• Nenhum resultado encontrado

The systemic risk of energy markets

N/A
N/A
Protected

Academic year: 2021

Share "The systemic risk of energy markets"

Copied!
29
0
0

Texto

(1)

The Systemic Risk of Energy Markets

Diane Pierret

Université Catholique de Louvain & NYU

The Economics and Econometrics of Commodity Prices,

Rio de Janeiro 2012

(2)

Systemic Risk

Systemic risk: the risk of the financial sector as a whole being in distress

and its spillover to the economy at large

Systemic risk is related to

1

dependence, causality, externality, interconnectedness, spillover effects

2

market integration, contagion, commonality

3

shocks, crises, extreme events

Does this exist in energy markets?

How to measure it?

How does this affect the rest of the economy?

(3)

Energy Systemic Risk

Energy Systemic Risk: the risk of an energy crisis raising the prices of all

energy commodities with negative consequences for the real economy.

increased dependence of the economy on energy

increased energy market integration

extreme energy market shock from the supply side

negative consequences for the energy sector and the rest of the

economy

Energy Security: ”the uninterrupted availability of energy sources at an

affordable price.” (IEA)

(4)

Related literature

This project relates to the literature on

Past energy crises and the impact of energy prices on the economy

(Hamilton, 1983)

Systemic Risk

Network (Nier et al. (2007), Battiston et al. (2009), Billio et al. (2010), Hautsch et al. (2011), Diebold and Yilmaz (2011))

Co-movements (Billio et al. (2010), Kritzman et al. (2011), Acharya et al. (2010), Brownlees and Engle (2011))

Energy prices co-movements

Cointegration and causality in the mean (Bunn and Fezzi (2008)) Multivariate Volatility (Chevallier (2012), Bauwens et al. (2012)) Copulae (Benth and Kettler (2010), Boerger et al. (2009), Gronwald et al. (2011))

(5)

Outline

1

The Energy Systemic Risk Measure: EnSysRISK

2

Econometric methodology and application

Causility in means and variances

Factor model and tail expectations

3

EnSysRISK and the impact on the economy

(6)

Outline

1

The Energy Systemic Risk Measure: EnSysRISK

2

Econometric methodology and application

Causility in means and variances

Factor model and tail expectations

3

EnSysRISK and the impact on the economy

(7)

EnSysRISK

The conditional MES of an energy asset (Acharya et al. (2010), Brownlees and Engle (2011)) is given by

MESit=Et−1(rit|energy crisis)

Corresponding systemic prices are derived from past price levels syspriceit=pit−1∗ exp(MESit)

EnSysRISK: the total cost of an energy asset to the non-energy sector during an energy crisis

EnSysRISKit=max(0,syspriceit∗ wit),

where wit is the quantity exposure of the economy to asset i at time t.

For an energy contract with maturity and delivery period ν, the exposure at time t is

wit(ν) = ςiEt−1(finconsτ− invτ)for τ ∈ [t + ν;t + 2ν − 1]

(8)

The MES of energy markets (1/2)

Energy crisis: an extreme positive energy market shock from the supply side MESit(C) = Et−1(rit|rEnM,t>C, rM,t<0),

where rEnM,t is the energy market return, rM,t is the return of the non-energy

sector, and C represents the VaR of the energy market at (1 − α)%. An extreme increase in energy prices...

Not only oil prices: “While the security of oil supplies remains important, contemporary energy security policies must address all energy sources” (IEA 2011)

Integration dimensions: underlying energy (oil, coal, natural gas, electricity, carbon), maturity/delivery, region

Futures prices

(9)

Phelix Baseload index = average of 24 day-ahead spot prices 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 100 200 300 400 500

EEX - Phelix Base Hr.01-24 E/Mwh EEX - Phelix Peak Hr.09-20 E/Mwh

Futures are “insurance contracts” providing protection against the price uncertainty in the spot market

!"#$ %$ &'

(' Spot and future trading in the EEX

!"#$%&'(%)* !"#$%(%)* )*+,-./0/,*121#3 %4/,561$740 89/6: ;4+< +,-./%%0)*1 &%2 34%5 =/+,0*,-./0/,*1>1#3 #4?0@-./0/,*1(1#3 )*+,-./0/,*121#3 #4?0@-./0/,*1A1#3 %4/,561$7401 8B*55:

(10)

The MES of energy markets (2/2)

Methodology: the conditional MES as a function of mean, volatility and tail expectation

MESit(C) = Et−1(µit+σituit|rEnMt>C, rMt<0)

=µit+σitEt−1(uit|rEnMt>C, rMt<0)

where µit and σit2 are the conditional mean and variance of asset return i and

uit= (rit− µit)/σit are the standardized residuals.

