• Nenhum resultado encontrado

Especialização em Clínica Médica pelo Hospital das Clínicas da Faculdade de Medicina da USP e pela Sociedade Brasileira de Clínica Médica

N/A
N/A
Protected

Academic year: 2021

Share "Especialização em Clínica Médica pelo Hospital das Clínicas da Faculdade de Medicina da USP e pela Sociedade Brasileira de Clínica Médica"

Copied!
42
0
0

Texto

(1)

Suplemento

COVID-19

(2)

Dr. Thiago Luis Scudeler, MD, PhD

Médico formado pela Faculdade de Medicina da USP

Especialização em Clínica Médica pelo Hospital das Clínicas da Faculdade de Medicina da USP e pela Sociedade Brasileira de Clínica Médica

Especialização em Cardiologia pelo Instituto do Coração (InCor) da HCFMUSP e pela Sociedade Brasileira de Cardiologia

Ex-médico preceptor da Cardiologia Clínica do InCor da HCFMUSP

Médico assistente do Departamento de Emergência do InCor da HCFMUSP Doutor em Ciências − Cardiologia pela FMUSP

Pós-doutorando em Cardiologia pelo InCor do HCFMUSP Professor Colaborador da FMUSP

Dr. Vagner Madrini, MD

Médico formado pela Faculdade de Medicina da Universidade Federal do Pará

Especialização em Clínica Médica pelo Hospital São Paulo da Universidade Federal de São Paulo – Escola Paulista de Medicina

Especialização em Cardiologia pelo Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da USP e pela Sociedade Brasileira de Cardiologia

Ex-médico preceptor da Cardiologia Clínica do InCor do HCFMUSP

Médico assistente do Departamento de Miocardiopatias e Doenças da Aorta do InCor do HCFMUSP

Dr. Brenno Rizerio, MD

Médico formado pela Faculdade de Medicina da USP

Especialização em Clínica Médica pelo Hospital das Clínicas da FMUSP

Especialização em Cardiologia pelo Instituto do Coração (InCor) do HCFMUSP e pela Sociedade Brasileira de Cardiologia

Ex-médico preceptor da Cardiologia Clínica do Instituto do Coração (InCor) do HCFMUSP

(3)

COVID-19:

EVIDÊNCIA CIENTÍFICA

COVID-19:

(4)

Imagem de microscopia eletrônica do novo coronavírus. Fonte: Universidade de Hong Kong.

Introdução

O coronavírus 2 da síndrome respiratória aguda grave (SARS-CoV-2) está geneticamente relacionado ao SARS-CoV-1, que causou uma epidemia global com 8.096 casos confirmados em mais de 25 países entre 2002 e 2003. Também está geneticamente relacionado ao corona-vírus da síndrome respiratória do Oriente Médio (MERS-CoV), que entre 2012 e 2014 teve 681 casos confirmados, com 204 óbitos [1]. A epidemia de SARS-CoV-1 foi contida com sucesso por meio de intervenções de saúde pública, incluindo a detecção precoce de casos, com sucessivo isolamento.

SARS-CoV-2 compartilha 79,6% de similaridade da sequência do genoma ao SARS-CoV-1 [2] e 50% de homologia da sequência do genoma ao MERS-CoV − todos os três coronavírus cau-sam sintomas respiratórios graves (Figura 1). Além disso, o novo coronavírus é 96% idêntico ao genoma do coronavírus encontrado no morcego [2].

(5)

Espécies de vírus

Vírus

ICTV-CSG

WHO

Doença COVID-19

Ano 2012

primeiro nome nome original

2003 2019

MERS-CoV

Síndrome respiratória do Oriente Médio (MERS)

Síndrome respiratória aguda grave (SARS) Síndrome respiratória

do Oriente Médio relacionada ao coronavírus

Síndrome respiratória aguda grave relacionada

ao coronavírus

SARS-CoV SARS-CoV-2

Figura 1: História da nomeação do coronavírus durante os três surtos zoonóticos

em relação à taxonomia e doenças causadas por esses vírus.

Fonte: Adaptado de [3]. ICTV-CSG: International Committee on Taxonomy of Viruses Coronavirus Study Group; WHO: World

Health Organization.

Estudo de Doremalen e colaboradores [4] mostrou que o SARS-CoV-2 permanece viável em aerossóis por pelo menos 3 horas, de forma semelhante ao SARS-CoV-1. Já em plástico e ácido inoxidável, o vírus mostra-se ainda mais estável, mantendo-se viável por 72 horas. No papelão, o vírus permanece viável por até 24 horas, ao contrário do SARS-CoV-1, que se mostra viável por < 8 horas.

Virologia

Os coronavírus (CoVs) são o maior grupo de vírus pertencentes à ordem Ni-dovirales, que inclui as famílias Corona-viridae, Arteriviridae e Roniviridae (Figu-ra 2) [5]. A família Coronaviridae inclui 4 gêneros, os coronavírus alfa, beta, gama e delta. Todos os vírus da ordem Nidovi-rales são vírus de RNA com sentido positi-vo, não segmentados e com envelope. To-dos eles contêm genomas muito grandes para vírus de RNA, com Coronavirinae tendo os maiores genomas de RNA iden-tificados, contendo aproximadamente ge-nomas de 30 kilobases (kb). Categoria Coronaviruses Reino Riboviria Ordem Nidovirales Subordem Cornidovirineae Família Coronaviridae Subfamília Orthocoronavirinae Gênero Betacoronavirus Subgênero Sarbecovirus

Espécie Severe acute respiratory syndrome-related coronavirus

Indivíduo SARS-CoVUrbani, SARS-CoVGZ-02, Bat SARS CoVRf1/2001, Civet SARS CoVSZ3/2003, SARS-CoVPC4-227, SARSr-CoVBtKY72, SARS-CoV-2 Wuhan-Hu-1, SARSr-CoVRatG13, and so on.

Figura 2: Taxonomia dos coronavírus. Fonte: Adaptado de [3].

(6)

Quando isolado e cultivado in vitro, o coronavírus pode ser encontrado nas células epite-liais respiratórias humanas em cerca de 96 horas [6]. O vírus SARS-CoV-2 é sensível à luz e ao calor ultravioleta e pode ser inativado a 56 °C por 30 minutos. Éter etílico, etanol 70%, álcool em gel, desinfetante de cloro, ácido peracético e clorofórmio são eficazes na inativação do vírus. No entanto, clorexedine não tem se mostrado eficaz [7].

O genoma dos vírus é constituído de DNA ou RNA. Nenhum vírus contém DNA e RNA simultaneamente. Em geral, o genoma dos vírus RNA é menor, como o que ocorre com o coronavírus .

Cada virion de SARS-CoV-2 mede aproximadamente 50-200 nanômetros de diâmetro [8]. Tal como outros coronavírus, o SARS-CoV-2 tem quatro proteínas estruturais, conheci-das como proteínas S (spike), E (envelope), M (membrana) e N (nucleocapsídeo). A proteína N contém o genoma de RNA, e, em conjunto, as proteínas S, E e M criam o envelope viral [9]. A proteína S é a proteína que permite ao vírus ligar-se à membrana celular de uma célula hos-pedeira [9]. As espículas (spikes) são responsáveis pelo reconhecimento do receptor celular e determinam o tropismo tecidual e do hospedeiro. A Figura 3 mostra a estrutura molecular do coronavírus.

Espícula de glicoproteína (S)

Pequeno envelope de membrana proteica (E) Membrana proteica (M) Esterase hemaglutinina (HE) Nucleoproteina (N) RNA genômico

Figura 3: Estrutura molecular do coronavírus.

As primeiras experiências mostraram que a proteína S do vírus tinha suficiente afinida-de com os receptores da enzima conversora da angiotensina 2 (ECA2) nas células humanas para as usar como mecanismo de penetração celular [10]. Em 22 de janeiro de 2020, um grupo

(7)

chinês e um grupo norte-americano, de forma independente, conseguiram demonstrar expe-rimentalmente que a ECA2 podia ser o receptor do SARS-CoV-2 [11,12]. Para a penetração do SARS-CoV-2 também é fundamental o priming inicial da proteína S através da TMPRSS2 [13]. O SARS-CoV-2 produz pelo menos três fatores de virulência que promovem a libertação de novos virions das células hospedeiras e inibem a resposta imunitária [9].

Replicação viral

A replicação da maioria dos vírus de RNA ocorre estritamente no citoplasma das células e é independente da maquinaria nuclear (Figura 4). Exceções são os ortomixovírus, que reque-rem fatores da transcrição celular, e os retrovírus que replicam via um intermediário DNA. (1) A ligação (adsorção) ocorre por interações eletrostáticas entre os vírions e os receptores ce-lulares específicos. Os vírus penetram na célula através de endocitose mediada por receptor. (2) Então, o vírion é desnudo e o RNA cadeia simples é liberado no citoplasma. (3) Em seguida ocorre a tradução de enzimas do complexo Replicação/Transcrição (pol1ab). A próxima etapa é a transcrição do RNAm em segmentos de polaridade negativa, (4) seguida pela transcrição de RNMm em segmentos de polaridade positiva (5). Então, ocorre a tradução de proteínas estruturais, (6) replicação do RNA genômico (7), composição do novo virion (8) e, por fim, a liberação da particular viral (9).

