• Nenhum resultado encontrado

Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, II

N/A
N/A
Protected

Academic year: 2021

Share "Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, II"

Copied!
7
0
0

Texto

(1)

www.elsevier.com/locate/jmaa

Note

Weighted Sobolev theorem with variable exponent

for spatial and spherical potential operators, II

S. Samko

a,

, E. Shargorodsky

b

, B. Vakulov

c aUniversity of Algarve, Portugal

bKing’s College London, UK cRostov State University, Russia

Received 9 October 2005 Available online 20 February 2006

Submitted by L. Grafakos

Abstract

In [S.G. Samko, B.G. Vakulov, Weighted Sobolev theorem with variable exponent for spatial and spher-ical potential operators, J. Math. Anal. Appl. 310 (2005) 229–246], Sobolev-type p(·) → q(·)-theorems were proved for the Riesz potential operator Iαin the weighted Lebesgue generalized spaces Lp(·)(Rn, ρ)

with the variable exponent p(x) and a two-parameter power weight fixed to an arbitrary finite point x0and

to infinity, under an additional condition relating the weight exponents at x0and at infinity. We show in this

note that those theorems are valid without this additional condition. Similar theorems for a spherical ana-logue of the Riesz potential operator in the corresponding weighted spaces Lp(·)(Sn, ρ)on the unit sphere SninRn+1are also improved in the same way.

©2006 Elsevier Inc. All rights reserved.

Keywords: Weighted Lebesgue spaces; Variable exponent; Riesz potentials; Spherical potentials; Stereographical projection

* Corresponding author.

E-mail addresses: ssamko@ualg.pt (S. Samko), eugene.shargorodsky@kcl.ac.uk (E. Shargorodsky), vakulov@math.rsu.ru (B. Vakulov).

0022-247X/$ – see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2006.01.069

(2)

1. Introduction

We consider the Riesz potential operator

Iαf (x)=



Rn

f (y)

|x − y|n−αdy, 0 < α < n, (1.1)

in the weighted Lebesgue generalized spaces Lp(·)(Rn, ρ)with a variable exponent p(x) defined by the norm f Lp(·)(Rn,ρ)= inf  λ >0:  Rn ρ(x) |f (x)| λ p(x) dx 1  , (1.2) where ρ(x)= ργ0(x)= |x|γ0  1+ |x|γ−γ0. (1.3)

We refer to [3–6] for the basics of the spaces Lp(·)with variable exponent. We assume that the exponent p(x) satisfies the standard conditions

1 < p p(x)  p+<∞, x ∈ Rn, (1.4) p(x)− p(y)  A ln|x−y|1 , |x − y|  1 2, x, y∈ R n, (1.5) and also the following condition at infinity

p(x)− p(y)  A∞ ln|x−y|1 , |x − y|  1 2, x, y∈ R n, (1.6) where p(x)= p(|x|x2). Conditions (1.5) and (1.6) taken together are equivalent to the following

global condition: p(x)− p(y)  C ln2 √ 1+|x|2√1+|y|2 |x−y| , x, y ∈ Rn. (1.7) Let 1 q(x)= 1 p(x)α n.

The following statement was proved in [8].

Theorem 1.1. Under assumptions (1.4)–(1.6) and the condition

p+<n

α (1.8)

the operator Iα is bounded from the space Lp(·)(Rn, ργ0) into the space Lq(·)(Rn, ρμ0),

where μ0= q(0) p(0)γ0 and μ∞= q(∞) p(∞)γ, (1.9) if αp(0)− n < γ0< n p(0)− 1 , αp(∞) − n < γ< np(∞) − 1 , (1.10)

(3)

and the exponents γ0and γare related to each other by the equality q(0) p(0)γ0+ q(∞) p(∞)γ∞= q(∞) p(∞) (n+ α)p(∞) − 2n . (1.11)

The goal of this note is to prove that Theorem 1.1 is valid without the additional condi-tion (1.11). We consider also a similar statement for the spherical potential operators

 Kαf(x)=  Sn f (σ ) |x − σ |n−αdσ, x∈ Sn, 0 < α < n, (1.12)

in the corresponding weighted spaces Lp(·)(Sn, ρ)on the unit sphereSninRn+1.

2. Preliminaries

We need the following theorem for bounded domains proved in [7].

Theorem 2.1. Let Ω be a bounded domain inRn and x0∈ Ω and let p(x) satisfy conditions

(1.4), (1.5) and (1.8) in Ω. Then the following estimate Iαf Lq(·)(Ω,|x−x0|μ) Cf Lp(·)(Ω,|x−x0|γ) (2.1) is valid, if αp(x0)− n < γ < n p(x0)− 1 (2.2) and μq(x0) p(x0) γ . (2.3)

3. The case of the spatial potential operator

We prove the following theorem.

