• Nenhum resultado encontrado

Overhead Reduction in Cooperative Spectrum Sensing Via Sequential Detection in Cognitive Radio Networks Under Bandwidth Constraint

N/A
N/A
Protected

Academic year: 2017

Share "Overhead Reduction in Cooperative Spectrum Sensing Via Sequential Detection in Cognitive Radio Networks Under Bandwidth Constraint"

Copied!
6
0
0

Texto

(1)

! "#$ %

& "'

'

) 1 (

# +, - . /

) 2 (

/ 1 2 3 '&

) 3 (

) 1 ( % & ' ( )% *+,- % % . /0 % * + , 10 %

.

) 2 ( % & ' 3% % *4 567 *& 8 9 '

) 3 ( : % 3 9 % /0 % * + , 10 %

: < = > 1

/ 6 / 1393 :A B = >

12 / 9 / 1393

: /67 41C + , DE ( F /6) G H /6) . % + %

J % % K +5 % 15 7 *( F

LM 4 ... N:M% % 4 +8 O, P5Q% 1 . 15 7 . % , 3% ' 15 7 3% ' R S, TM% > % 8 5U +, % N: ' % . :<% VW>

A K 3% 7 4 +:' 0, /6) *TX 6, N % VY,

15 7 C % 4X% % + Z< [ > % 9: % 1 .

A . % +, 6E> ' :, Q ' :, 4: 4 +:' 0, /6)

% P ' > O * ' :, A . 4 ' ,

+, \ % % S \ A % ' , : 15 7 * % \ P ' > % 9: % .

+, +, ] % :0 +^

% 41 % 4 4U > S A % 9: % . % M 4U% , T10, 3% ' % > D % <% +, % +: K> _ 4

*

+, N % 6 _ 7-F% .

T10, % * O, 57 4 +< F % +

` < 3% > .

/6) % %B^

+, N % . 4U > T H 6 % > 4^ E,

A A % 4 +:' 0, /6) % 9: % +C > >

+ C6 : /^

: % ' \ P ' > & %

+, 0

4 C a : . 8 +, 3 0

4' % + M *\ P ' > A , A N %

+, % +:' 0, /6) +, D ' + U > T H 3% , 4 % S A '

.

: + 8 '+ % \ P ' > * /6) *+:' 0, /6) *( F +C > > /6) * %

Overhead Reduction in Cooperative Spectrum Sensing Via

Sequential Detection in Cognitive Radio Networks Under

Bandwidth Constraint

Samira Torabi(1) – Ali Bahrami Sadeghabadi (2) – Mohammad Farzan Sabahi(3)

(1) MSc - Department of Electrical Engineering, Najafabad Branch, Islamic Azad University Samiratorabi000@gmail.com

(2) Senior Offshore Telecom Maintenance Engineer in Assaluyeh-Iran abahramis@ gmail.com

(3) Assistant Professor – Department of Electrical Engineering, Isfahan University sabahi@eng.ui.ac.ir

Reliable and efficient spectrum sensing plays an important role in cognitive radio networks. On the other hand, accurate and fast sensing of spectrum is the main function of a cognitive radio for cognitive users to avoid harmful interference in licensed users. However, detection performance issues are often shadowing, fading and receiver uncertainty. To mitigate the impact of these issues, cooperative spectrum sensing as an effective method is presented to improve the detection performance with help of spatial diversity. Cooperative spectrum sensing leads to CR detection performance improvement. In order to execute the cooperative spectrum sensing among cognitive radio users, data fusion schemes are superior to that of decision fusion ones in terms of the detection performance but suffer from the disadvantage of huge traffic overhead when bandwidth constraint of communication channels is taken into account. The overhead contains additional sensing time, delay, energy and sensing actions dedicated to cooperative sequential sensing any also contains any performance degradation that is caused by cooperative sensing. The purpose of this paper is reviewing of the cooperative sensing techniques with sequential methods. The simulation results show that with reducing the number of examined samples, the sensing time and the energy will be reduced and as the result, the overhead will be reduced.

Index Terms: Cognitive radio, sequential spectrum sensing, cooperative sensing, overhead, hard decision.

9 : " !