AAA AAA AAA AAA AAA UUU UUU UUU UUU UUU AAA 1 2 3 4 5 6 7 8 8 9 Receptor gRNA (RNA genômico) Vesícula de parede lisa Vesículas de membrana dupla

Transcrição sgRNA (-) (RNA subgenômico) S (espícula) E (envelope) M (membrana) N RE ERGIC

(Compartimento intermediário RE-Golgi)

sgRNA (+) Replicação RNA

gRNA (-)

gRNA (+) Citoplasma Núcleo

Tradução de RTC (complexo replicação-transcrição)

(nucleocapsídeo)

Figura 4: Replicação do coronavírus. Fonte: Adaptado de [21].

(8)

Manifestações clínicas do coronavírus

Com base nos dados epidemiológicos atuais, o período de incubação da COVID-19 varia de 1 a 14 dias, em geral de 3 a 7 dias [14,15]. As manifestações clínicas mais comuns são febre, fraqueza e tosse seca. No entanto, uma pequena fração dos pacientes apresenta congestão nasal, coriza, dor de garganta e diarreia. Os casos graves geralmente desenvolvem dispneia e/ou hipoxemia uma semana após o início do primeiro sintoma. Em casos críticos, progride rapidamente para síndrome do desconforto respiratório agudo, choque séptico, acidose meta-bólica refratária, coagulopatia e falência de múltiplos órgãos.

Estudo de Guan e colaboradores avaliou as características clínicas de 1.099 pacientes afe-tados pela COVID-19 na China [16]. Os autores mostraram que a idade média dos pacientes foi de 47 anos; 58,1% dos pacientes eram do sexo masculino. Internação em unidade de terapia intensiva, uso de ventilação mecânica ou óbito ocorreu em 67 pacientes (6,1%). Os sintomas mais comuns foram febre (43,8% na admissão e 88,7% durante a internação) e tosse (67,8%). Diarreia foi incomum (3,8%). O período médio de incubação foi de 4 dias (intervalo interquar-til, 2 a 7). Na admissão, a opacidade em vidro fosco foi o achado radiológico mais comum na TC de tórax (56,4%). Nenhuma anormalidade radiográfica ou na TC foi encontrada em 157 de 877 pacientes (17,9%) com doença não grave e em apenas 5 de 173 pacientes (2,9%) com doença grave. Linfocitopenia estava presente em 83,2% dos pacientes na admissão.

Estudo de Yang e colaboradores [17] com 710 pacientes com grave acometimento pulmonar pelo SARS-CoV-2 mostrou que 67% eram homens, 40% tinham doenças crônicas, 98% tinham febre. Em 28 dias, 61,5% dos pacientes morreram, e a duração mediana da admissão na UTI até a morte foi de 7 dias para os não sobreviventes. Comparados aos sobreviventes, os não sobre-viventes eram mais velhos (64,6 anos vs. 51,9 anos), tinham maior probabilidade de desenvol-ver SDRA (81% vs. 45%) e maior probabilidade de receber ventilação mecânica (94% vs. 35%). A maioria dos pacientes apresentou lesão orgânica, incluindo 67% com SDRA, 29% com lesão renal aguda, 23% com lesão cardíaca, 29% com disfunção hepática e 2% com pneumotórax.

Anosmia, a incapacidade de sentir odores, tem sido relatada como um sintoma distintivo em pacientes que foram diagnosticados com COVID-19 [18]; no entanto, estudos de coorte pu-blicados não destacaram esse sintoma, e sua frequência e utilidade na suspeita de COVID-19 são incertas.

Relatos de coortes em locais fora de Wuhan descreveram achados clínicos semelhantes àqueles de Wuhan, embora alguns tenham sugerido a presença de doença mais leve [19]. Como exemplo, em um estudo de 62 pacientes com COVID-19 na província de Zhejiang, na China, to-dos, exceto um, tiveram pneumonia, sendo que apenas dois desenvolveram dispneia e apenas um necessitou de ventilação mecânica [20].

Estudo retrospectivo avaliou as características clínicas de 80 casos de COVID-19 importa-dos na Província de Jiangsu, China [19]. Os autores mostraram que, comparaimporta-dos com Wuhan,

(9)

os pacientes exibiram sintomas leves ou moderados e não houve nenhuma suscetibilidade de gênero. A proporção de pacientes com disfunção hepática e tomografia computadorizada alterada foi relativamente menor que a de Wuhan.

Manifestações cardíacas do coronavírus

O SARS-CoV se liga a células que expressam receptores virais apropriados, particularmen-te a enzima conversora de angioparticularmen-tensina 2 (ECA2) [21]. A ECA2 também é expressa no coração, fornecendo uma ligação entre os coronavírus e o sistema cardiovascular. Modelos murinos e amostras de autópsia humana demonstraram que o SARS-CoV-1 pode sub-regular as vias miocárdicas e pulmonares da ECA2, mediando assim a inflamação do miocárdio, o edema pul-monar e a insuficiência respiratória aguda [22].

Em uma série de casos com 138 pacientes hospitalizados com COVID-19 [23], observou-se:

19,6% dos pacientes desenvolveram síndrome da angústia respiratória; 16,7% dos pacientes desenvolveram arritmia;

7,2% desenvolveram lesão cardíaca aguda; 8,7% dos pacientes desenvolveram choque; 3,6% desenvolveram lesão renal aguda;

as taxas de complicações foram universalmente mais altas para pacientes em UTI.

Hu e colaboradores [24] relataram um caso de miocardite fulminante por coronavírus tra-tada com sucesso com glicocorticoide e imunoglobulina. Paciente deu entrada no departa-mento de emergência com quadro de dor torácica, dispneia e hipotensão. Radiografia de tórax com aumento da silhueta cardíaca. ECG com elevação do segmento ST em D3 e avF. Troponina altamente positiva. ECO com derrame pericárdico e FEVE 27%. Teste para coronavírus positi-vo. Testes para outros 12 vírus negativos. Tratamento incluiu metilprednisolona 200 mg/dia por 4 dias e imunoglobulina 20 g/dia por 4 dias, além de norepinefrina, diuréticos e milrinone. ECO realizado 1 semana após o tratamento mostrou cavidades cardíacas de tamanhos nor-mais e FEVE 66%.

Estudo de Shi e colaboradores [25] com 416 pacientes hospitalizados por COVID-19 (me-diana da idade de 64 anos) mostrou que 82 pacientes (19,7%) apresentaram lesão cardíaca. Em comparação com pacientes sem lesão cardíaca, esses pacientes eram mais velhos (74 vs. 60 anos); tinham mais comorbidades (por exemplo, hipertensão em 59,8% vs. 23,4%); apresen-tavam maior número de leucócitos (9.400 vs. 5.500 células/μL) e níveis de proteína C-reativa (10,2 vs. 3,7 mg/dL), procalcitonina (0,27 vs. 0,06 ng/mL), CKMB (3,2 vs. 0,9 ng/mL), troponina

(10)

I de alta sensibilidade (0,19 vs. < 0,006 μg/L), proBNP (1.689 vs. 139 pg/mL), aspartato amino-transferase (40 vs. 29 U/L) e creatinina (1,15 vs. 0,64 mg/dL). Além disso, esses pacientes apre-sentaram uma proporção mais alta de opacidade em vidro fosco nos achados radiográficos (64,6% vs. 4,5%). Pacientes com lesão cardíaca necessitaram de mais ventilação mecânica não invasiva (46,3% vs. 3,9%) ou ventilação mecânica invasiva (22,0% vs. 4,2%) do que aqueles sem lesão cardíaca. As seguintes complicações foram mais comuns em pacientes com lesão cardía-ca do que naqueles sem lesão cardía-cardíacardía-ca: síndrome do desconforto respiratório agudo (58,5% vs. 14,7%), lesão renal aguda (8,5% vs. 0,3%), distúrbios da coagulação (7,3% vs. 1,8%). Pacientes com lesão cardíaca tiveram maior mortalidade do que aqueles sem lesão cardíaca (51,2% vs. 4,5%).

Manifestações gastrointestinais do coronavírus

A insuficiência hepática foi relatada em até 60% dos pacientes com SARS [26] e também foi relatada em pacientes infectados com MERS-CoV [27].

Estudos têm indicado que 2-11% dos pacientes com COVID-19 apresentam comorbidades hepáticas e 14-53% relataram níveis anormais de alanina aminotransferase e aspartato ami-notransferase durante a progressão da doença [8,15,17,23,28,29].

Estudo descritivo de Pan e colaboradores [30] com 204 pacientes (idade média de 54,9 anos) com infecção por COVID-19 laboratorialmente confirmada mostrou que 48,5% deles apresen-taram-se no hospital com sintomas digestivos como principal queixa, sendo as manifestações mais comuns anorexia (83,8%), diarreia (29,3%), vômitos (0,8%) e dor abdominal (0,4%). Em 7 casos houve sintomas digestivos, mas não respiratórios. À medida que a gravidade da doença aumentava, os sintomas digestivos se tornavam mais pronunciados. Pacientes sem sintomas digestivos apresentaram maior probabilidade de cura e alta do que pacientes com sintomas digestivos (60% vs. 34,3%). Os dados laboratoriais não revelaram lesão hepática significativa nessa série de casos.

