicos, como a missão Gaia, da agência espacial européia que vai observar com uma precisão posições, distâncias, movimentos do espaço, e muitas propriedades físicas de mais de um bilhão de objetos em nossa galáxia e além.. 2.5. Resumo. Neste capítulo foram apresentados os principais conceitos que serão utilizados neste trabalho: mapas auto organizáveis de Kohonen, índices de validação e comitês de máquinas. Os mapas auto organizáveis de Kohonen são uma rede neural artificial que têm demonstrado bons resultados em tarefas de classificação, agrupamento e visualização de conjuntos de dados multidimensionais. Os índices de validação de agrupamentos tem por finalidade quantificar o quanto um algoritmo pode ser eficiente em agrupar dados. Os comitês de máquinas constituem uma maneira para lidar com grandes conjuntos de dados, produzindo bons resultados em relação ao custo computacional envolvido. No próximo capítulo serão detalhadas as abordagens desenvolvidas neste trabalho para a fusão de mapas de Kohonen..

(53) Capítulo 3 Materiais e Métodos. Para projetar um comitê de máquinas é preciso definir três parâmetros importantes: como obter a diversidade entre os componentes do comitê; como selecionar os componentes que farão parte do comitê e como agregar, ou combinar, o resultado de cada componente. Neste capítulo serão apresentadas as metodologias para a investigação da solução do tema proposto por este trabalho através de duas Seções: fusão de mapas de tamanhos iguais e fusão de mapas de tamanhos diferentes.. 3.1. Fusão de mapas de tamanhos iguais. O método consiste na fusão de mapas de Kohonen formados a partir de subconjuntos do conjunto de dados, criados por re-amostragem (Bagging). Como descrito na Seção 2.4.1, Bagging e Boosting são duas técnicas bastante empregadas para a re-amostragem de dados. Neste trabalho foi escolhida a técnica de Bagging por ser de implementação e execução mais simples. Uma visão geral do processo é mostrado na Figura 3.1. A fusão ocorre entre dois neurônios que têm a mínima distância Euclidiana entre eles, indicando que eles representam a mesma região do espaço de entrada.. Figura 3.1: Visão geral do processo. Fonte: Elaborada pelo autor..

(54) 22. CAPÍTULO 3. MATERIAIS E MÉTODOS. O método de re-amostragem foi utilizado para gerar subconjuntos a partir do conjunto de treinamento, com probabilidade uniforme e reposição. O SOM foi aplicado a cada subconjunto gerado e todos os mapas foram segmentadas pelo algoritmo k-means. Os mapas segmentados são os candidatos a comporem o comitê de máquinas.. 3.1.1. Seleção e dos candidatos. De acordo com Zhou et al. (2002), não se deve utilizar todos os componentes, pois isso pode afetar o desempenho do comitê. Assim, a maneira de selecionar estes candidatos será através de índices de validação de agrupamentos modificados, propostos por Gonçalves (2009), a saber: CDbw, Calinski-Harabasz, Dunn generalizado, PBM e Davies-Bouldin. Estes índices serão a função consenso do comitê. O método de seleção é baseado na ordenação dos componentes pelos índices de validação e pode ser descrito da seguinte maneira: os candidatos a compor o comitê são ordenados com base nos valores dos índices de validação, do melhor para o pior. Assim, temos uma medida de desempenho individual de cada componente. O processo de seleção dos mapas de Kohonen desenvolvido neste trabalho é ilustrado pela Figura 3.2. Neste exemplo os mapas foram ordenados pelo índice de validação de agrupamentos CDbw e os valores foram normalizados no intervalo [0, 1]. O mapa com o melhor índice CDbw (0,5369), letra (a) na Figura, é o primeiro componente do comitê. O mapa com o segundo melhor índice CDbw (0,4386), letra (b) na figura, é primeiro candidato a compor o comitê. A combinação entre eles resultou em um mapa que, ao ser segmentado, alcançou um valor para o índice CDbw igual a 0,7207, que é maior do que o mapa melhor ordenado anteriormente. Desta forma, o segundo mapa é mantido no comitê, letra (c) na figura. Caso o valor do índice do mapa combinado fosse menor do que o índice do primeiro mapa, o segundo mapa seria retirado do comitê e o terceiro mapa seria testado. Este processo de seleção prossegue até que todos os mapas disponíveis sejam testados. As equações de fusão, as abordagens e a estrutura geral do experimento fatorial são descritas a seguir.. 3.1.2. Equações de fusão. Foram testadas três diferentes equações para a fusão dos neurônios dos mapas de Kohonen. A primeira, Equação 3.1, é uma média aritmética simples entre os vetores de.