Separate causality from common factor exposure: Causality in µit and σit

Heteroskedasticity and causality are removed to concentrate on the ’pure’ commonality or contagion phenomenon (Forbes and Rigobon (2002), Billio and Caporin (2010))

Common factors in standardized residuals: uit=f (yt,ζit)

(11)

Outline

1

The Energy Systemic Risk Measure: EnSysRISK

2

Econometric methodology and application

Causility in means and variances

Factor model and tail expectations

3

EnSysRISK and the impact on the economy

(12)

EEX futures, energy spot and DAX industrial indices

10 EEX futures

Electricity: Phelix financial futures(M, Q, Y maturity)

Natural gas: Gaspool physical futures(M, Q, Y maturity)

Coal: ARA financial futures(M, Q, Y maturity)

EU emission allowances: EUA financial futures(Y maturity)

3 energy spot indices highly correlated to EEX futures returns Brent crude oil

European coal EUA

1 DAX industrial index (energy consumers) = non-energy index Market areas

NetConnect Germany (NCG): · Open Grid Europe GmbH · Bayernets GmbH · Eni Gas Transport Deutschland · GRTgaz Deutschland GmbH · GVS Netz GmbH

· Thyssengas GmbH (planned in 2nd quarter 2011) GASPOOL:

· Gasunie Deutschland · Ontras – VNG Gastransport GmbH · Wingas Transport GmbH & Co. KG Title Transfer Facility (TTF): (planned in 1st quarter 2011) · Gas Transport Services B. V.

Active trading participants on the EEX Natural Gas Market

22

c o n n e c t i n g m a r k e t s

Natural Gas

Market Areas

EEX offers trading in natural gas on the Spot Market for the NetConnect Germany, GASPOOL and TTF (planned for 1st quarter 2011) market areas. On the Derivatives Market gas trading transactions can be

concluded in the NCG and GASPOOL market areas.

Spot Market Derivatives Market

Trading Participants

EEX has been recording a continued positive trend as regards the number of trading participants: At the end of the year 2010 the number of trading participants in gas trading had increased to a total of 97 comparing with 76 companies at the beginning of the year. Thus, EEX is the gas exchange in Continental Europe with the highest number of trading participants.

60 50 40 30 20 10 0 1/2010 2/2010 3/2010 4/2010 36 39 46 48 26 26 27 22 Source: EEX 10 / 27

(13)

Outline

1

The Energy Systemic Risk Measure: EnSysRISK

2

Econometric methodology and application

Causility in means and variances

Factor model and tail expectations

3

EnSysRISK and the impact on the economy

(14)

Price series

MPhelix (EUR/MWh) 2008 2010 2012 25 50 75 100 Source: Datastream

MPhelix (EUR/MWh) QPhelix (EUR/MWh)

2008 2010 2012

25 50 75

100 QPhelix (EUR/MWh) YPhelix (EUR/MWh)

2008 2010 2012

25 50 75

100 YPhelix (EUR/MWh) MGaspool (EUR/MWh)

2008 2010 2012 10 20 30 MGaspool (EUR/MWh) QGaspool (EUR/MWh) 2008 2010 2012 20 30

40 QGaspool (EUR/MWh) YGaspool (EUR/MWh)

2008 2010 2012

20 30 40

YGaspool (EUR/MWh) MARA (EUR/ton)

2008 2010 2012

50 100

150 MARA (EUR/ton) QARA (EUR/ton)

2008 2010 2012 50 100 150 QARA (EUR/ton) YARA (EUR/ton) 2008 2010 2012 75 100 125

150 YARA (EUR/ton) YEUA (EUR/ton CO2e)

2008 2010 2012

10 20 30

YEUA (EUR/ton CO2e) MLCX EUA spot (EUR/ton CO2e)

2008 2010 2012

100 150 200

MLCX EUA spot (EUR/ton CO2e)

Brent crude oil (EUR/barrel)

2008 2010 2012

25 50 75

100 Brent crude oil (EUR/barrel)

MLCX European coal spot (EUR/ton)

2008 2010 2012

100 200 300

MLCX European coal spot (EUR/ton) DAX Industrial (EUR)

2008 2010 2012

2000 3000 4000

DAX Industrial (EUR)

(15)

Cointegration and Granger-causality in the mean

Augmented Vector Error Correction Model (VECM) for the joint mean of the

(n × T ) matrix of returns rt capturing cointegration, autocorrelation, causality,

and seasonality rit=πiη�ln(pt−1) + K

k=1 δ� ikrt−k+ M

m=1 θ� imxt−m+ϕi�qt+εit

where η are the cointegrating vectors,

πi are error-correction parameters,

δik is a (n × 1) vector of autocorrelation and Granger-causal parameters of order k,

xt−mare exogenous variables lagged by m days and

qt are deterministic (seasonal) factors.