: +,% +57 * 3% % *4 567 *& 8 9 ' *

(2)

1 ; < + _% S, % 9: % D % <% 4 4U > ,% ( F C '

+, 3 0 _ E EO> . :6 + M > 4'

20

, % % 3% ' 4 4:< b d:M% +6 ' < ( F % 3 , +, > % H 9: % ,

+, ] 8 1 41C .[ %

1 )

CRN

+ % ' *( F 4 + : % 9: % H (

% + S, TM% > 41 % 3 % . g'% ) 4 % ( F N:M 1 . U% 4 V 3% ' 4 * ' % 4 ^ % 3% ' 9) +, % +9 F ]

2 41C N h .[

K %

+ +F C> % :6 8 % % 4' %

+ * %

:6 N % . % 8. M i% F% j O, % ' *

Nk L, > 4: % % l :)% ( F m S0> 5 H 4 ^ % ' 45 4 ( F 3. . 4' 2

)

PU

% ] % (

*+^ % 3% > T CH % M :,% 3. 4 4U > no p M ' % : > ' ` > % 3 l , A T, ) n ' < 9: % JH% . 4: % 3 F% T H q C> % K \ l 4' +, 4 % F 4 : < * % % m S0> % >

. % 9: % ) \% ' +^ M +6 ' < \% ' 4' : % > C7 ( F /6) i% % +5' ^ ) 1

4 V '

3 C

. 8 & : 4 ^ % ' Z, TM% > % r7

2 F 4 +:6 4 V 3% ' VY,

9) + % +9 F

3. % 9, F 4 ] 9: %

2 3 .[

+, mS0, + % , & % ( F /6) ] 8

4 :[

) Rt ' % 0 :)%

Pfa

( 4 +, 3 4' + , 4 ^ % ' K '

u H% ( F 4' +, +^ M

. % Z) *

) 1 . :)%

Pd

( 5 % 4 ^ % ' K Z) 4' + ,

( F

u H% +, 3 % % ] % 4 ^ % ' j > T ^ 4 .

4 ^ % ' TM% > r7 1 . Kw ' LM K 41 % +, +, +9 F D ' r7 Rt ' % 0 LM K 8 *

ul , 1 . :)% *4 /6) 15 7 % 4' % \ l

O, 4 C6 ] 8 g'% ) Rt ' % 0 :)%

5 .[

+8 O, :T CH % T,% 7 T 7 6

N:M% % 4 * 7

_ 95>

6, r7 +, 4' _ 5 7 /6) ( F 4 T H F + U > O>

VW> ) T1 . 8 % H 1

+, 0, * 4:98 T,% 7 ( ]

7 .[

) T1 1 (

+, 0,

4 ^ % ' O, 4 V ' 4'

' . % O, N % % y M \ 4 V ' :6

CR1

% z O 1 . 3 1,% n * % 4 ^ % ' E:6,

CR1

' . % U

CR2

4 ^ % / % 4' + , 57 4

O, * ( Z> _ 4 % / * % _ 4

+, < 6, w

' % T ^ N 4 . '

CR2

3 1,%

U z O 1 .

-7 . % ' *N %

CR3

41 % 57 4

4 ^ % ' / % % N h

4 ^ % 8 +

* % [-F% T10,

< Nk L, /

4 ^ % n . % 4U% , T H

4U > %

u-g, * / E: % 4' %

CR3

. 8 TM% > % r7 % N1 ,

Z< [ > 57 4 ,% 3% ' 4' +

* % 6 % T :O,

T10, { < * / 1 9>% 4 3% ' 4 4' ] ' 4 > % ... N:M% % 4 5

.[

4 *+8 O, T CH % +5 l 4 ( F +5O, /6) +5' F 4 5 7 6 <% 4 , *3 /:6 % 45k6, + 1<% 1

+, 1 .

] _-10, N % 4C5Q % . 10

/6) [

TO, 4' ' N w 45 4 ( F +:' 0, . % 0 * % % H +> 9:,

' , 3% ' +, > 8%

CR1

3 H % /

) * < 4:98 4' +>-10, +,

/6) a : 3% >

P ' > . 4: %B8 |% : % 4 3% ' 4 E 3% ' +:' 0, _ d> 8

+, 4 + Z< _% 0, [ , % 4' * .

+, ] ' 4C5Q ' < _% 0, 3% E< % > 6

4 8 N % .[

+, C + U > T H T1 4 1 . .