Estudo de Huang e colaboradores [16] mostrou elevação de AST em oito (62%) de 13 pa-cientes na UTI, em comparação com sete (25%) de 28 papa-cientes que não necessitaram de cui-dados em UTI. Além disso, em uma grande coorte incluindo 1.099 pacientes de 552 hospitais em 31 províncias ou municípios provinciais da China, pacientes mais graves apresentaram níveis anormais de aminotransferase hepática em relação àqueles sem doença grave [31]. Em outro estudo [28], pacientes que tiveram o diagnóstico de COVID-19 confirmado por TC (isto é, antes do início dos sintomas) apresentaram incidência significativamente menor de anormalidade na AST do que os pacientes diagnosticados após o início dos sintomas. Por-tanto, lesão hepática é mais prevalente em casos graves do que em casos leves de COVID-19. O dano hepático em pacientes com infecções por coronavírus pode ser causado diretamente pela infecção viral das células hepáticas. Aproximadamente 2-10% dos pacientes com CO-VID-19 apresentam diarreia, e o RNA da SARS-CoV-2 foi detectado em amostras de fezes

(11)

e sangue [31]. Essa evidência implica a possibilidade de exposição viral no fígado. Tanto o SARS-CoV-2 como o SARS-CoV-1 se ligam ao receptor da ECA2 para entrar na célula-alvo [23], onde o vírus se replica e subsequentemente infecta outras células no trato respiratório su-perior e no tecido pulmonar; os pacientes começam a apresentar sintomas e manifestações clínicas. Estudos patológicos em pacientes com SARS confirmaram a presença do vírus no tecido hepático, embora o título viral fosse relativamente baixo porque não foram observa-das inclusões virais [26]. Em pacientes com MERS, partículas virais não foram detectáveis no tecido hepático [32]. Gamaglutamil transferase (GGT), um biomarcador de diagnóstico para lesão de colangiócito, não foi relatado nos estudos de caso COVID-19 existentes. Um estudo preliminar (embora não revisado por pares) sugeriu que a expressão do receptor ECA2 é enriquecida em colangiócitos [33], indicando que o SARS-CoV-2 pode se ligar direta-mente a colangiócitos positivos para ECA2 para desregular a função hepática. No entanto, a análise patológica do tecido hepático de um paciente que morreu por COVID-19 mostrou que inclusões virais não foram observadas no fígado [34].

Também é possível que a insuficiência hepática se deva à hepatotoxicidade de medica-mentos, o que pode explicar a variação global observada nas diferentes coortes. Além disso, a imunomediação, como tempestade de citocinas e hipóxia associada a pneumonia, também pode contribuir para lesão hepática ou até evoluir para insuficiência hepática em pacientes com COVID-19 que estão gravemente enfermos.

A lesão hepática em casos leves de COVID-19 é frequentemente transitória e pode retornar ao normal sem nenhum tratamento especial.

Coronavírus e IECA ou BRA

A ECA2 é expressa em níveis mais altos no sistema cardiovascular (CV), intestino, rins e pulmões. No sistema CV, a ECA2 é expressa em cardiomiócitos, tecido adiposo epicárdico, fibroblastos cardíacos, músculo liso vascular e células endoteliais [35,36]. ECA2 é uma pro-teína transmembranar do tipo I que funciona como uma monocarboxipeptidase com um ectodomínio cataliticamente ativo exposto à circulação que hidrolisa vários peptídeos, incluindo angiotensina II (Ang II) e angiotensina I (Ang I), gerando angiotensina 1-7 (Ang 1-7) e angiotensina 1-9 [35]. Uma forma solúvel de ECA2 pode ser liberada da membrana através de clivagem proteolítica mediada por ADAM17, resultando na perda da proteção da ECA2 contra o sistema renina angiotensina (SRA) tecidual e no aumento da atividade plasmática da ECA2, um marcador conhecido de prognóstico adverso em pacientes com doença cardiovascular .

A clivagem de Ang I pela ECA gera Ang II, que é o principal peptídeo efetor do eixo recep-tor ECA / Ang II / AT1 (Figura 5), desencadeando vasoconstrição potente, inflamação, prolife-ração celular, hipertrofia, fibrose e remodelação tecidual.

(12)

"Designed by Freepik" Proteína da espícula do SAR-CoV-2 que se liga ao ECA2 ECA BRA Receptor da angiotensina II tipo 1 Angiotensina (1-9) Angiotensina (1-7) Angiotensina I Angiotensina II Inibidores da ECA ECA2 ECA2

Entrada viral, replicação e infrarregulação de ECA2

Lesão pulmonar aguda Remodelagem miocárdica adversa

Vasoconstrição Permeabilidade vascular

Infecção local ou sistêmica

ou sepse

Figura 5: Interação entre SARS-CoV-2 e o sistema renina-angiotensina-aldosterona. É mostrada a entrada inicial do SARS-CoV-2 nas células, principalmente pneumócitos do tipo II, após ligação ao seu receptor

funcional, enzima conversora de angiotensina 2 (ECA2). Após a endocitose do complexo viral, a ECA2 de superfície é mais sub-regulada, resultando no acúmulo de angiotensina II. A ativação local do sistema

renina-angiotensina-aldosterona pode mediar as respostas de lesões pulmonares a insultos virais. Fonte: Adaptado de Vaduganathan e colaboradores [37].

A conversão de angiotensina II em angiotensina (1-7) pela ECA2 contrabalanceia os efeitos prejudiciais da Ang II (vasoconstrição, retenção de sódio e fibrose). Embora a angiotensina II seja o substrato primário da ECA2, essa enzima também cliva a angiotensina I em angiotensi-na (1-9) e participa da hidrólise de outros peptídeos [38]. Em estudos em humanos, amostras de tecido de 15 órgãos mostraram que a ECA2 é expressa de maneira ampla, inclusive no co-ração e nos rins, bem como nas principais células-alvo da SARS-CoV-2, as células epiteliais alveolares pulmonares [39]. De interesse, os níveis circulantes da ECA2 solúvel são baixos, e o papel funcional da ECA2 nos pulmões parece ser relativamente mínimo em condições nor-mais [40], mas pode ser sub-regulado em certos estados clínicos.

A ligação e a entrada de SARS-CoV-1 e SARS-CoV-2 nas células humanas são facilitadas pela interação entre o domínio de ligação ao receptor (RBD) das espículas (spikes) da subuni-dade S1 das glicoproteínas com o ectodomínio da ECA2 [41]. A endocitose da ECA2 juntamente

(13)

com as partículas virais nos endossomos reduzem a expressão de ECA2 da superfície, o que re-presenta um insulto inicial à proteção do tecido mediado pela ECA2. A entrada viral também é facilitada pela atividade da ADAM17, que é regulada por SARS-CoV-1, um processo dependen-te do domínio citoplasmático da ECA2. A regulação positiva na atividade da prodependen-tease ADAM17 perpetua a perda de ECA2 da superfície celular, resultando em uma mudança do eixo protetor do receptor ECA2 / Ang 1-7 / Mas em direção ao estado da doença e em acúmulo de Ang II. A Ang II ainda regula positivamente a atividade da ADAM17, levando à perda de seu regulador, ECA2, através dos receptores AT1 e das vias de sinalização ERK / p38 MAP quinase a jusante como uma sequela da ligação ao receptor SARS-CoV-2. Além disso, a ADAM17 também medeia a liberação de citocinas pró-inflamatórias TNFα, IFN-γ e IL-4 na circulação. Essas citocinas, nomeadamente IL-4 e IFN-γ, regulam a expressão da ECA2 na superfície celular e reduzem os níveis de mRNA da ECA2, levando a outro caminho para a perda de ECA2 devido a inflamação sistêmica e tecidual induzida por SARS-CoV-2.

Na lesão pulmonar, a desregulação do SRA através da regulação negativa da ECA2 aumen-ta a permeabilidade vascular, edema pulmonar e gravidade da lesão em infecções por SARS-CoV-1, apesar de ações da Ang II atenuadas pelo bloqueio do receptor AT1. Em autópsias post

mortem, amostras de tecido cardíaco de pacientes que sucumbem à SARS, foram relatados

aumento de fibrose miocárdica, inflamação e expressão reduzida da ECA2 do miocárdio, jun-tamente com a detecção do genoma viral SARS-CoV-1, fornecendo evidências sugestivas de lesão miocárdica pelo SARS-CoV-1 [22]. Apesar da predominância de sintomas respiratórios, lesões cardíacas e renais agudas e anormalidades intestinais e hepáticas ocorrem em pacien-tes com COVID-19 [42], consistente com a ampla expressão da ECA2. A perda da proteção do sistema CV mediada pela ECA2 após a infecção pelo SARS-CoV-2 poderia contribuir para os eventos CV observados em pacientes com COVID-19 [38].

A ECA2 recombinante humano está sendo testada em um ensaio clínico com 24 pacientes na China. Espera-se que a administração sistêmica dessa substância (0,4 mg/kg IV 2xd por 7 dias) sequestrará partículas virais de SARS-CoV-2 na circulação, impedindo sua interação e subsequente internalização através de receptores endógenos ECA2, além de ativar o eixo protetor sistêmico do SRA.

Em resumo, observamos que a ECA2 apresenta um papel bifuncional, que desliga o sistema SRA e leva a efeitos benéficos, mas também medeia a suscetibilidade única à doença pulmonar e cardiovascular em pacientes com COVID-19, servindo como receptor para SARS-CoV-2.

