• Nenhum resultado encontrado

SISTEMA PARA DETERMINAÇÃO DA PRESSÃO DE CONTATO PNEU-SOLO

N/A
N/A
Protected

Academic year: 2021

Share "SISTEMA PARA DETERMINAÇÃO DA PRESSÃO DE CONTATO PNEU-SOLO"

Copied!
8
0
0

Texto

(1)

SISTEMA PARA DETERMINAÇÃO DA PRESSÃO DE CONTATO PNEU-SOLO

Pedro Castro Neto

Docente, Universidade Federal de Lavras, C.P. 37, Lavras-MG, CEP 37.200-000 pedrocn@ufla.br Kléber Pereira Lanças

Docente, FCA-UNESP, Botucatu-SP.

kplancas@fca.unesp.br RESUMO

A implementação de um modelo agrícola baseado em princípios conservacionistas adota tecnologias sustentadas, em grande parte, pelo uso intenso da motomecanização, originando uma série de alterações físicas no solo. Dentre elas destaca-se o processo de compactação como um dos mais importantes fatores limitantes ao aumento da produtividade. Este trabalho foi conduzido com o objetivo de desenvolver metodologia para o cálculo da pressão de contato pneu-solo, em condição dinâmica, bem como elaborar um sistema computacional para efetuar o cálculo. E apresentado o fluxograma da metodologia utilizada para o desenvolvimento do sistema computacional, tendo como base um sistema iterativo de cálculo. A metodologia e o conjunto de programas se mostraram práticos, indicando que um conjunto motomecanizado, formado por um trator MF-299, tração 4x2 TDA, equipado com pneus traseiros R1 18.4-34, dianteiros R1 14.9-24 e um arado reversível de 4 discos de 0,76 m de diâmetro, suspenso no sistema hidráulico de três pontos, exerceu uma pressão dinâmica no solo, de 116,9 kPa.

Palavras-chave: pneu-solo, pressão de contato, compactação do solo.

A SYSTEM FOR TIRE-SOIL CONTACT PRESSURE DETERMINATION ABSTRACT

Agricultural model implementation based on conservation principles, adopt sustainable technologies mainly by intensive use of mechanization, generating a sequence of physical soil alterations, among the which the soil compaction stand out as one of most important limiting factor of increasing productivity. This research was conducted with the main objective of developing a methodology to calculate the soil-tire contact pressure, in dynamic conditions, and generate a computational system to execute the calculation, as well as, to show the diagram of the utilized methodology to develop the computational system, based on iterative computation system. The methodology and the program set were practice to show that a motomechanized set formed by MF-299, FWD tractor equipped with R1 18.4-34 rear tire and R1 14.9-24 front tire and a reversible four 0.76 meters diameter disk plow set linked on tractor hydraulic three point executed a dynamic pressure of 116.9 kPa.

Key Words: soil-tire, contact pressure, soil compaction.

(2)

INTRODUÇÃO

As características de desempenho de pneus agrícolas em diferentes condições de solo, com várias cargas dinâmicas e pressões de inflação, são de grande interesse para equipar adequadamente unidades de força motriz, a fim de executar os trabalhos de campo de forma mais eficiente (Upadhyaya

& Wulfsohn, 1990). Uma estimativa conservadora do desperdício anual de combustível nos Estados Unidos da América devido a baixa eficiência trativa de máquinas agrícolas é da ordem de 757 milhões de litros (Gill & Vandenberg, citados por Shmulevich et al., 1996).

A interação pneu-solo continua a ser o principal foco de estudo de pesquisadores preocupados em aumentar consideravelmente o desempenho de pneus agrícolas em diferentes condições de solo.

Sabe-se que o rendimento e a eficiência de um trator, consumo improdutivo de combustível e a compactação do solo pela passagem do trator no solo agrícola dependem desta interação (Lyasko, 1994).

Existe a necessidade de descrever a área de contato entre o pneu e o solo (Hallonborg, 1996) uma vez que a carga no pneu e a área de contato resultam em pressão no solo, a qual é importante para avaliar o impacto ambiental de uma máquina agrícola.

A variação da área de contato efetiva de um pneu, definida como a área de uma superfície rígida que realmente suporta a carga, é diretamente proporcional à carga e inversamente proporcional à pressão de inflação (Abeels, 1976).

A densidade do solo após o tráfego tende a aumentar com o aumento da pressão de inflação, e este efeito se torna maior com o aumento da carga no eixo.