/6) N %

4C5Q U VY, R%BU 6 A K 3% 7 4 +:' 0, 15 7 D ' 4 8 41 % 4 4U > . % M 3 _-10, % +: 6H N:M% % 4 q C> % 1 . 9

+, *

% +:' 0, /6) % (0' % 4^ E, N % / % N % 3 4 R 5L, . %

) T1 1 ]+8 O, N:M% % 4 / Nk L, < :( 7

[

Fig. (1): Receiver uncertainty and multipath/shadow fading [7]

_l E,

]

3 5

[

* 41 % 4 4U > 41C U , 3% '

4:< 8 % H +95:S, 3 1, \% ' * %

% /6) ' 0,

+, '

.

N % 3% ' % M /6) a : + > 4 \% '

d> ' , 4 +, \-7% 8

. '

K :6 % *

+, ( F /6) * U N : , .

+, 3% ' 4' % ( F /6) a : & % % % >

% % +6 ' < % ) 4 . ' 9: % % <

4M w K

CR

% S, + , N 4O^ d, K

3 , 3 , m dS> / i F % . % H ( F /6)

(3)

+, D ' % ( F /6) +0S V% [ ~ , N % 3 , 3 w *

> ' _ 7-F% E: % % 4:< m dS> +, >

] 8 .[

> ' /6) 3 , 8% E: % D % <% r7 +0S V% * >

+, ( F /6) H D ' 4 , [ ~ , N % 4w 8% .

+, % 3% '

, * % N1 , TM% > % 4' %

. ' _ 7-F% 4 + 8 d> K 4 +:' 0, 1 .

8 +5O, d> P ' > +5' ^ ) . % ' ,

d> 4: 4 4 ' , S A 4 8

10 )

HDC

*(

d> \ A 4 8 11

)

SDC

d> ( \ A 4 8

+, 6E> : % ' .

d> S A 4 8

)

HDC

8 % +: K> _ 4 +5O, _ d> a : > ( +, A % 8 ' , 4 d> 4' +^ ) .

\ A 4 8

)

SDC

u E:6, +5O, _% 0, ( +, A % 8 ' , 4

. %B^

. % % M 6 /6)

% N % i *4^ E, N %

/6) 3% ' 4 4'

' :0 % > +:H 41 % 4 4U > . ' 0, ( F ( F /6) 4 +,

* % 3 , /6) D % <% +, * 4

A % T ^ N /6) 3 , D ' U +C > > /6)

% 9: %

.

% +< F P ' > 41 % 4 4U > : 15 7 \

8 D % <% +^ % % 3 0 S P ' > 4 C6 % >)

+, T O> ' , 4 *(3% '

:0

+, ] % \ P ' > A O, 4 4U > n .

% S P , * ' 6 % > % * % N % .

\ P ' > % 0 A * 4:98 TX 6, 4 4U > 4^ E, + , & % +C > > 1 . : % ' % 9: %

.

a : 4 C +, 3 0

* 0 A 4'

* ' % > % +:)

' > , + M P

4 C a : N h . % D ' % 4 \ 3 0

+, A 46 E, *+C > > 1 . % 9: % 4' Q

6 +C > > :

4 ^ % ' 1 . :)% C

% M Rt ' % 0 :)% D '

.

2 ; = 3 1

/6) % i : % 4 ~ < , 8 d> *( F

% Z) 4 ^ % '

H0:

% Z) 4 ^ % '

H1:

' K % ^ ) N >

AWGN

' • < *

x

%

4 :_ N % . <

H : x n

H : x s n (1)

3. 4'

s

+^ % / %

n

j5:S, + 8 9 %

+, +< d> .

H0 4 ~ < % Z) 4 ^ % ' 4' % %

+, +6 ' < % 9: % 4 , 4 V '

H1 4 ~ < % 4 ^ % ' 4' % 4 4:< b d:M% +6 ' < % 9: % )

+, 3. + +6 ' < % 9: % 4 , 4 V '

.

45 < 4 % +, > 4' % N % , • < / 1 % 6,

4:< 8 % H 4 % Kw ' 6 % N 45 < %

/ 1 %

+, 4 > % 6, _ 95> +, , n . '

% >

C6

SNR

. / 3 61 4 %

) 1 . _l :)% * 1 . 15 7 + % %

Pd

(

) Rt ' % 0

Pfa

+, ( > _ 4 ( ]

10 :[

) 2 (

Pd = P(H1|H1) = P(X > λ | H1)

) 3 (

Pfa = P(H1|H0) = P(X > λ | H0)

4'

X

8 d> ,.