Similar to Bunn and Fezzi (2008), except that all energy products are here considered to be endogenous variables (as part of the ’system’).

(16)

Multiplicative Causality GARCH model

Multiplicative Causality GARCH model for the variance with a GARCH component and an interaction component

εit=σituit=�φitgituit where git= (1 − αii− βi−γii 2) +αii � ε2 it−1 φit−1 � +βigit−1+γii� ε 2 it−1 φit−1 � Iit−1<0}, φit=f (u1t−1, ...,ui−1,t−1,ui+1,t−1, ...,unt−1)li(t),

Iit−1<0}is a dummy variable equal to one when the past shock of asset i is

negative, and li(t) is a deterministic function of time.

In this application: φit=ciexp � n

j=1,j�=i (ϑijujt−1+αij|ujt−1|) + κi�dt �

where dt are deterministic terms including seasonal dummies.

(17)

Networks of Causal Relationships

Causal relationships reflect physical relationships in the energy market (subsitution, merit-order) and spillover effects

Mean Network

Variance Network

(18)

Multiplicative Causality GARCH Variances

Log-likelihood GARCH = -27335 Log-likelihood MC-GARCH = -27059 2008 2009 2010 2011 10 20 30 MC-GARCH Electricity GARCH Electricity 2008 2009 2010 2011 10 20

MC-GARCH Natural Gas GARCH Natural Gas

2008 2009 2010 2011 10 20 MC-GARCH Coal GARCH Coal 2008 2009 2010 2011 10 20 30 MC-GARCH Carbon GARCH Carbon 2008 2009 2010 2011 10 20 30 MC-GARCH Brent GARCH Brent 2008 2009 2010 2011 25 50 MC-GARCH DAX GARCH DAX 16 / 27

(19)

Outline

1

The Energy Systemic Risk Measure: EnSysRISK

2

Econometric methodology and application

Causility in means and variances

Factor model and tail expectations

3

EnSysRISK and the impact on the economy

(20)

Factor model: Dynamic PCA

Dynamic PCA based on the daily correlation matrices estimated with the Dynamic Conditional Correlation (DCC) model

Ht=DtRtDt=Dt�AtΛtA�t+Rζt �

Dt

where Dt=diag(σ1t, ...,σnt), Atis a matrix of s eigenvectors associated with the s largest eigenvalues that are contained in the diagonal matrix Λt=diag(λ1t,λ2t, ...,λst)with λ1t≥ λ2t≥ ... ≥ λst, s ≤ n and Rζt is the correlation matrix of idiosyncratic terms ζt.

Standardized residuals uit= (rit− µit)/σit becomes a function of the first s

dynamic principal components and idiosyncratic terms uit=

s

j=1

aijtyjt+ζit

where aijt is the element of the eigenvector associated with asset i and principal

component yjt extracted from Rt, and ζit=uit− ∑sj=1aijtyjt.

(21)

Restrictions on the dynamic PCA

The energy crisis condition is defined by 2 factors:

Et−1(uit|energy crisis) := Et−1(uit|rEnMt>C, rMt<0)

the return on the non-energy sector: rMt� yMt=y1t=a�1tut

the energy market return: rEnMt� yEnMt=y2t=a�2tut

Restricted PCA (Ng et al. (1992)): the 1st component is restricted to be the non-energy return (DAX industrial index)

maxa1ta1t� Rta1t

s.t. a�

1ta1t=1, ai1t=0 ∀t,∀i �= DAX industrial

The other dynamic components are mutually orthogonal and orthogonal to the industrial component

maxajta�jtRtajt

s.t. a�

jtajt=1, a�jtalt=0 ∀t,∀l �= j

(22)

Energy Market Integration

The contribution of the energy trend component (λ

EnM,t

/

nj=1

λ

j,t

) as a

dynamic measure of energy market integration (Billio et al. (2010),

Kritzman et al. (2011))

2009 2010 2011 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 LB bankruptcy

Fukushima plant outage

BP’s rig explosion

Russia-Ukraine NG dispute

Highest crude oil price

Energy trend component contribution (%)

Decreasing crude oil prices

(23)

Energy Systematic Risk

The correlation with the energy trend component (λ

EnMt

a

2i,EnMt

) as a

measure of energy systematic risk

2009 2010 2011

0.6 0.7

0.8 Cor(Electricity, Energy Market)

2009 2010 2011

0.6 0.7

0.8 Cor(Natural Gas, Energy Market)

2009 2010 2011

0.7 0.8

0.9 Cor(Coal, Energy Market)

2009 2010 2011

0.4 0.6

0.8 Cor(Carbon, Energy Market)

2009 2010 2011

0.2 0.4 0.6

Cor(Brent, Energy Market)