(55) 3.1. FUSÃO DE MAPAS DE TAMANHOS IGUAIS. 23. Figura 3.2: Seleção e combinação dos mapas. Fonte: Elaborada pelo autor. peso dos neurônios as serem fundidos. wc =. wi + w j 2. (3.1). onde wc representa cada neurônio do mapa combinado; wi e w j são os neurônios dos mapas a serem combinados. A segunda equação é uma média ponderada entre os pesos dos neurônios e seus respectivos hits. O propósito de incluir os hits é evitar a influência de neurônios sem hits no resultado da fusão, como mostra a Equação 3.2 wc =. wi · hi + w j · h j hi + h j. (3.2). onde hi e h j são os hits de cada neurônio de cada mapa. Através da Equação 3.3, a terceira equação testada, analisamos se o índice de validação de agrupamento influencia na melhora da acurácia do algoritmo. wc =. wi · hi ·V Ii + w j · h j ·V I j hi ·V Ii + h j ·V I j. (3.3). onde V Ii e V I j são os valores dos índices de validação para cada um dos mapas a serem combinados..

(56) 24. 3.1.3. CAPÍTULO 3. MATERIAIS E MÉTODOS. Experimento fatorial. Foi definido um experimento fatorial para avaliar o algoritmo proposto para a fusão dos mapas. Foram avaliados três tamanhos de mapas: o 10x10, o 15x15 e o 20x20. Através da re-amostragem, foram gerados dez conjuntos de dados, com a seguinte quantidade de subconjuntos: 10, 20, 30, 40, 50, 60, 70, 80, 90 e 100 subconjuntos. Cada um dos subconjuntos foi criado com três diferentes porcentagens de Bagging, sendo 50%, 70% e 90% dos dados de treinamento. Isto significa que para cada tamanho de mapa, há dez diferentes subconjuntos e três valores de porcentagem da re-amostragem, resultando em 900 mapas. Assim, no primeiro experimento o mapa tem o tamanho de 10x10, com 10 subconjuntos gerados pela reamostragem com uma porcentagem de 50% dos dados de treinamento, como mostra a Figura 3.3.. Figura 3.3: Estrutura do experimento fatorial. Fonte: Elaborada pelo autor.. 3.1.4. Abordagens. A ordenação dos mapas foi baseada nos cinco índices de validação de agupamentos descritos na Seção 2.2 e ainda o MSQE (Mean Square Quantization Error). O MSQE indica o quão bem os neurônios do mapa se aproximam dos dados do conjunto de entrada (Corchado e Baruque, 2012), sendo utilizado para avaliar a qualidade da adaptação do mapa aos dados (Saavedra et al., 2007)..

(57) 3.1. FUSÃO DE MAPAS DE TAMANHOS IGUAIS. 25. Nesta pesquisa, foram testadas quatro abordagens para ordenar as performances dos mapas e para estabelecer os critérios de combinação ou fusão: Abordagem 1: Mapas ordenados pelo índice de validação e combinados pelo critério da melhora do MSQE. Abordagem 2: Mapas ordenados pelo MSQE e combinados pelo critério da melhora do índice de validação. Abordagem 3: Mapas ordenados pelos índice de validação e combinados pelo critério da melhora do índice de validação. Abordagem 4: Mapas ordenados pelo MSQE e combinados pelo critério da melhora do MSQE. Na primeira abordagem, os mapas são ordenados por cada um dos cinco índices de validação, mas a fusão é controlada pela melhora do MSQE do mapa fundido. Na segunda abordagem, os mapas foram ordenados pelo MSQE e o processo de fusão foi controlado pela melhora do índice de validação de agrupamento do mapa fundido. Na terceira abordagem, os mapas foram ordenados por cada índice de validação de agrupamento e a fusão foi controlada pela melhora destes índices. É importante destacar que , por exemplo, se os mapas foram ordenados de acordo com o índice Davies-Bouldin, a fusão será controlada pela melhoria deste índice. Finalmente, na quarta abordagem os mapas foram ordenados pelo MSQE e fundidos pelo critério de melhoria do MSQE. A Figura 3.4 mostra o que foi descrito.. Figura 3.4: Abordagens para a fusão dos mapas. Fonte: Elaborada pelo autor..