λ

( > N % & % . % 4 : . zL

_ 4 1 . \ 7 :)%

Pm=1-Pd

+, ( > .

( F % 4 C5F < 9: % C 4 % 41 % 4 4U > 4 4:< b d:M% +, 4 ^ % '

( F % 4 ^ % ' 4' 3 , *

% M 9: % ( F % * , 3 ' * 1 9: % 1 . 3 % % :)% Rt ' % 0 :)% j % .

+, _ 4

.

Pfa= , (4)

Pd =Qu( 2γ, √ ) (5)

) 6 (

Pm =1-Pd

* < _l , λ

γ C6 € % 1 . 4 : . P > > 4

+, 4 / .

u

€ % 1 . + ,

+, ) .

.

(

Γ

\ > , 8 J >

Q(.)

+, \ ' , J >

.

C6 3 , . A % +1 +

,. • < 3 , . %

+, d> 3. :, 4 ~ < K +: N 4' C6 JH% . 8

% :)% C6 *+

O> 4 0, % K

4 ~ < _ 9:,

H1 H0 +, % +:C6 + C6 .

+ > 9 % 4' % _l :)% C6 . 8 +, % E,

[ H • < 4 0, [ H :)% _ 4 4:668 % % +

H1 • < 4 0, [ H 6E> *

H0 +, ( > ]

11 :[

) 7 (

LLRN= ln ||

) T1 2 :( :6 , ]

12 [

Fig. (2): System model [12]

3 ;

> 9

) T1 4' F 3 2

+, 0, ( *

M

4 %

d> ' , % (G 95> ' ,) 8

FC

(4)

+, T 10> % +, • < -7 4 .

N ' 4'

8 4 ^ % ' . % 4U% , +5 % +8 O,

+, 9: % 41C € % 1 . % %

n . '

/6) % %

( F % K *mS0,

% J U 3 ,% j O, % % M , _ 7-F% % :

.

+, 4C O, % ` , 3 8 ,. 3. & % +:< / . '

8 • <

H0 H1 • < % TE:6, +,

% -7

8 45 < * J U -E: % • < / 1 % 41C

+, 4:< 8 ` y , F w % D +5 % +8 O, %B^ .

8 % +, • < N h . % TE:6, ,. _ dS0,

8 ' J U :)% +^ /w J > + * % TE:6, 4 0,

) 8 \ > % ' +8 O, (+ 8 9 3 61

. % 8 4:< 8 ' 4 1 . :,% 3 61

+, • < 8 4C O, 3 8 ,. 4 : .

O>

[ H q

H0 H1 3. d> *3 61 J > TE:6,

+

i.i.d

. %

4 3 % ' 0, d> . <

4' + U > 8

LLRN

4

4 % > . % 4,% % * ` , O, 4 : 4 3 >

% R 5L,

Nstop

+, 4 : . zL _ N % . , λ λ

8 +, 4C O, _ 4 ]

11 :[

Pfa=Pr (LLRNstop λ | H0) ! "# $

# %"#$ (8)

Pmiss=Pr (LLRNstop&λ | H1)!'( %'( %"'"( $ ( 9)

Pfa Pmiss

3 0 LM 3% , 1 . +F 4' % +

+, zL K % LM N % % K E, . :9 9>% % >

:4' 6 5L, / _ C7 4 . 4: % 4/ : ' 4 : .

Pfa &α (10)

Pmiss& β (11) +, :,% P6) *4 : . • L 4' % 3 0 3% > +

, 4

T1 ] % 4C O, T H 11

:[ λ ! ln (

"-. ) (12 ) λ ! ln ( /

"0 (13) % 4' % N % • < * O, 4 4U >

' ) ' , 4 _ 7-F% . % U O, (+^ : '

+, 9: % % % % 3 % : % ' % % U N 4 .

4C O, M 0, % % € % % E, * 8 41 % % + * ' , % % : % ' E, % \ % 3 % : % '

+, . : < N % *4^ E, 3 % : % ' +OL

\ % +, E,

% E, 4 % +1 4 + : /^ + C6 1

0 1 T C>

+, 3. % n . +, % *G 95> ' , 4 : % ' E,

8 +, 4C O, ' , E, [ ,

*+C > > 1 .