(24)

Tail expectations

The non-energy market return: rMt� yMt=y1t=a�1tut

The energy market return: rEnMt� yEnMt=y2t=a�2tut

The tail expectation Et−1(uit|energy crisis) is approximated by s

j=1

[aijtEt−1(yjt|yEnMt>C, yMt<0)] + Et−1(ζit|yEnMt>C, yMt<0)

A nonparametric estimator of tail expectations is

ˆ E(yjt|yEnMt>C, yMt<0) = ∑T τ=1yjτΦ �� yEnMτ √λ EnMτ− C √λ EnMt � h−1�I (y Mτ<0) ∑T τ=1Φ �� yEnMτ √λ EnMτ− C √λ EnMt � h−1 � I (yMτ<0) where Φ(·) is the Gaussian cummulative distribution function. The same estimation procedure applies to E(ζit|yEnMt>C, yMt<0).

(25)

The conditional MES of energy assets

MESit(C) = µit+σitEt−1 � s

j=1 aijtyjt+ζit|yEnMt>C, yMt<0 � 2009 2010 2011 2.5 5.0 7.5 MES Electricity 2009 2010 2011 2.5 5.0

MES Natural Gas

2009 2010 2011 2.5 5.0 7.5 MES Coal 2009 2010 2011 2.5 5.0 7.5 MES Carbon 2009 2010 2011 0.0 2.5 5.0 MES Brent 23 / 27

(26)

Outline

1

The Energy Systemic Risk Measure: EnSysRISK

2

Econometric methodology and application

Causility in means and variances

Factor model and tail expectations

3

EnSysRISK and the impact on the economy

(27)

EnSysRISK

EnSysRISK = the total cost in million euros of each energy commodity class to the German non-energy sector during a potential energy crisis

2009 2010 2011 75 100 125 150 EnSysRISK Electricity 2009 2010 2011 20 40 60

EnSysRISK Natural Gas

2009 2010 2011 2 4 6 EnSysRISK Coal 2009 2010 2011 10 15 20 25 EnSysRISK Carbon 2009 2010 2011 50 100 150 EnSysRISK Brent 25 / 27

(28)

’Net’ impact on the economy

MESMt(C) = µMt+σMtEt−1�∑j=1s aMjtyjt+ζMt|yEnMt>C, yMt<0�

’Net’ impact of the energy crisis:

∆MESMt(C) = MESMt(C) − MESMt(VaR(rEnMt)0.5)

MES DAX .95 MES DAX .5

2009 2010 2011

-4 -2

0 MES DAX .95 MES DAX .5

DeltaMES DAX 2009 2010 2011 -0.75 -0.50 -0.25 0.00 DeltaMES DAX 26 / 27

(29)

Summary

Energy Systemic Risk: the risk of an energy crisis raising the prices of all energy commodities with negative consequences for the real economy

EnSysRISK: the total cost of an energy commodity to the rest of the economy during an energy crisis

EnSysRISK increases with high MES

high prices

high dependence of the economy on the energy source The MES captures co-movements in energy assets

Causal relationships in means and variances reflect possible spillover effects from one product to another

Tail exposure to common factors: the MES is conditional on extreme energy market shocks from the supply side (restricted dynamic PCA)

Contact: diane.pierret@uclouvain.be

Referências

Documentos relacionados

Para efeitos de comparação entre os acadêmicos das duas IES selecionadas, é válido enfatizar a observação de maiores semelhanças do que diferenças entre os sujeitos

A partir do exercicio financeiro de 2002, portanto, ressalvado 0 conteudo da Portaria STN/SOF n° 519/01, de carater transit6rio, transferencias de recursos de urn Orgao ou Entidade

Concluída a modelação numérica da ponte de Canelas, realizaram-se as análises dinâmicas para a passagem de sete comboios de alta velocidade em circulação na

Portanto, para tornar explícitos os pressupostos teológicos apresentados pelo filme serão utilizados dois conceitos da Análise do Discurso (AD) como ferramenta de pesquisa:

A infestação da praga foi medida mediante a contagem de castanhas com orificio de saída do adulto, aberto pela larva no final do seu desenvolvimento, na parte distal da castanha,

O objetivo deste trabalho foi estudar o enfrentamento da infertilidade por casais, investigando as diferenças entre os membros do casal com base em indicadores de

of the potential energy are omparable with the thermal energy of the photoreated

No quesito variável ambiental, o setor hoteleiro deve se adequar as legislações específicas, adotar um sistema de gestão ambiental e buscar por certificações