Theorem A. Under assumptions (1.4)–(1.6) and (1.8), the operator Iαis bounded from the space Lp(·)(Rn, ργ0) into the space L

q(·)(Rn, ρ μ0), where μ0= q(0) p(0)γ0 and μ∞= q(∞) p(∞)γ, (3.1) if αp(0)− n < γ0< n p(0)− 1 , αp(∞) − n < γ< np(∞) − 1 . (3.2)

Proof. Letf Lp(·)(Rn,ρ) 1. To estimate the integral

Rnρμ0(x)|I

αf (x)|q(x)dx, we split

it, as in [8], in the following way:  Rn ρμ0(x) Iαf (x) q(x) dx c(A+++ A+−+ A−++ A−−), where

(4)

A++=  |x|<1 |x|μ0  |y|<1 f (y) dy |x − y|n−α q(x)dx, A+−=  |x|<1 |x|μ0  |y|>1 f (y) dy |x − y|n−α q(x)dx, and A−+=  |x|>1 |x|μ  |y|<1 f (y) dy |x − y|n−α q(x)dx, A−−=  |x|>1 |x|μ  |y|>1 f (y) dy |x − y|n−α q(x)dx.

The boundedness of the terms A++and A−−was shown in [8] without condition (1.11). So we only have to treat the terms A+−and A−+.

10. The term A−+. We split A−+as

A−+= A1+ A2, where A1=  1<|x|<2 |x|μ  |y|<1 f (y) dy |x − y|n−α q(x)dx and A2=  |x|>2 |x|μ  |y|<1 f (y) dy |x − y|n−α q(x)dx. The term A1 C  1<|x|<2 |x|μ0  |y|<1 f (y) dy |x − y|n−α q(x)dx C  |x|<2 |x|μ0  |y|<2 f (y) dy |x − y|n−α q(x)dx

is covered by Theorem 2.1. For the term A2we have

|x − y|  |x| − |y| |x| 2 . Therefore, A2 C  |x|>2 |x|μ+(α−n)q(x)   |y|<1 f (y) dy q(x) dx.

It follows from condition (1.6) (see also (1.7)) that p(x)− p(∞)  C

(5)

and then the same is valid for q(x), so that A2 C  |x|>2 |x|μ+(α−n)q(∞)   |y|<1 f (y) dy q(x) dx. Observe that  |y|<1 f (y) dy Cf Lp(·)(Rn,ρ). (3.3)

Indeed, denote g(y)= [ρ(y)]p(y)1 ; by the Hölder inequality for variable Lp(·)-spaces we get



|y|<1

f (y) dy=



|y|<1

g(y)ρ(y) p(y)1 f (y) dy

 kgLp(·) ρ 1

pf

Lp(·)= kgLp(·)f Lp(·)(Rn,ρ). (3.4)

To arrive at (3.3), we have to show thatgLp(·)<∞. Under condition (1.4) one has

gLp(·)<∞ ⇐⇒



|y|<1

g(y) p(y)dy <∞. (3.5)

As is easily seen, the last integral is finite since γ0< n[p(0) − 1]. Therefore, from (3.4) there

follows (3.3).

Then A2 C < ∞ if we take into account that μ+ (α − n)q(∞) < −n under the condition γ< n[p(∞) − 1].

20. The term A

+−is estimated similarly to A−+: we split A+−as

A+−= A3+ A4, where A3=  |x|<1 |x|μ0  1<|y|<2 f (y) dy |x − y|n−α q(x)dx and A4=  |x|<1 |x|μ0  |y|>2 f (y) dy |x − y|n−α q(x)dx.

The term A3is covered by Theorem 2.1 similarly to the term A1in 10. For the term A4, we have

|x − y|  |y| − |x| |y|2. Then

 |y|>2 f (y) dy |x − y|n−α  C  |y|>2 |f (y)| dy |y|n−α = C  |y|>2 |f0(y)| dy |y|n−α+p(γ∞),

where f0(y)= |y| γ

p(∞)f (y). It is easily seen that f0(y)∈ Lp(·)(Rn\B(0, 2)), since [ρ(y)]

1

p(y)× f (y)∈ Lp(·)(Rn)and[ρ(y)]p(y)1 ∼ |y|

γ

p(∞) for|y|  2 under the log-condition at infinity. Hence

(6)

 |y|>2 f (y) dy |x − y|n−α  C1f0Lp(·)(Rn\B(0,2)) |y|α−n− γ p(∞) Lp(·)(Rn\B(0,2))  Cf Lp(·)(Rn γ0,γ∞) |y| α−n−p(γ∞) Lp(·)(Rn\B(0,2))  C |y|α−n− γ p(∞) Lp(·)(Rn\B(0,2)), (3.6)

where the last norm is finite under the condition αp(∞) − n < γ(use the argument given in (3.5)). 2

Corollary 3.1. Let 0 < α < n, p(x) satisfy conditions (1.4)–(1.6) and (1.8). Then the operator

Iαis bounded from the space Lp(·)(Rn) into the space Lq(·)(Rn), q(x)1 =p(x)1 −αn.