+, t S>% 4 ^ % ' Z) , S A 4 + d>

. 8

0, A N % A +

6 % %

.

% 6 A

% \ 7 % 4 ) 8 % * `

4:< 8 +, .

8 * 8 % H % 4 ) + C6 8% 4' _ 9> N % +, % % 3. % _ N % Q '

+ % % ]

10 .[

+ C6 46 E, % +C ' > 4^ E, N % 0 A +, 4 : . % +C > > /6) 4 : . zL 3% >

4< € % 4' % _ N % 4 15 7 O . + U

8 +, ( F /6) 4 [ P > > 4 K 4' + U > '

mS0, 4 +, (H :, /6) * A 4U > T H 4:1 .

' /6) 4' + % ' 4 d> 4' % N % 0 +, 4 % % X ) , % * % 6 A i-M * '

. ' A % 8 ' , 4 % M d> 3% '

: % _ 4 4^ E, N % 0 : /^%

1 % : %

N=0 LLR0=0

+, % % H .

2

N=N+1

.

3

4 % %

C6 * M <

ln 1 23

4 23

+, 4C O, % . '

4 +, : % ' % 4C O, C6 % ) ' , 4 '

FC

(

+, %

. '

5 4 % M + C6 % 4 4 % P > >

+, + _

: '

LLRN =LLRN-1 ln 1 23

4 23 (14)

8% LLR7 ln λ 7

1 \-7% ' , 4 ` , 8 i F %

+, 8% LLR7& ln λ8 7

1 +, \-7% ' , 4

8% ln λ8≤ LLR 9& ln λ

' , 4 % 9 7 * / % H

+, \-7% . '

LLRN=∑ L x;9;< (15 )

= LLRLLR99 ln λ ∶ H& ln λ ∶ H

ln λ ? LLR9? ln λ next sample

6 ' , % : %

LLR

< zL

4 : . % 4' 4 _

+, 46 E, * % ( > ' Z) , > '

. ' ] % % : ' / d> : 4 ^ %

7 4 4' + , > N % / d> % : <

+, 4,% % ' .

4 ; @ ! 2

41C 4' % • < 4^ E, % DS N % 12

%

) % ( F /6) % M 12

% % N h .( 30

+, • < 4 ) '

(5)

N / , j5:S, +< d> + 8 J > % % * N % +, K n % 9 ' /

J > % % 4 ^ %

n % 9 N / , j5:S, +< d> + 8

γ

. %

γ

%

_ 4 4 / C6

γ JJK

L

' N h . %

. % 4:< 8 ` + 8 9 % 4 +5 % { <

J > % +5, ' _ 7-F% 4 /:6 % 4 C . % /

% <% \ % 9: % > o, ' 4 C )

MATLAB

(

α β 0.1 4 : . zL % E, % 4:< 8 `

λN λ P > > 4 8

% 20 / 2 O ` 4:< 8 . %

) T1 3 4 % > \% 8 :6 ( 0 A ,

+, 0, . % % D +, > + U 4 4' 8

4 % : ' 6 % > * 3% ' _% 0, d> *

. % E, 4 ^ % ' Z) , 8

) T1 \% 8 :6 % 4 4U > 3

(

+, 0,

N :0 4'

*4 ^ % ' Z) , R 5L, 4 : 4 3 % % 1> 8

4 + U 4 % * % % X ) 6 4' % 4 100 % > *4 8

. % T ) R 5L, 4 : *4

) T1 3 :( 4 % > \% 8 :6 d> 4 3 % +

4 ^ % ' Z) \ 7 Z) , SNR=0 dB

Fig. (3): Histogram of required samples for decision making of presence or absence of the PU, under SNR=0 dB

`: , G 95> ' , *+C > > Q A 8 >

C6

4 4 % % + 4C O, M <

+, ` 4 4' % + . \ % % 3 % : % ' no *

4 % > 3 w % M :0 /6) 3 , * % 6

G H 46 E, % . % Q +C > > 1 . A >

*+C > >

4 % > N / , 4 C no 4C O, *+C > > A

Q A 4 4 % > j :, % +C > >

Q A

) T1 . % \ % +C > > 4

0 15 7 46 E, (

Q A +, 0, +C > > % 'B, 4 C .