(58) 26. CAPÍTULO 3. MATERIAIS E MÉTODOS. 3.1.5. Algoritmo proposto. O algoritmo proposto foi aplicado em cada uma das combinações mostrada na Figura 3.3, de acordo com as abordagens ilustradas na Figura 3.4. O algoritmo é descrito a seguir: Algoritmo 1: F USÃO DE MAPAS DE TAMANHOS IGUAIS Entrada: Conjunto de dados, tamanho do mapa, número de subconjuntos, porcentagem da re-amostragem Saída: Mapas fundido 1 início 2 Gerar, através da re-amostragem (Bagging), os subconjuntos a partir do conjunto de treinamento 3 Aplicar o SOM nos subconjuntos gerados, resultando em Ni (i = 1, 2, ...) mapas com a mesma dimensão 4 Segmentar os mapas com o algoritmo k-means 5 Calcular os índices de validação de agrupamentos e o MSQE para cada Ni (i = 1, 2, ...) mapa e ordená-los de acordo com os valores obtidos, do melhor para o pior 6 Fundir o melhor mapa (mapa base - o que possuir o melhor valor para o índice de validação de agrupamento ou MSQE) com o próximo melhor mapa, de acordo com a ordenação, seguindo as Equações 3.1, 3.2 e 3.3 7 Calcular o índice de validação de agrupamento ou o MSQE do mapa fundido 8 Se 9 Há melhoria no índice de validação de agrupamento ou MSQE 10 Então 11 O mapa resultante da fusão torna-se o mapa base, retorne ao PASSO 6 até que todos os mapas sejam fundidos; 12 Senão 13 A fusão é descartada, retorne ao PASSO 6 até que todos os mapas sejam fundidos; 14. fim. Os principais parâmetros do SOM foram: grade hexagonal, vizinhança gaussiana, raio inicial de treinamento igual a 4, raio final de treinamento igual a 1 e 2000 épocas de treinamento. Devido à inicialização aleatória, o algoritmo k-means foi repetido dez vezes e foi selecionado o resultado que apresentou a menor soma dos quadrados dos erros..

(59) 3.2. FUSÃO DE MAPAS DE TAMANHOS DIFERENTES. 3.2. 27. Fusão de mapas de tamanhos diferentes. Na literatura, até o momento, não foram encontrados métodos que possam resolver o problema de fusão de mapas de Kohonen com diferentes tamanhos. A complexidade está no fato de que, em mapas de tamanhos diferentes, teremos diferenças topológicas. Mapas considerados pequenos têm neurônios vencedores (BMU) com grande número de hits, isto é, vários padrões de entrada associados a eles. Por outro lado, em mapas considerados grandes a vantagem é a distância elevada entre os BMUs, o que possibilita melhor visualização do mapa. Neste trabalho foi desenvolvido um novo método para combinar as saídas de mapas de Kohonen com tamanhos diferentes em uma única saída. O objetivo é melhorar a acurácia do comitê em relação à acurácia de um único mapa de Kohonen. Para a fusão de mapas com tamanhos diferente novamente foram investigadas as possibilidades de ordenação e fusão de acordo com o que foi estabelecido para a fusão de mapas de tamanhos iguais (Subseção 3.1.3). O comitê é composto por mapas de diferentes tamanhos, derivados de um Mapa Base, isto é, o mapa que será melhorado através de fusões consecutivas com outros mapas de tamanhos diferentes. Para determinação do tamanho do Mapa Base foi utilizada a Equação 3.4, definida em Kohonen (1982), onde as dimensões x e y (linhas e colunas, respectivamente) do mapa devem ser proporcionais aos dois maiores autovalores da matriz de covariância dos dados: λ1 e λ2 : s λ1 x ≈ (3.4) y λ2 O Mapa Base é o primeiro componente do comitê e os mapas restantes são candidatos a comporem o comitê. Estes mapas são organizados de acordo com a performance obtida (MSQE e os cinco índices de validação de agrupamentos). Os mapas são combinados aos pares acordo com as três Equações de fusão: 3.1, 3.2 e 3.3. Assim como na abordagem para fusão de mapas de mesmo tamanho, apresentada na Seção 3.1, é preciso identificar e retirar do comitê os componentes que não contribuem para o aumento do desempenho do comitê (Zhou et al., 2002). Deste modo, o processo de seleção dos componentes é o mesmo que foi descrito para mapas de tamanhos iguais (ver Figura 3.2), iniciando com o Mapa Base sendo combinado com o mapa que apresenta a melhor performance entre os outros mapas. Se a performance resultante da combinação dos mapas for melhorada em relação à performance do mapa base, a combinação destes mapas é mantida. Caso contrário, a combinação destes dois.

Referências

Documentos relacionados

A presente investigação teve como objetivo geral o estudo dos fatores de risco e de proteção internos e externos utilizados perante a violência social, nomeadamente o bullying

O presente capítulo foca-se num tipo de resíduo proveniente do sector da construção civil – Resíduo de Construção e Demolição (CDW) – referindo-se as suas

Mas apesar do reconhecimento dos pais sobre os benefícios do projeto na manutenção da saúde e da prevenção de obesidade em seus filhos, relatos apontam para a necessidade

Elaborou-se então, com o software Microsoft Excel, uma folha de cálculo em que partindo dos dados da matriz dos tempos de deslocação e dos dados relativos ao ano de

O mecanismo de competição atribuído aos antagonistas como responsável pelo controle da doença faz com que meios que promovam restrições de elementos essenciais ao desenvolvimento

Assim, propusemos que o processo criado pelo PPC é um processo de natureza iterativa e que esta iteração veiculada pelo PPC, contrariamente ao que é proposto em Cunha (2006)

Social support, from friends and family, seems to play a relevant role in mitigating the impact of intimate partner violence on the physical and mental health of

Firstly, an analytical solution based on the Reynolds theory of lubrication to the hydrodynamic pressure distribution along the pad will be presented, considering a simplied