Uma das hipóteses para maior infectividade e gravidade da doença SARS-CoV-2 é a abun-dância da expressão de ECA2 em tecido pulmonar. No entanto, até o momento, nenhum estu-do demonstrou esta associação.

Wrapp e colaboradores documentaram uma afinidade 10 a 20 vezes maior da ECA2 para SARS-CoV-2 em comparação com SARS-CoV-1 [43]. Demonstrou-se que a ECA2 é expressa no tecido pulmonar humano [44]. Utilizando imunocoloração, os autores mostraram expressão de ECA2 em células epiteliais alveolares tipo II e endotélio capilar.

(14)

Observou-se que idosos e homens apresentam piores manifestações da doença e maiores taxas de mortalidade por COVID-19, o que nos leva ao questionamento sobre o que acontece com os níveis de ECA2 no pulmão ao longo do tempo e entre os sexos (masculino e feminino).

Estudo de Xudong e colaboradores examinou os níveis de ECA2 (via Western blot e imuno -histoquímica) em ratos Sprague Dawley (coelho policlonal antiECA2) [45]. Foram estudados 3 grupos etários diferentes e homens/mulheres. Os autores relataram que os níveis de ECA2 diminuíram à medida que os ratos envelheciam e que ratos machos mais velhos tinham níveis mais baixos do que os ratos fêmeas mais velhos. Foi também mostrado que a ECA2 é predomi-nantemente expressa em epitélio alveolar, epitélio bronquiolar, endotélio e células muscula-res lisas de vasos pulmonamuscula-res com conteúdo semelhante. Algumas advertências importantes são que esse é um estudo com ratos sem doença. Assim, ainda não se sabe se esse padrão ocorre em humanos ou se o padrão de expressão é alterado na doença.

Experimentos de “perda de função” usando camundongos knockout para ECA2 e inibido-res da ECA2 revelaram maior suscetibilidade ao infarto do miocárdio, hipertensão e hiper-trofia do miocárdio induzida por Ang II, complicações microvasculares, inflamação, fibrose, disfunção diastólica e sistólica e estresse oxidativo [35,36]. A perda parcial de ECA2, como observada em corações humanos explantados de pacientes com insuficiência cardíaca e car-diomiopatia dilatada, é suficiente para aumentar a suscetibilidade a doenças cardíacas. Por outro lado, experimentos de “ganho de função” com ECA2 recombinante, superexpressão de ECA2 e Ang 1-7 suplementar demonstraram papéis protetores em vários modelos de doença CV, incluindo hipertensão, diabetes e insuficiência cardíaca com fração de ejeção preservada [35,36]. Antagonistas farmacológicos do SRA, como IECA e BRA, protegem o sistema CV par-cialmente por aumento dos níveis de ECA2. Ensaios clínicos com infusão intravenosa de ECA2 humana recombinante em pacientes com hipertensão arterial pulmonar e lesão pulmonar aguda relataram reduções imediatas nas taxas plasmáticas de Ang II / Ang 1-7, refletindo as funções da ECA2 e seus efeitos terapêuticos.

Ferrario e colaboradores mostraram que a expressão do mRNA da ECA2 aumentou no ven-trículo esquerdo de ratos Lewis normotensos 12 dias após o uso de lisinopril e losartan [46].

Um estudo mostrou níveis aumentados e atividade da ECA2 no tecido cardíaco de ratos após o uso de enalapril (IECA) [47].

Estudo com ratos Lewis normotensos que avaliou a ligação da artéria coronária 28 dias após um IAM mostrou níveis aumentados de mRNA de ECA2 após o uso de BRA (losartan ou olmesartan) [48].

Estudo com camundongos mostrou que a proteína ECA2 e o mRNA aumentam após o uso de um BRA (temisartan) [49].

Por outro lado, modelos animais não mostraram aumento da ECA2 após o uso de IECA ou BRA.

(15)

Burrell e colaboradores não mostraram aumento no mRNA da ECA2 em corações de ra-tos Sprague-Dawley após a ligação da artéria coronária e o tratamento com ramipril quando comparado com o grupo controle [50].

Burchill e colaboradores também não mostraram aumento no mRNA da proteína ECA2 em ratos após a ligação da artéria coronária e tratamento com valsartan, ramipril ou ambos em comparação com o controle [51].

Analisando as evidências em humanos, estudo de Ramchand e colaboradores avaliou 79 pacientes com doença arterial coronariana e mediu os níveis plasmáticos de ECA2. Os autores não encontraram correlação entre os bloqueadores de SRA ou a idade com os níveis plasmá-ticos de ECA2 [52].

Estudo de coorte realizado no Japão por Furuhashi e colaboradores com 101 pessoas não hipertensas e sem uso de medicação (homens/mulheres: 40/61) que serviram como controle e 100 pessoas com hipertensão (homens/mulheres: 42/58) que foram tratadas com bloqueador de canal de cálcio, IECA ou BRA por mais de 1 ano mostrou que somente o grupo que tomou olmesartan e nenhum outro agente apresentou aumento da ECA2 urinária [53]. Esse é um estudo de coorte, portanto os grupos podem não ser comparáveis.

Estudo realizado por Vuille-dit-Bille e colaboradores mostrou que pacientes em uso de IECA e não BRA apresentaram aumento da expressão do gene ECA2 no duodeno, em compa-ração com os controles que não usaram nem IECA nem BRA [54].

Deshotels e colaboradores examinaram como a angiotensina II altera a expressão de ECA2 em um modelo celular e de roedores. Os autores mostraram que a ECA2 interage com o recep-tor da angiotensina I (receprecep-tor AT1, alvo dos BRAs). Agudamente, a angiotensina II reduz a expressão e a atividade da ECA2 por estimulação da degradação lisossômica por meio de um mecanismo dependente do receptor AT1 [55].

O impacto clínico desse estudo permanece incerto, mas o mesmo poderia fornecer outro mecanismo pelo qual os IECAs ou BRAs poderiam impedir a entrada viral do COVID-19. Se a interação da proteína viral com a ECA2 for reduzida nos complexos de receptores ECA2-AT1, os BRAs poderão ser benéficos. A administração de um BRA poderia então estabilizar a in-teração do receptor ECA2-AT1 e impedir a inin-teração e internalização da proteína viral-ECA2. Esses estudos não avaliaram a geração de angiotensina (1-7), que também pode desempenhar um papel na prevenção de lesões pulmonares graves. Ainda não se sabe se a prevenção da internalização da ECA2 por esse mecanismo também pode prevenir a infecção viral pelo vírus da SARS ou COVID-19.

Uma questão interessante que foi analisada em estudos com modelos animais e humanos (retrospectivos) é se o uso de BRA ou IECA pode realmente ser benéfico em infecções por coronavírus e outras pneumonias virais. Henry e colaboradores analisaram pacientes (hu-manos) com pneumonia viral e demonstraram uma associação com melhores resultados em pacientes com uso contínuo de IECA durante pneumonia viral [56]. No entanto, pode-se

(16)

argu-mentar que os pacientes com pneumonia viral que continuaram a usar IECA durante a inter-nação não estavam “tão doentes” quanto os pacientes que tiveram a medicação interrompida. Um estudo em animais demonstrou a importância da ECA2 na pneumonia viral causa-da pelo vírus influenza H7N9 [57]. Esse estudo mostrou pior sobrevicausa-da em camundongos ECA2 KO. O estudo mostrou um potencial benefício da ECA2 na lesão pulmonar mediada por vírus, presumivelmente da remoção através da remoção da angiotensina II e geração de angiotensina (1-7).

Ainda não sabemos se a hipertensão é de fato um fator de risco (independente da idade) para COVID-19. Aproximadamente 15-30% dos pacientes com COVID-19 tinham hipertensão, segundo a literatura médica relatada até o momento. A proporção de pessoas que poderiam estar usando IECA ou BRA certamente é um subconjunto menor desses 15-30%. Não há dados clínicos que indiquem que o uso de IECA ou BRA aumenta o risco, nem a ciência básica supor-ta uma associação clara.

Até o momento, a decisão quanto ao uso de IECA ou BRA deve ser individualizada, com base nas necessidades, benefícios e hemodinâmica específicos. Esperamos que mais dados sejam disponibilizados nos próximos dias para nos permitir fazer escolhas mais informadas.

Coronavírus e Ibuprofeno

Alguns clínicos sugeriram que o uso de anti-inflamatórios não esteroides (AINEs) no início do curso da doença possa ter um impacto negativo no resultado da doença [58,59]. Essas preo-cupações são baseadas em relatos anedóticos de alguns pacientes jovens que receberam AI-NEs no início da infecção e apresentaram doenças graves. À luz dessas preocupações, alguns provedores estão usando paracetamol no lugar de AINEs para reduzir a febre. No entanto, não existem dados clínicos ou de base populacional que abordem diretamente o risco de AI-NEs. A Agência Europeia de Medicamentos (EMA) e a OMS não recomendam que os AINEs sejam evitados quando clinicamente indicado [60,61].

Diagnóstico

O diagnóstico da doença pode ser suspeito com base na combinação de sintomas, fatores de risco e de uma tomografia de tórax que mostre sinais de pneumonia. O diagnóstico pode ser confirmado com um exame de reação em cadeia de polimerase via transcriptase reversa (RT-PCR) no exsudado nasofaríngeo ou de amostra de secreções do trato respiratório, ficando os resultados disponíveis após algumas horas a dois dias. Podem também ser usados ensaios imunológicos para detecção dos anticorpos numa amostra de sangue, ficando os resultados disponíveis após alguns dias.