5 '

` R S: % • < +C > > Q A . % 4:< 8

NP=N

P , 1 . :)% 4 _l ) +Z 4' % +

+^ ) . ( ~ 1 . :)% 4 _l ) +Z

% ' 0, *+C > > A 4' 4,% % R 5L, 4 : 4 3 >

+, % 15 7 ' : *N / , F 4 0 A

. % A %

) T1 4 +C > > Q A 0 A 46 E, :(

Fig. (4): Comparison of the proposed method with the non-sequential method

) T1 5

+ 0 • F % 1 . :)% % (

+, 0, 4' L . %

% > 41 % U *

4 4 T' 4 C6 % : ' +

15 7 * %

4 D ' % % + M 6 1 . P S> r7

0 1 . 15 7 . %

) T1 5 % > % 0 • F % 1 . :)% + O , :(

3% ' (5:S,

Fig. (5): Probability of detection versus SNR for proposed method with different CRs

) T1 6 A % 1 . 15 7 ( S P ' > (5:S,

4X% % % \ 4 C . %

% 12 4 V '

SNR

% E, N h . % 4:< 8 ` (5:S,

α β 0.1

. % 4:< 8 ` 0 A %

) T1 6 +, 4`)-, ( 3 H 4'

AND

' % > %

+ 3 0 % +C , 15 7 *4 V 3 H +^

OR

15 7

3 H 4 C6 :

AND

3 H % * % + 4:C^% . %

OR

8% * m S0> % 4 ^ % ' Z) *4 V ' K >

+, • < ]0, ( F .

) T1 6 +, 4`)-, ( 3 H 4'

AND

' % > %

+ 3 0 % +C , 15 7 *4 V H +^

3

OR

15 7

3 H 4 C6 :

AND

. %

0 2 4 6 8 10 12 14 16 18 20

0 5 10 15 20 25

Histogram of NSTOP1

-5 -4 -3 -2 -1 0 1 2 3 4 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Comparison of sequential method and non-sequential

SNR

p

ro

b

a

b

ili

ty

o

f

d

e

te

c

ti

o

n

sequential non sequential

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SNR

p

ro

b

a

b

ili

ty

o

f

d

e

te

c

ti

o

n

(6)

) T1 6 A 46 E, :( ' , 8 d> (5:S,

Fig. (6): Comparison of different decision making methods in the center

3 H % * % + 4:C^%

OR

8% Z) *4 V ' K >

' 4 ^ % % m S0> *

( F ]0, • < +,

.

4 N T ^

3 H

OR

+, C % / 1 . 15 7 i F % . 0S

3 H * /

AND

% 4 ^ % ' Z) 4 V 3% ' 4

( F > m S0> ]0,

• <

.

3 H n

AND

`: %

% % S % 1 . 15 7 C 3 0 a : N h .

+, 3 H 4'

k

% >

M

3 H N 15 7 >

AND OR

. % d> 41 % 4 4U > % + M 6 15 7 \ A 4 8

+, 3 0 .

4U > T H 6 \ A %

% 4 % % * 8 <

A % 8 ' , 4

% . % S 8 +^ : ' ' O, N % 15 7 +^ % % M % D ' S A +< F % T ^ N 4 . % S R 5L, 4 ^ % ' / 1 . 0, 4' L . % 9: % : % ' \ P ' > A

+, +, S P ' > , % ‚ O^ % A N % * *

zL 4 4:C^% +: K> _ 4 8 d> a : 3 w +, A % 8 ' , 4 + M 1 . 15 7 * 15 7 ‚ O^ %

% \ P ' > 4 K 6 %

.

5 ; B C !

/6) 4^ E, N % 1 . % 9: % ' :, A 4 +:' 0,

+C > > \ P ' > + : /^ C6 & %

: % ' % 4X% %

.

4 57 41 % 8

* ' ,

_ 4 ( > 3 F% zL *4 ^ % ' Z) N > % +, % U% : /^% +C > > 4 C6 1 . 15 7 %B^ *

A . % K 6 \ A 15 7 4 4:< C S

4 % > 4U > T H C *a : N h +C > > Q A %

+, 3 0 .

$

% !