Um rodado pneumático movendo-se em solo macio deflete, assim como recalca o solo. O processo na zona de contato pneu-solo exibe aspectos de um pneu em uma superfície rígida, assim como aspectos de uma roda rígida em solos deformáveis (Koolen & Kuipers, 1983). Quanto maior a pressão de inflação e ou quanto mais macio o solo, menor a semelhança com o primeiro e maior a semelhança com o segundo caso. É difícil medir a forma da superfície de contato de um pneu em movimento (Gill & Vandenberg, apud Koolen & Kuipers, 1983) e os poucos dados disponíveis sugerem uma superfície em arco relativamente complicada.

Este trabalho teve por objetivo desenvolver uma metodologia para o cálculo da área de contato

pneu-solo de um conjunto formado por um trator agrícola e um implemento, em condição dinâmica,

assim como desenvolver um sistema computacional para efetuar o citado cálculo.

(3)

MATERIAL E MÉTODOS

A Figura 1 mostra a geometria da interação de um pneu deformável de raio estático r, submetido a uma carga vertical W em um solo não rígido, de acordo com Schwanghart, 1990.

FIGURA 1: Geometria de um pneu incluindo o recalque do solo (Z) e a deflexão do pneu (δδ ).

Pela trigonometria, tem-se:

r

2

= L

12

+ (r - δ - Z)

2

, ou (1)

L

1

= [ 2 . r . (Z + δ) – (Z + δ)

2

]

1/2

, e (2)

r

2

= L

22

+ (r - δ)

2

, ou (3)

L

2

= [ 2 . r . δ - δ

2

]

1/2

, então (4)

L = L

1

+ L

2

= [ D . (Z + δ) – (Z + δ)

2

]

1/2

+ [ D. δ - δ

2

]

1/2

(5)

sendo D o diâmetro do pneu sem carga (D = 2 . r). A deformação do pneu ( δ) é determinada utilizando o coeficiente de deformação (C

o

) a dada pressão de inflação (p

i

) , assumindo, de acordo com Schwanghart, 1990, que 80% da carga total W atua na área deformada do pneu: δ = 0,8 . W / C

d

(6) Sendo k

c

/b + kφ = k, temos que,

Z

δ

L

2

L

1

W

r

(4)

Z = ( p / k )

1/n

(7) onde,

p = W / A (kPa)

Z = recalque no solo (mm)

Introduzindo o termo Coeficiente de Elipticidade (β ), a área de contato pneu-solo (A) será:

A = b . L . β (8)

O Coeficiente de Elipticidade (β) terá valor de π /4 se a área de contato pneu-solo for uma elipse perfeita.

A relação da carga aplicada (W) e a carga avaliada (W

rated

) em percentagem (I

w

) devido à p

i

é necessária para calcular a variação na largura do pneu (b):

I

w

= ( W / W

rated

) . 100 (9) Assim,

b = b

o

+ b

1

. I

w

/100 (10) onde,

b

1

= 0,03 a 0,05 m (Schwanghart, 1990).

A solução para o cálculo da área de contato pneu-solo (A) e, consequentemente, da pressão de contato pneu-solo (p) pode ser resolvida por um processo iterativo, atribuindo-se valores variáveis ao recalque (z) no solo, efetuando-se os cálculos e comparando-se o resultado com o valor atribuído até que a diferença seja mínima.

Foi desenvolvido um sistema computacional em linguagem Clipper, versão 5.x para o cálculo da pressão de contato pneu-solo.

RESULTADOS E DISCUSSÃO

O sistema computadorizado foi projetado em forma de menus auto-explicativos, de forma a facilitar a operação do conjunto de programas (Quadro 1) e desenvolvido com base no fluxograma apresentado na Figura 2.

Os dados relativos a cada cálculo executado são gravados, podendo ser consultados e/ou

alterados posteriormente, com busca pelo número de ordem do cálculo, ou impressos, utilizando-se a

opção “resultado calculo” no menu de relatórios.

(5)

A metodologia e o sistema computadorizado para o cálculo da pressão de contato pneu-solo se mostrou prática, indicando que um conjunto trator-implemento formado por um trator MF-299, tração 4x2 TDA, equipado com pneus traseiro R1 18.4-34 e dianteiros R1 14.9-24 e um arado reversível de 4 discos de 0,76 m de diâmetro suspenso no sistema hidráulico de três pontos exerceu uma pressão dinâmica de 116,9 kPa (Castro Neto, 2001).

QUADRO 1: Opções do sistema para determinação da pressão de contato pne u-solo (PCPS).