Um único resultado negativo com RT-PCR para SARS-CoV-2 não exclui o diagnóstico da COVID-19.

(17)

A sensibilidade de diferentes amostras biológicas para detecção do SARS-CoV-2 varia. Um estudo que avaliou 1.070 amostras de 250 pacientes com COVID-19 observou os seguin-tes valores de sensibilidade para as diferenseguin-tes amostras seguin-testadas por RT-PCR: lavado bron-coalveolar 93%, escarro 72%, swab nasal 63%, swab de orofaringe 32%, fezes 29%, sangue 1% e urina 0% [62].

Tratamento

Remdesivir

O remdesivir foi recentemente reconhecido como uma droga antiviral promissora contra uma ampla variedade de infecções por vírus RNA (incluindo SARS/MERS-CoV) em células cultivadas infectadas, camundongos e modelos de primatas não humanos. Atualmente, está em desenvolvimento clínico para o tratamento da infecção pelo vírus Ebola. O remdesivir é um análogo da adenosina, que se incorpora às cadeias virais de RNA e resulta no término prematuro da transcrição do RNA7. Possui atividade in vitro contra SARS-CoV-2 e atividade

in vitro e in vivo contra betacoronavírus relacionados [63-65].

Sheahan e colaboradores avaliaram a eficácia terapêutica do remdesevir, lopinavir-ri-tonavir e interferon-beta (IFNb) em pacientes com infecção por MERS-CoV [63]. Os autores mostraram nesse modelo animal que o remdesivir pode efetivamente reduzir a carga viral no tecido pulmonar de camundongos infectados com MERS-CoV, melhorar a função pulmonar e aliviar danos patológicos no tecido pulmonar.

Wang e colaboradores mostraram que o remdesevir funciona no estágio pós-entrada viral e inibe de forma eficaz a infecção viral em linhagem de células humanas in vitro [64].

Atualmente, existem 4 estudos em andamento que estão avaliando o remdesivir para o tratamento de pacientes hospitalizados com COVID-19 e pneumonia nos Estados Unidos.

Hidroxicloroquina e cloroquina

A hidroxicloroquina e a cloroquina são medicamentos orais utilizados para o tratamento da malária e de doenças inflamatórias. A cloroquina tem sido usada no tratamento e quimioprofi-laxia da malária, e a hidroxicloroquina é usada no tratamento da artrite reumatoide, lúpus eri-tematoso sistêmico e porfiria cutânea e tarda. Ambos os fármacos têm atividade in vitro contra SARS-CoV-1, SARS-CoV-2 e outros coronavírus, sendo que a hidroxicloroquina apresenta potên-cia relativamente maior contra SARS-CoV-2 [66,67]. Sabe-se que a cloroquina bloqueia a infec-ção por vírus, aumentando o pH endossômico necessário para a fusão do vírus com as células, bem como interferindo na glicosilação dos receptores celulares de SARS-CoV.

Wang e colaboradores demonstraram que a cloroquina funciona tanto na fase de entrada quanto na fase pós-entrada da infecção por SARS-CoV-2 e inibe a réplica viral in vitro [64].

(18)

Outro estudo relatou que o tratamento com cloroquina em pacientes com COVID-19 teve benefício clínico e virológico em comparação com um grupo controle [63].

Com base em dados limitados in vitro e anedóticos, cloroquina ou hidroxicloroquina têm sido recomendadas para o tratamento de pacientes com COVID-19 hospitalizados em vários países. Tanto a cloroquina quanto a hidroxicloroquina têm perfis de segurança conhecidos, com as principais preocupações sendo a cardiotoxicidade (síndrome do QT prolongado) com o uso prolongado em pacientes com disfunção hepática ou renal e imunossupressão.

Um pequeno estudo relatou que a hidroxicloroquina isolada ou em combinação com a azitromicina reduziu a detecção do RNA da SARS-CoV-2 em amostras do trato respiratório su-perior em comparação com um grupo controle não randomizado [69]. O estudo não avaliou os benefícios clínicos da intervenção. A hidroxicloroquina e a azitromicina estão associadas ao prolongamento do intervalo QT, e recomenda-se cautela ao considerar esses medicamentos em pacientes com condições médicas crônicas (por exemplo, insuficiência renal, doença hepá-tica) ou que estejam recebendo medicamentos que também podem aumentar o intervalo QT. Revisão sistemática [70] mostrou que há uma justificativa pré-clínica razoável para um ensaio clínico, mas que a cloroquina e a hidroxicloroquina devem ser consideradas experi-mentais, e não há justificativa para o uso clínico generalizado. Esse estudo incluiu uma carta narrativa, um estudo in vitro, um editorial, trabalho de consenso de especialistas, dois docu-mentos de diretrizes nacionais. Portanto, não se trata de uma evidência para autorizar o uso da medicação.

Recente ensaio clínico randomizado [71] com apenas 62 pacientes com infecção por CO-VID-19 mostrou que os pacientes que receberam hidroxicloroquina apresentaram melhora clínica mais rapidamente do que as pessoas do grupo placebo. Todavia, trata-se de um estudo não revisado por pares, pequeno e com baixo poder estatístico para gerar uma recomendação. Até o momento, não existem dados disponíveis de ensaios clínicos randomizados robustos para fornecer orientações clínicas sobre o uso, dosagem ou duração da hidroxicloroquina para profilaxia ou tratamento da infecção por SARS-CoV-2. Embora a dosagem e a duração ideais da hidroxicloroquina para o tratamento do COVID-19 sejam desconhecidas, alguns médicos dos EUA relataram doses de hidroxicloroquina anedoticamente diferentes, tais como: 400 mg 2xd no primeiro dia, seguido de 400 mg/dia por 5 dias; 400 mg 2xd no primeiro dia, seguido de 200 mg/dia por 4 dias; ou 600 mg 2xd no primeiro dia seguido de 400 mg/dia por 2-5 dias.

Atualmente, a hidroxicloroquina está sob investigação em ensaios clínicos para profilaxia pré-exposição ou pós-exposição da infecção por SARS-CoV-2 e tratamento de pacientes com COVID-19 leve, moderado e grave.

Lopinavir-ritonavir

Lopinavir-ritonavir (nome commercial Kaletra) é um medicamento, pertencente à classe dos inibidores de protease, classicamente usado no tratamento da infecção pelo vírus HIV.

(19)

A administração concomitante de lopinavir com ritonavir em dose baixa melhora significa-tivamente as propriedades farmacocinéticas e, portanto, a atividade do lopinavir contra a protease do HIV-1. Lopinavir possui atividade antiviral in vitro [72] e em modelo animal [73] contra o coronavírus da síndrome respiratória do Oriente Médio (MERS-CoV). Lopinavir-rito-navir também mostrou atividade antiviral in vitro contra o SARS-CoV-1 [74].

Cao e colaboradores [75] avaliaram a eficácia e segurança do lopinavir-ritonavir (400 + 100mg 2xd por 14 dias) versus cuidado padrão isolado em 199 pacientes com infecção por CO-VID-19 laboratorialmente confirmada e saturação de O2 em ar ambiente de 94% ou menos ou PaO2/FiO2 < 300 mmHg. O estudo não mostrou qualquer benefício do lopinavir-ritonavir em relação ao desfecho primário (melhora clínica). Esse estudo, no entanto, é open-label e tem baixo poder estatístico. Outros estudos são necessários para definir o papel dessa medicação no tratamento da infecção por COVID-19.

Nitazoxanida

A nitazoxanida (nome comercial: Annita), um agente anti-infeccioso tiazolida de primeira classe, inibe a replicação de uma ampla gama de vírus influenza, incluindo cepas resistentes aos inibidores da neuraminidase, bloqueando a maturação da hemaglutina viral no nível pós-traducional [76]. Em estudos de cultura celular, a nitazoxanida atua sinergicamente com os inibidores da neuraminidase [77].

Haffizulla e colaboradores (duplo-cego, randomizado, placebo-controlado e multicêntrico) [78] avaliaram a eficácia e segurança da nitazoxanida em pacientes com infecção aguda não complicada pelo vírus influenza. O estudo mostrou que a medicação reduziu a duração dos sintomas.

Plasma convalescente

O uso de plasma convalescente foi recomendado como tratamento empírico durante sur-tos do vírus Ebola em 2014, e um protocolo para o tratamento de coronavírus da síndrome respiratória do Oriente Médio com plasma convalescente foi estabelecido em 2015 [79]. Essa abordagem com outras infecções virais como SARS-CoV-1, H5N1 e H1N1 também sugeriu que a transfusão de plasma convalescente foi eficaz [80-84]. Em estudos prévios, a maioria dos pa-cientes recebeu plasma convalescente por transfusão única [83,84]. Em um estudo envolvendo pacientes com influenza A (H1N1) em 2009, o tratamento da infecção grave com plasma con-valescente (n=20 pacientes) foi associado à reduzida carga viral do trato respiratório, resposta sérica de citocinas e mortalidade [84]. Em outro estudo envolvendo 80 pacientes com SARS, a administração de plasma convalescente foi associada a uma taxa mais alta de alta hospitalar no dia 22 do início dos sintomas em comparação com pacientes que não receberam plasma convalescente. Portanto, esses achados levantam a hipótese de que o uso de transfusão de plasma convalescente poderia ser benéfico em pacientes infectados com SARS-CoV-2.