The statement of the corollary was proved in [1,2] under a weaker than (1.6) version of the log-condition at infinity.

4. The case of the spherical potential operator

4.1. The space Lp(·)(Sn, ρ)

We consider the weighted space Lp(·)(Sn, ρβa,βb)with a variable exponent on the unit sphere

Sn= {σ ∈ Rn+1: |σ | = 1}, defined by the norm

f Lp(·)(Sn βa ,βb)=  λ >0:  Sn |σ − a|βa · |σ − b|βb f (σ ) λ p(σ )dσ 1  , where ρβa,βb(σ )= |σ − a|

βa· |σ − b|βb and a∈ Snand b∈ Snare arbitrary points onSn, a = b.

We assume that 0 < α < n and 1 < p p(σ )  p+<n α, σ∈ S n, (4.1) p(σ1)− p(σ2)  A ln 3 1−σ2| , σ1∈ Sn, σ2∈ Sn. (4.2)

The following theorem is valid.

Theorem B. Let the function p :Sn→ [1, ∞) satisfy conditions (4.1) and (4.2). The spherical

potential operator Kα is bounded from the space Lp(·)(Sn, ρβa,βb) with ρβa,βb(σ )= |σ − a|βa·

|σ − b|βb, where a∈ Sn and b∈ Sn are arbitrary points on the unit sphereSn, a = b, into the space Lq(·)(Sn, ρβa,βb) with ρνa,νb(σ )= |σ − a|νa· |σ − b|νb, where q(σ )1 =p(σ )1 −αn, and

αp(a)− n < βa< np(a)− n, αp(b)− n < βb< np(b)− n, (4.3) νa= q(a) p(a)βa, νb= q(b) p(b)βb. (4.4)

This theorem was proved in [8] under the additional assumption that the weight exponents βa

and βbare related to each other by the connection q(a)

p(a)βa= q(b)

(7)

Now Theorem B without this condition follows from Theorem A by means of the stereo-graphic projection exactly in the same way as in [8, Section 5].

Corollary 4.1. Under assumptions (4.1) and (4.2), the spherical potential operator Kα is bounded from Lp(·)(Sn) into Lq(·)(Sn), q(σ )1 =p(σ )1 −αn.

References

[1] C. Capone, D. Cruz-Uribe, A. Fiorenza, The fractional maximal operator on variable Lpspaces, preprint of Istituto

per le Applicazioni del Calcolo “Mauro Picone” – Sezione di Napoli, (RT 281/04):1–22, 2004.

[2] D. Cruz-Uribe, A. Fiorenza, J.M. Martell, C. Perez, The boundedness of classical operators on variable Lpspaces, preprint, Universidad Autonoma de Madrid, Departamento de Matematicas, www.uam.es/personal_pdi/ciencias/ martell/Investigacion/research.html, 2004, 26 pp.; Ann. Acad. Sci. Fenn., in press.

[3] X. Fan, J. Shen, D. Zhao, Sobolev embedding theorems for spaces Wk,p(x)(Ω), J. Math. Anal. Appl. 262 (2) (2001) 749–760.

[4] X. Fan, D. Zhao, On the spaces Lp(x)(Ω)and Wm,p(x)(Ω), J. Math. Anal. Appl. 263 (2) (2001) 424–446. [5] O. Kovácˇik, J. Rákosnˇik, On spaces Lp(x)and Wk,p(x), Czechoslovak Math. J. 41 (116) (1991) 592–618. [6] S.G. Samko, Convolution and potential type operators in Lp(x), Integral Transforms Spec. Funct. 7 (3–4) (1998)

261–284.

[7] S.G. Samko, Hardy–Littlewood–Stein–Weiss inequality in the Lebesgue spaces with variable exponent, Fract. Calc. Appl. Anal. 6 (4) (2003) 421–440.

[8] S.G. Samko, B.G. Vakulov, Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, J. Math. Anal. Appl. 310 (2005) 229–246.

Referências

Documentos relacionados

Como se puede observar, tanto el Informe de Warnock como la Declaración de Salamanca contribuyen a debates y reflexiones sobre las necesidades educativas especiales y se

According to the consumer behaviour and personality literature, an estab- lished personality influences consumer preferences (Sirgy, 1982; d' Astous &amp; Boujbel, 2007; Ekinci

A publicação do CERLALC (2007) sobre as bibliotecas escolares da Ibero- América apresenta propostas para políticas públicas sobre a importância da integração

A Escola Secundária Quinta das Palmeiras tem à disposição dos professores e alunos para a realização das aulas de Educação Física, para o Desporto Escolar e

Também pode ser usado para criar planos de orientação para os dentes pilares de próteses parciais removíveis e determinar o caminho de inserção de uma ponte Maryland prótese

Desta forma, vimos convidá- lo(a) a emitir a sua opinião sobre vários aspectos relacionados com o tema em análise através do preenchimento completos do inquérito por questionário