Menu principal Menu secundários Menu terciários

CADASTROS Usuários Inclusão

Consulta/alteração/exclusão Listagem

Utilização Consulta/data

Consulta/código Listagem

Compactação

Tratores Inclusão

Consulta/alteração/exclusão Listagem

Pneus Inclusão

Consulta/alteração/exclusão Listagem

Áreas Inclusão

Consulta/alteração/exclusão Listagem

Implementos Inclusão

Consulta/alteração/exclusão Listagem

OPERAÇÃO Reindexação

Cálculos

Consulta/alteração cálculos RELATÓRIOS Resultado cálculo

Cálculos executados Planilhas

Etiquetas

REFERÊNCIAS

CASTRO NETO, P. Desenvolvimento e avaliação de equipamentos e metodologia para determinação de parâmetros físicos do solo relacionados a dias trabalháveis com máquinas agrícolas. Botucatu, 2001. 155p. Tese(Doutorado em Agronomia, área de concentração em Energia na Agricultura) – Faculdade de Ciências Agronômicas, Universidade Estadual Paulista.

ABEELS, P.F.J. Tire deflection and contact studies. J.Terramechanics, v.13, n.3, p.183-96, 1976.

(6)

LYASKO, M.I. The determination of deflection and contact characteristics of a pneumatic tire on a rigid surface. J.Terramechanics, v.31, n.4, p.239-246, 1994.

KOOLEN, A.J., KUIPERS, H. Agricultural soil mechanics. Berlin: Springer-Verlag, 1983. 241 p.

HALLONBORG, U. Super ellipse as tyre-ground contact area. J.Terramechanics, v.33, n.3, p.125- 32, 1996.

SCHWANGHART, H. Measurement of contact area, contact pressure and compaction under tires in soft soil. In: INTERNATIONAL CONFERENCE OF THE ISTVS, 10, 1990, Kobe, Japão.

Proceedings... Kobe, Japão, 1990. p.193-204.

SHMULEVICH, I., RONAI, D., WOLF, D. A new field single wheel tester. J.Terramechanics, v.33, n.3, p.133-41, 1996.

UPADHYAYA, S.K., WULFSOHN, D. Relationship between tire deflection characteristics and 2-D

tire contact area. Trans.Agric., v.33, n.1, p.25-30, 1990.

(7)

FIGURA 2: Fluxograma para o de senvolvimento das rotinas de cálculo da pressão de contato pneu-solo.

- Entra código do trator - Efetua consistência - Lê informações cadastrais - Opção de saida do sistema

Confirma - Início do processo

- Entra código do pneu - Efetua consistência - Lê informações cadastrais - Entra pressão de inflação - Entra Coef. elipticidade

- Entra código implemento - Efetua consistência - Lê informações cadastrais

- Entra código da área - Efetua consistência - Lê informações cadastrais

2

Sim

Não

1 1

2

Z_inicial = 0,01 Diferença = 9999 Calcula:

Wad

LR = a + b.ln(W + Wad) + c.p

i

C

0

= a + b.(W + Wad) + c.p

i

b = b

0

. LR

δ = 0,8.(W+Wad) / (C

0

. 1000)

L

1

=[2.r.(Z_ini+δ)-(Z_ini+δ)

2

]

1/2

L

2

= (2.r.δ -δ

2

)

1/2

L = L

1

+ L

2

A = b . L . β P = (W + Wad) / A Z = (P/(k

c

/b + k

φ

)

1/n

Diferença

>

|Z – Z_ini|

? Diferença=|Z-Z_ini|

Z_ini=Z_ini+0,001 Sim

Não Exibe os Resultados

1

(8)

Referências

Documentos relacionados

Class Dorsal Nome Nº Equipa Escalão Regº Tempo 145 417 ANTÓNIO SILVA CASTRO 0 INDIVIDUAL VET.. MOINHOS

No encontro, realizado em Brasília, o coordenador do PNCT disse que a estimativa do Ministério da Saúde para o final de 2010, já com o uso do esquema terapêutico, é reduzir a taxa

Os Coordenadores Setoriais, enquanto professores, procuram dar o exemplo, mas deixam claro que encontram, no seu percurso como extensionistas, esse elemento dificultador;  O

Dadas duas sucessões de números, quando a razão entre um número qualquer da primeira sucessão e o seu correspondente na segunda sucessão for constante, temos

Definição (Matriz menor complementar): A submatriz obtida pela eliminação de uma linha e uma coluna de uma matriz quadrada é chamada de matriz menor complementar... Teorema de

No presente estudo, catorze animais (34,15%) apresentavam algum tipo de parentesco procedente de oito diferentes propriedades rurais (26,66%), ora relacionado à vaca, ora ao touro,

Com intuito, de oferecer os gestores informações precisas atualizadas e pré-formatas sobre os custos que auxiliem nas tomadas de decisões corretas, nos diversos

15 Alterar os dados da página 15 Dados em falta ou errados 15 Páginas predefinidas 20 Combustível 20 Requisitos 20 Gestão do combustível 20 Abastecer combustível 21