(20)

Estudo de Shen e colaboradores [85] com apenas 5 pacientes gravemente infectados por SARS-CoV-2 mostrou que a administração de plasma convalescente contendo anticorpo neu-tralizante foi seguida por melhora no seu estado clínico.

Dada a falta de evidências convincentes dos ensaios clínicos randomizados e a incerteza em torno da preparação ideal do plasma condescendente e sua segurança, plasma convales-cente não deve ser usado rotineiramente no tratamento de pacientes com COVID-19 até que mais evidências estejam disponíveis.

Anticoagulação

A infecção grave pelo coronavírus 2019 é comumente complicada com coagulopatia [86,87]. Coagulação intravascular disseminada (CIVD) pode estar presente na maioria dos pacientes com infecções graves.

Estudo de Tang e colaboradores [88] com 449 pacientes com infecção grave pelo SARS-CoV-2, dos quais 99 receberam heparina, principalmente heparina de baixo peso molecular (94 receberam enoxaparina 40-60 mg/dia) por 7 dias ou mais, mostrou que a mortalidade em 28 dias não foi diferente (30,3% e 29,7%, respectivamente) entre usuários ou não de heparina, mas foi significativamente mais baixa (40,0% vs 64,2%, p = 0,029) no grupo de usuários de he-parina com escore SIC (sepsis-induced coagulopathy) ≥4, e também naqueles com dímero-D > 6 vezes o limite superior da normalidade (32,8% vs 52,4%, p = 0.017). Casos graves foram aqueles que apresentaram frequência respiratória >30/minuto, saturação arterial de oxigênio ≤93% em repouso, e PaO2/FiO2 ≤300 mmHg. Todavia, trata-se de um estudo com sérias limitações metodológicas, a saber: 1) Desenho retrospectivo, com grande potencial de viés; 2) A dose de heparina utilizada foi profilática na maioria dos pacientes.

Estudos prospectivos são necessários para comprovar a eficácia da anticoagulação plena em pacientes com infecção grave por SARS-CoV-2. Por ora, a possibilidade de efeitos colaterais como sangramento limita o seu uso em doses plenas, porém doses profiláticas podem trazer benefícios sem agregar maiores riscos a essa população.

Tocilizumabe

O tocilizumabe é uma imunoglobulina humanizada que atua na resposta imune e blo-queia a ligação do receptor da interleucina (IL)-6 a IL-6. Foi aprovado para condições inflama-tórias relacionadas à IL-6 relacionadas, como artrite reumatoide e artrite idiopática juvenil. Pacientes gravemente doentes com COVID-19 podem ter uma resposta imune extrema, levan-do a insuficiência respiratória grave. Nesses casos, a inibição da IL-6 pode ajudar a atenuar a síndrome de liberação de citocinas, reduzindo as concentrações de citocinas [89]. Os estudos em andamento com tocilizumabe ajudarão a tratar da segurança e eficácia dessa terapia no COVID-19. Na literatura sobre artrite reumatoide, uma revisão sistemática e uma metanálise de seis ensaios clínicos randomizados (3 com dose de 8 / mg e 3 com dose de 4 mg/kg) mos-traram um risco aumentado de eventos adversos em comparação com o tratamento controle

(21)

(OR, 1,53; 95% IC de 1,26 a 1,86) e aumento do risco de infecções (OR, 1,30; IC95%, 1,07 a 1,58) [90]. Outra revisão sistemática e metanálise sobre tocilizumabe na artrite reumatoide encontra-ram um risco aumentado de eventos adversos respiratórios infecciosos (RR, 1,53; IC95%, 1,04 a 2,25) [91]. Como não há dados sobre segurança ou eficácia do tocilizumabe no COVID-19, não é possível recomendá-lo de rotina.

BCG

A vacina BCG contém uma cepa viva e enfraquecida de Mycobacterium bovis, prima de M.

tuberculosis, que é a bactéria que causa a tuberculose.

Muitos países (como Japão e China) apresentam uma política universal de vacinação BCG em recém-nascidos. Outros, como Espanha, França e Suíça, interromperam suas políticas uni-versais de vacinas devido ao risco comparativamente baixo de desenvolver infecções por M.

bovis, bem como à eficácia variável comprovada na prevenção da tuberculose em adultos;

países como Estados Unidos, Itália e Holanda ainda não adotaram políticas universais de va-cinação por razões semelhantes.

Foi demonstrado que várias vacinas, incluindo a BCG, produzem efeitos imunológicos “heterólogos” ou inespecíficos positivos, levando a uma resposta melhorada contra outros patógenos não micobacterianos. Por exemplo, camundongos vacinados com BCG infectados com o vírus vaccinia foram protegidos pelo aumento da produção de IFN-Y a partir de células CD4+ [92]. Esse fenômeno foi denominado “imunidade treinada”, e propõe-se que seja causa-do por alterações metabólicas e epigenéticas, levancausa-do à promoção de regiões genéticas que codificam citocinas pró-inflamatórias [93]. A vacinação com BCG aumenta significativamente a secreção de citocinas pró-inflamatórias, especificamente a IL-1B, que demonstrou desempe-nhar um papel vital na imunidade antiviral [94]. Além disso, um estudo [95] na Guiné-Bissau constatou que as crianças vacinadas com BCG apresentaram redução de 50% na mortalidade geral, o que foi atribuído ao efeito da vacina na redução de infecções respiratórias e sepse.

Miller e colaboradores [96] constataram que os casos de COVID-19 e as mortes são maiores em países que não têm ou descontinuaram a vacinação universal com BCG em crianças, como EUA, Itália, Espanha e França, em comparação com países com políticas de imunização uni-versais e de longa data, como Índia e China.

A vacinação com BCG reduziu significativamente as mortes por COVID-19, com as redu-ções mais fortes nos países que estabeleceram uma política prévia de vacinação com BCG, constatou o estudo.

Coronavirus e carga viral

A transmissão de SARS-CoV-1 foi associada a cargas virais modestas no trato respiratório no 5º dia após início dos sintomas, atingindo seu pico aproximadamente no 10º dia [97].

(22)

Zou e colaboradores relataram que a carga viral detectada em um paciente assintomáti-co foi semelhante à dos pacientes sintomátiassintomáti-cos, o que sugere o potencial de transmissão de pacientes assintomáticos ou minimamente sintomáticos [98]. Esses achados, segundo os au-tores, estão de acordo com os relatos de que a transmissão pode ocorrer no início da infecção [99] e sugerem que a detecção e o isolamento de casos podem exigir estratégias diferentes daquelas necessárias para o controle da SARS-CoV-1. Além disso, os autores mostraram a de-tecção de maior carga viral no nariz do que na garganta.

Coronavírus e gravidez

À medida que o surto de COVID-19 se desenrola, a prevenção e o controle da infecção por COVID-19 entre mulheres grávidas e o risco potencial de transmissão vertical têm se tornado uma grande preocupação.

As gestantes são suscetíveis a patógenos respiratórios e ao desenvolvimento de pneumo-nia grave, o que possivelmente as torna mais suscetíveis à infecção por COVID-19 do que a população em geral, principalmente se tiverem doenças crônicas ou complicações maternas. Portanto, mulheres grávidas e recém-nascidos devem ser considerados populações-chave de risco em estratégias focadas na prevenção e manejo da infecção por COVID-19.

Chen e colegas [100] forneceram algumas informações sobre as características clínicas, desfechos na gravidez e o potencial de transmissão vertical da infecção por COVID-19 em mulheres grávidas. Embora o estudo tenha analisado apenas um pequeno número de casos (9 mulheres no terceiro trimestre de gestação com pneumonia confirmada por COVID-19), em tais circunstâncias emergentes, esses achados são valiosos para a prática preventiva e clínica. Foram coletadas amostras de swab nasofaríngeo neonatal e amostras de fluido am-niótico, sangue do cordão e leite materno para teste quanto à presença de coronavírus 2 da síndrome respiratória aguda grave (SARS-CoV-2), permitindo uma avaliação mais detalhada do potencial de transmissão vertical da infecção por COVID-19. Todas as amostras testadas foram negativas para coronavírus.

Estudos prévios mostraram que a SARS durante a gravidez está associada a uma alta inci-dência de complicações maternas e neonatais adversas, como aborto espontâneo, parto pre-maturo, restrição de crescimento intrauterino, aplicação de intubação traqueal, admissão na unidade de terapia intensiva, insuficiência renal e coagulopatia intravascular disseminada [101,102]. No entanto, as mulheres grávidas com infecção por COVID-19 no estudo de Chen e colegas tiveram menos complicações e resultados maternos e neonatais adversos do que seria esperado para aquelas com infecção por SARS-CoV-1. Embora um pequeno número de casos tenha sido analisado e os achados devam ser interpretados com cautela, os resultados são consistentes com a análise clínica feita por Zhu e colegas [103] com dez recém-nascidos de mães com pneumonia por COVID-19. As características clínicas relatadas em mulheres grá-vidas com infecção por COVID-19 confirmada são semelhantes às relatadas para adultas não grávidas com infecção por COVID-19 confirmada na população em geral e são indicativas de

(23)

um curso clinico e desfechos relativamente otimistas para a infecção por COVID-19 quando comparado com a infecção por SARS-CoV-1 [104,105].