:

1- Cognitive radio network 2- Primary user

3- Secondary user

4- Probability of false alarm 5- Probability of detection 6- Fading

7- Shadowing 8- Cooperative 9- Overhead

10- Hard decision combining 11- Soft decision combining

References

[1] I.F. Akyildiz, W.Y. Lee, M.C. Vuran, S.Mohanty,"NeXt generation/dynamicspectrumaccess/cognitive radio wireless networks:Asurvey", Computer Networks, Vol. 50, No. 13, pp. 2127–2159, 2006.

[2] I.F. Akyildiz, W.Y. Lee, K.R. Chowdhury, "CRAHNs: cognitive radioad hoc networks", Ad Hoc Networks, Vol. 7, No. 5, pp. 810–836, 2009.

[3] J. Ma, G. Li, B.H. Juang, "Signal processing in cognitive radio", Proceedings of the IEEE, Vol. 97, No. 5, pp. 805– 823, 2009.

[4] T. Yucek, H. Arslan, "A survey of spectrum sensing algorithms for cognitive radio applications”, IEEE Communications Surveys Tutorials", Vol. 11, No. 1, pp. 116–130, 2009.

[5] D. Cabric, S. Mishra, R. Brodersen, “Implementation issues inspectrum sensing for cognitive radios", Proceeding of the IEEE/ACSSC, Vol. 1, pp. 772–776, Nov. 2004.

[6] I.F. Akyildiz, Brandon F. Lo. Ravikumar Balakrishnan, S. Mohanty, "Cooperative spectrum sensing in cognitive radio networks: A survey", Physical Communication, Vol. 4, pp. 40–62, 2011.

[7] W. Prawatmuang, "Cooperative spectrum sensing for cognitive radio", Ph.D. Thesis, University of Manchester, Faculty of Engineering and Physical Sciences, 2013.

[8] A. Ghasemi, E. Sousa, "Collaborative spectrum sensing for opportunisticaccess in fading environments", Proceeding of the IEEE/DYSPAN, pp. 131–136, 2005.

[9] S. Mishra, A. Sahai, R. Brodersen, "Cooperative sensing amongcognitive radios", Proceeding of the IEEE/ICC, Vol. 4, pp. 1658–1663, 2006.

[10] X. Zhou, J. Ma, G. Ye Li, Young, H. Kwon, A.C.K. Soong, "Probability based combination for cooperative spectrum sensing", IEEE Trans. on Communications, Vol. 58, No. 2, pp. 463-466, Feb. 2010.

[11] Q. Zou, S. Zheng, A.H. Sayed, "Cooperative sensing via sequential detection", IEEE Trans. on Communications on Signal Processing, Vol. 58, No. 12, pp. 6266-6283, Dec. 2010.

[12] S. Chaudhari, "Spectrum sensing in cognitive radio; Algorithms, Performance, and Limitations", Aalto University Publication Series Doctoral Dissertations, 2012.

-14 -12 -10 -8 -6 -4 -2 0 2 4 6 8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SNR

P

ro

b

a

b

ili

ty

o

f

d

e

te

c

ti

o

n

CR=12

Referências

Documentos relacionados

A Fundação de Serralves foi criada em 1989 16 , assumindo como missão principal a construção, na cidade do Porto, de um Museu de Arte Contemporânea de âmbito nacional

It is based on using the channel of the licensed user (also called primary user, PU), if the PU is not using it and without harmful interference. The harmful interference is

O relatório sobre um instrumento operacional de gestão de pessoas é um trabalho que consiste na análise crítica de um instrumento operacional de gestão de pessoas ou na concepção

This scheme was proposed as a solution to the problem of noise uncertainty, fading and shadowing. This scheme decreases the probabilities of false detection and false

Cognitive Radio (CR) is a developing technology to overcome the problem of using the spectrum inefficiently by improving idle spectrum utilization in both temporally and spatially.

The present study contributes to draw a sketch of the use of remote sensing in current landslide studies in Europe and shows that remote sensing can be considered a powerful

CR is an persuasive resolution to the spectral congestion crisis by establishing the opportunistic exploitation of unused frequency bands that are not significantly engaged through

By introducing the trust scheme into the fuzzy logic scheme to represent the reliability of the nodes, a cooperative spectrum sensing scheme based on trust and fuzzy logic for