No entanto, devido ao pequeno número de casos analisados e à curta duração do período do estudo, mais evidências são necessárias para definir os riscos de mulheres grávidas que desenvolvem infecção por COVID-19.

Coronavírus em crianças

A infecção sintomática por COVID-19 em crianças parece ser incomum; quando ocorre, geralmente é leve, embora casos graves tenham sido relatados [106-108]. Num grande estudo descritivo chinês, apenas 2% das infecções ocorreram em indivíduos com menos de 20 anos [109]. Da mesma forma, na Coreia do Sul, apenas 6,3% das quase 8.000 infecções ocorreram em menores de 20 anos [110]. Em um pequeno estudo com 10 crianças na China, a doença clínica foi leve; 8 tiveram febre, que desapareceu em 24 horas, 6 tiveram tosse, 4 tiveram dor de garganta, 4 apresentaram evidência de pneumonia focal na TC e nenhuma necessitou de oxigênio suplementar [107]. Em outro estudo com seis crianças de 1 a 7 anos que foram hospitalizadas em Wuhan com COVID-19, todas apresentaram febre > 39 °C e tosse, quatro apresentaram evidências de imagem de pneumonia viral e 1 foi internada em UTI; todas as crianças se recuperaram [108]. Estudo de Qiu e colaboradores [111] com 36 crianças (idade média de 8,3 anos) infectadas com SARS-CoV-2 mostrou que a principal via de transmissão foi por contato próximo com membros da família (89%); 19 (53%) pacientes apresentaram sintomas respiratórios moderados; 17 (47%) tiveram sintomas leves ou eram assintomáticas. Os sintomas mais comuns na admissão foram febre (36%) e tosse seca (19%). Os achados la-boratoriais anormais típicos foram CKMB elevada (31%), linfopenia (31%), leucopenia (19%) e procalcitonina elevada (17%). Todas as crianças receberam interferon-alfa por aerossoli-zação duas vezes ao dia, 39% receberam xarope de lopinavir-ritonavir duas vezes ao dia e 17% necessitaram de inalação de oxigênio. O tempo médio no hospital foi de 14 dias. Todas as crianças foram curadas.

Todos esses estudos mostram que as crianças, em geral, desenvolvem sintomas leves, havendo uma grande proporção de pacientes assintomáticos, o que indica a dificuldade em identificar pacientes pediátricos infectados, os quais podem ser transmissores silenciosos da doença na comunidade.

Coronavírus e alterações radiológicas

Estudo recente encontrou sensibilidade da TC tórax para o diagnóstico de COVID-19 de 98% [112]. Nesse estudo, a sensibilidade da PCR em tempo real foi de apenas 71%. Trata-se de um estudo pequeno, retrospectivo, mas que dá uma ideia da importância do exame tomográfico.

O exame de imagem ideal é a TC de alta resolução (TCAR), se possível com protocolo de baixa dose.

(24)

A TC do tórax não deve ser realizada para rastreamento da doença, mas nos pacientes hos-pitalizados sintomáticos com radiografias normais ou com achados indeterminados. O exame tem se tornado de grande importância não apenas no diagnóstico do COVID-19, mas também no monitoramento da progressão da doença e na avaliação da eficácia terapêutica.

Os achados tomográficos mais comumente encontrados em pacientes com infecção por COVID-19 são:

Opacidades em vidro fosco

São áreas com densidade levemente aumentada nos pulmões sem obscurecimento das margens brônquicas e vasculares, que podem ser causadas pelo deslocamento parcial do ar devido ao preenchimento parcial dos espaços aéreos ou espessamento intersticial [113]. Em pacientes com COVID-19, opacidades em vidro fosco unilaterais ou bilaterais, periféricas e com distribuição subpleural são comumente encontradas [114,115]. Além disso, opacidade em vidro fosco é frequentemente acompanhada por outros padrões, incluindo espessamento e consolidação septal reticular e/ou interlobular [115].

Consolidação

É a substituição do ar alveolar por fluidos, células ou tecidos patológicos, manifestados por um aumento na densidade do parênquima pulmonar que obscurece as margens dos vasos subjacentes e paredes das vias aéreas [99]. A consolidação multifocal, irregular ou segmen-tar, distribuída em áreas subpleurais ou ao longo de feixes broncovasculares, é geralmente encontrada em pacientes com COVID-19 com taxa de ocorrência de 2 a 64% [116,117]. Em pa-cientes com COVID-19, a consolidação pode estar relacionada a exsudatos fibromixoides ce-lulares nos alvéolos [118]. Além disso, a consolidação foi considerada como uma indicação de progressão da doença. Um estudo recente mostrou que o envolvimento pulmonar aumentou gradualmente para consolidação até 2 semanas após o início da doença [119], o que concorda com outra conclusão de que a opacidade em vidro fosco poderia progredir ou coexistir com consolidações dentro de 1 a 3 semanas [120].

Padrão reticular

O padrão reticular é definido como estruturas intersticiais pulmonares espessadas, como septos interlobulares e linhas intralobulares [113], manifestadas como uma coleção de inúme-ras pequenas opacidades lineares nas imagens de TC. A formação desse padrão pode estar associada à infiltração intersticial de linfócitos, causando espessamento do septo interlobular [118]. Vários estudos listaram o padrão reticular com espessamento septal interlobular em pa-cientes com COVID-19 [115]. À medida que o curso da doença progride, a prevalência do padrão reticular pode aumentar em pacientes com COVID-19 [120].

(25)

Padrão de pavimentação em mosaico

O padrão de pavimentação em mosaico demonstra septos interlobulares espessados e li-nhas intralobulares com sobreposição em um fundo de opacidade em vidro fosco, semelhante a pedras de pavimentação irregulares [113]. Com base no conhecimento patológico prévio da SARS, esse sinal pode resultar do edema alveolar e inflamatório intersticial da lesão pulmo-nar aguda [121]. Estudos recentes relataram 5-36% de pacientes com COVID-19 com padrão de pavimentação em mosaico [122,123]. Além disso, em combinação com vidro fosco difuso e con-solidação, o padrão de pavimentação em mosaico pode indicar que a infecção por COVID-19 está entrando no estágio progressivo ou de pico [119].

Alterações pleurais

Alterações pleurais, incluindo espessamento pleural e derrame pleural, foram relatadas na infecção por COVID-19 [120]. Com base na experiência da infecção pelo coronavírus da sín-drome respiratória no Oriente Médio (MERS-CoV) e em achados recentes, a presença de der-rame pleural pode sugerir um prognóstico ruim no COVID-19.

Broncograma aéreo

Broncograma aéreo é definido como um padrão de brônquios cheios de ar (baixa atenua-ção) em um fundo de pulmão com menos ar (alta atenuaatenua-ção) [113]. Foi relatado como outra manifestação de COVID-19 na TC [115]. No entanto, de acordo com um estudo observacional [124], muco gelatinoso estava presente no brônquio pulmonar, o que pode sugerir que os brôn-quios de baixa atenuação na tomografia computadorizada podem ser preenchidos com muco gelatinoso em vez de ar.

Linfadenopatia

Os limites para a linfadenopatia são um tanto arbitrários, tipicamente 1 cm do diâme-tro de nódulos mediastinais [113]. A linfadenopatia foi relatada em 4 a 8% dos pacientes com COVID-19 [116,120]. Além disso, a linfadenopatia foi considerada um dos fatores de risco significativos para pneumonia grave/crítica por COVID-19 [125]. A ocorrência conjunta com derrame pleural e nódulos pulmonares minúsculos extensos pode sugerir superinfecção bacteriana [126].

A evolução dos achados tomográficos de acordo com a fase clínica da doença pode ser assim descrita [120]:

FASE SUBCLÍNICA (antes do início dos sintomas):

normal em torno de 50% dos casos; 2,8 segmentos pulmonares acometidos;

(26)

acometimento unilateral em 60% dos casos; opacidades multifocais bilaterais (cerca de 53%);

opacidades focais com atenuação em vidro fosco (cerca de 93%).

FASE INICIAL (< 1 semana do início dos sintomas):

normal em < 10% dos casos;

acometimento bilateral em 90% dos casos e difuso em 52% dos casos; derrame pleural em 5% dos casos e linfadenopatia em 14% dos casos; opacidades em vidro fosco em 81% dos casos;

opacidades reticulares em aproximadamente 9% dos casos.

FASE INTERMEDIÁRIA (1-2 semanas):

opacidades em vidro fosco em 57% dos casos; opacidades reticulares em torno de 20%; consolidações em 30% dos casos.

FASE TARDIA (> 2 semanas):

opacidades em vidro fosco em 33% dos casos; opacidades reticulares em 33% dos casos;

derrame pleural em 13% dos casos e linfadenopatia em 13% dos casos consolidações em 53% dos casos.

Em relação à ultrassonografia à beira-leito, estudos preliminares de séries de casos (China) [127,128], trouxeram evidências de que os pacientes internados devido ao comprometimento pulmonar, pelo COVID-19, apresentavam ao exame ultrassonográfico:

padrão de linhas B esparsas, em diferentes regiões de ambos os pulmões; menos frequentemente, áreas de consolidação pulmonar.

Embora mais estudos sejam necessários para confirmar o papel do US, ele pode se revelar útil no acompanhamento de pacientes com COVID-19, graves, à beira do leito, como já usado em outras causas de síndrome respiratória aguda [129].

(27)

Coronavírus e manejo respiratório

Indicações de intubação endotraqueal

insuficiência respiratória aguda com frequência respiratória superior a 30 irpm. hipoxemia aguda ou insuficiência respiratória hipercápnica.

nenhuma melhora após 2 horas de oxigenoterapia de alto fluxo ou métodos alterna-tivos de ventilação não invasiva.

perda de consciência e/ou incapacidade de proteger as vias aéreas.

Cuidados pré-intubação [116]

1) Trata-se de um procedimento de alto risco para a produção de aerossóis. Portanto, pa-cientes a serem intubados justificam precauções específicas, e o procedimento deveria ser realizado, idealmente, em uma sala de isolamento aéreo. Todos os profissionais de saúde envolvidos na intubação devem usar equipamento de proteção individual adequado. O equipamento de proteção individual inclui a máscara N95, vestuário de proteção para todo o corpo, duas camadas de luvas, óculos ou protetor facial e o macacão à prova d’água.

2) Quando possível, a intubação deve ser realizada por um anestesista experiente, assisti-do por outro clínico (anestesista ou médico intensivista), a fim de minimizar o número de tentativas e a produção de material/gotículas do paciente no ar.

3) A preparação do equipamento para intubação é semelhante à de um caso comum, in-cluindo laringoscópio, tubo endotraqueal, anestésicos, drogas vasoativas, dispositivo de sucção, ventiladores, monitoramento padrão e acesso venoso.

4) A equipe deve escolher os dispositivos das vias aéreas com os quais está mais familia-rizada, incluindo, entre outros: (1) um videolaringoscópio com lâminas descartáveis; (2) tubo endotraqueal de vídeo descartável; (3) uma máscara laríngea descartável; (4) um kit para cricotireoidotomia de emergência; (5) se disponível, preparação de um videobroncoscópio descartável; e (6) se disponível, preparação de vias aéreas supra-glóticas e subsupra-glóticas compatíveis com a inserção de um tubo endotraqueal. A inje-ção periódica de 2% de lidocaína 2 a 3 mL ou 1% de lidocaína 4 a 6 mL na orofaringe pode reduzir a irritação e minimizar a tosse do paciente. Para médicos familiarizados com o uso do videolaringoscópio, este é recomendado porque pode aumentar signifi-cativamente a distância entre as vias aéreas do paciente e a do anestesiologista que realiza a intubação.

5) Um filtro respiratório de alta eficiência deve ser instalado entre a máscara e o circuito respiratório e também na extremidade proximal do circuito respiratório. No entanto, a eficiência do filtro no bloqueio do vírus é indeterminada. Portanto, uma vez que o ventilador da UTI é usado para um paciente confirmado com COVID-19, ele deve ser dedicado apenas aos pacientes com COVID-19.

(28)

6) Recomenda-se um sistema de sucção de vias aéreas fechadas, se disponível, para re-duzir a produção de aerossóis virais. Se não estiver disponível, a equipe deve man-ter o número mínimo, mas necessário, de sucções usando um sistema de sucção não fechado.

Cuidados na intubação [130]

1) A intubação deve ser realizada por anestesiologistas experientes e tentativas repetidas de intubação devem ser minimizadas para reduzir o risco de exposição.

2) É preferível a intubação oral com um videolaringoscópio ou broncoscópio, se disponí-vel. Ao usar um laringoscópio direto para intubação, é necessária atenção extra para reduzir a tosse dos pacientes. A intubação broncoscópica transnasal pode ser uma op-ção alternativa quando a intubaop-ção oral é impossível ou contraindicada.

3) A equipe deve remover as luvas externas imediatamente após a intubação e calçar um novo par de luvas.

41) Esteja ciente de que a vedação adequada da máscara e a ventilação alveolar reduzida resultam em oxigenação adequada pré-intubação. Se for necessária oxigenação de alto fluxo, os provedores devem ser cautelosos, pois o oxigênio de alto fluxo aumenta a pro-dução de gotículas virais e aerossol. A boca e o nariz do paciente devem ser cobertos com duas camadas de gaze úmida, garantindo que não obstrua as vias aéreas. A más-cara de pré-oxigenação é sobreposta à gaze.

5) Para pacientes com via aérea normal, recomenda-se a indução de sequência rápida mo-dificada. Paralisia muscular suficiente deve ser alcançada após a perda de consciência. No entanto, a equipe deve estar ciente de que o tempo de oxigenação da apneia geral-mente é extremageral-mente curto e é necessário um grande esforço para evitar hipoxemia grave. A escolha dos medicamentos de indução é ditada por considerações hemodinâ-micas. Midazolam 2 a 5 mg com etomidato (10 a 20 mg) ou propofol, se a hemodinâmi-ca do paciente permitir, pode ser usado para indução. Recomenda-se a administração de fentanil de 100 a 150 μg por via intravenosa a um paciente adulto, para suprimir os efeitos da laringe e proporcionar condições ideais para a intubação. Se não houver contraindicação, a succinilcolina 1 mg/kg deve ser administrada imediatamente após a perda de consciência, e a intubação pode ser realizada após o término da fasciculação muscular.

6) Para pacientes com vias aéreas difíceis, a intubação por videolaringoscopia pode ser feita com sedação tópica com lidocaína ou tetracaína através da membrana cricotireoi-dea, cavidade faríngea, cavidade oral e vias aéreas. superfície do cateter.

7) Esteja preparado para uma via aérea difícil. Isso é semelhante ao tratamento para um paciente comum. No entanto, a preparação deve ser mais robusta, pois a ajuda é

(29)

limitada e o equipamento de proteção individual é demorado. Além disso, obter uma visão clara da glote é extremamente desafiador devido à condensação de vapor no pro-tetor ocular ou nos óculos de proteção.

8) Confirme a posição correta do tubo endotraqueal. Em muitos casos, equipamentos de proteção individual e sons respiratórios reduzidos podem limitar o papel da ausculta. O posicionamento adequado do tubo endotraqueal pode ser confirmado pela visuali-zação direta do tubo endotraqueal passando pelas cordas vocais, observando elevação bilateral do tórax e forma de onda adequada da capnografia e realizando broncoscopia, se necessário. A profundidade apropriada do tubo endotraqueal pode ser determinada pelos marcadores de inserção nos incisivos superiores em homens adultos (22 a 23 cm) e mulheres (20 a 21 cm), respectivamente. A radiografia de tórax deve ser realizada o mais rapidamente possível.

Cuidados pós-intubação [130]

1) A sucção oral ou traqueal deve ser realizada com um sistema de sucção fechado após a intubação.

2) A limpeza e desinfecção adequadas do equipamento de assistência ao paciente e das superfícies ambientais são obrigatórias para reduzir a transmissão.

3) O equipamento de proteção individual deve ser removido adequadamente, sob a cui-dadosa supervisão de um oficial de controle de infecção. A higiene das mãos deve ser realizada após a remoção do equipamento de proteção individual. Não toque nos cabe-los ou no rosto antes da higiene das mãos. Um banho completo também é altamente recomendado após a remoção do equipamento de proteção individual, incluindo de-sinfecção oral, nasal e do canal auditivo externo.

4) O equipamento de proteção individual usado durante a intubação deve ser mantido em uma área contaminada e não deve ser levado de volta à sala de procedimentos.

Manejo de pacientes com síndrome coronariana aguda e infecção por COVID-19.

Em carta ao editor, Zeng e colaboradores [131] recomendam as seguintes abordagens:

1) Pacientes com infarto agudo do miocárdio (IAM) com elevação do segmento ST:

A) Pacientes estáveis com início dos sintomas < 12 horas:

No caso de pacientes dentro da janela de tempo de reperfusão e sem contraindica-ção à trombólise, a terapia trombolítica é realizada em local com isolamento. Após trombólise bem-sucedida, o tratamento é continuado no local de isolamento. De-pois que o paciente se recuperou da pneumonia por COVID-19 e o teste de ácido nucleico é duas vezes negativo, a intervenção coronariana percutânea (ICP) eletiva

Referências

Documentos relacionados

A Prefeita Municipal de Poções - Ba, em acordo com a Lei nº 8.666/93 e nº 10.520/02 torna público o Resultado e HOMOLOGA o Pregão Presencial nº 031/2021 realizado no dia

Os gerentes precisam decidir se atribuirão apenas os custos privados, ou se todos os custos sejam atribuídos (custo total). Depois, precisam decidir usar uma abordagem por função

Ainda nos Estados Unidos, Robinson e colaboradores (2012) reportaram melhoras nas habilidades de locomoção e controle de objeto após um programa de intervenção baseado no clima de

Paciente jovem Diarréia (~3 semanas) Características inflamatórias. Diagnóstico diferencial Exames a

NÃO utilize o equipamento se o cabo de alimentação estiver desgastado ou danificado; caso contrário, pode provocar um choque eléctrico ou um incêndio.. NÃO puxe o centro do cabo

Mesmo aquelas mulheres em que não foram inibidas as contrações involuntárias do detrusor, referiram aumento do volume urinado, diminuição da frequência, da urgência urinária,

Os objetivos deste trabalho foram os de diminuir o custo e aumentar a eficiência da rede substituindo um de seus reservatórios por alterações

Métodos: Coorte prospectiva em que foram avaliados todos os pacientes que internaram em um centro de tratamento intensivo durante 6 meses e entrevista- dos, via