• Nenhum resultado encontrado

Degradation of textile dyes by cyanobacteria

N/A
N/A
Protected

Academic year: 2021

Share "Degradation of textile dyes by cyanobacteria"

Copied!
7
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Degradation

of

textile

dyes

by

cyanobacteria

Priscila

Maria

Dellamatrice

a

,

Maria

Estela

Silva-Stenico

b

,

Luiz

Alberto

Beraldo

de

Moraes

c

,

Marli

Fátima

Fiore

b

,

Regina

Teresa

Rosim

Monteiro

a,∗

aCentrodeEnergiaNuclearnaAgricultura,LaboratóriodeEcologiaAplicada,Piracicaba,SP,Brazil

bCentrodeEnergiaNuclearnaAgricultura,LaboratóriodeBiologiaCelulareMolecular,Piracicaba,SP,Brazil cUniversidadedeSãoPaulo,DepartamentodeQuímica,RibeirãoPreto,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received31October2015 Accepted20July2016

Availableonline10October2016 AssociateEditor:ValeriaMaiade Oliveira Keywords: Dyes Toxicity Discoloration Cyanobacteria Degradation

a

b

s

t

r

a

c

t

Dyesarerecalcitrantcompoundsthatresistconventionalbiologicaltreatments.The degra-dationofthreetextiledyes(Indigo,RBBRandSulphurBlack),andthedye-containingliquid effluentandsolidwastefromtheMunicipalTreatmentStation,Americana,SãoPaulo,Brazil, bythecyanobacteriaAnabaenaflos-aquaeUTCC64,PhormidiumautumnaleUTEX1580and Syne-chococcussp.PCC7942wasevaluated.Thedyedegradationefficiencyofthecyanobacteriawas comparedwithanaerobicandanaerobic–aerobicsystemsintermsofdiscolourationand toxicityevaluations.Thediscolorationwasevaluatedbyabsorptionspectroscopy.Toxicity wasmeasuredusingtheorganismsHydraattenuata,thealgaSelenastrumcapricornutumand lettuceseeds.Thethreecyanobacteriashowedthepotentialtoremediatetextileeffluent byremovingthecolourandreducingthetoxicity.However,thegrowthofcyanobacteria on sludgewasslowanddiscolorationwasnotefficient.ThecyanobacteriaP.autumnale UTEX1580wastheonlystrainthatcompletelydegradedtheindigodye.Anevaluationof themutagenicitypotentialwasperformedbyuseofthemicronucleusassayusingAlliumsp. Nomutagenicitywasobservedafterthetreatment.Twometaboliteswereproducedduring thedegradation,anthranilicacidandisatin,buttoxicitydidnotincreaseafterthe treat-ment.Thecyanobacteriashowedtheabilitytodegradethedyespresentinatextileeffluent; therefore,theycanbeusedinatertiarytreatmentofeffluentswithrecalcitrantcompounds. ©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Introduction

Syntheticdyesarerecalcitrantmoleculesthatconstitutethe mainresiduefoundintheeffluentofthetextiledyeing indus-try.Acute toxicity tests showed that most textile dyesare

Correspondingauthorat:CentrodeEnergiaNuclearnaAgricultura,LaboratóriodeEcologiaAplicada,C.P.96,13400-970Piracicaba,SP,

Brazil.

E-mail:monteiro@cena.usp.br(R.T.Monteiro).

not particularly toxic.1 Nevertheless, their persistence and

resultinglongexposuretimeisofparticularconcernforthe dischargeofwastedyeeffluent,sincethesesubstancesmay exhibitchroniceffectssuchasmutagenicdamageand car-cinogenicitytowards biota.2,3 Several authorsreported that

dyedischargesfromtextileprocessingplantswerethemajor

http://dx.doi.org/10.1016/j.bjm.2016.09.012

1517-8382/©2016SociedadeBrasileiradeMicrobiologia.PublishedbyElsevierEditoraLtda.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

contributors to the mutagenic activity found in Brazilian rivers.4,5

Insometextiledyeingoperations,asmuchas15%ofthe dyes used do not attach to the fibres, so they are lost to wastewater,6andtheresultingcolouredeffluentscan

repre-sent aserious waterpollution problemdue totheircolour contentandtoxiccomponents.Theusualeffluenttreatment involves biological systems like activated sludge; however, conventionaltreatmenthasnotefficientlyremovedthe efflu-ent dyeduetothe recalcitrant natureofthe dyesand the diverse composition of the effluent.7 A tertiary treatment

of effluents is recommended for the removal of nutrients and recalcitrant substances, whichis done mainly by sev-eral algaespecies. Studies haveshown the abilityofsome algaetodegradedyes,8–11 makingtertiarytreatmentaviable

possibilityfortheefficientdegradationofthesecompounds. Vyayakuma and Manoharau12 studied the degradation by

indigenouscyanobacteriumspeciesofatextileeffluent con-taining the dyes remazol and venyl sulfone and observed not only colour removal, but also reduction in the levels of the inorganic compounds such as nitrites, phosphates, ammonia, calcium and magnesium. The main cyanobac-terium strains reported to be responsible for the removal of nutrients and chemicals from the industrial effluents wereWestiellopsissp.,Lynghyasp.,Oscillatoriasp.andChlorella sp.12–15

Theenvironmentalproblemcausedbyhazardousdyesis particularlyimportantintheMunicipalTreatmentStationof Americana,SP,Brazil,whichisresponsibleforthetreatment ofeffluentsfrom43textileplantsaswellascitysewage. Peri-odicreleases ofliquid effluentfrom this treatmentstation werecarriedtothePiracicabaRiver,adomesticwatersource forcitiesdownstream.Thebiologicaltreatmentemployedis efficientforBODremoval, but the colourpersistsafterthe treatment,makingthistreatmentinsufficienttoremovethe contaminantsfromtheeffluent.Inthepresentstudy,three strainsofcyanobacteria,Anabaenaflos-aquaeUTCC64, Phormid-iumautumnaleUTEX1580andSynechococcussp.PCC7942were evaluatedfortheirabilitytodegradethreedifferentdyes:RBBR (RemazolBrilliantBlueR),indigoandsulphurblack,andalso thedye-containingliquideffluentandsolidwastefromthe MunicipalTreatmentStationofAmericana(SP,Brazil) contain-ingthosedyes.

Materials

and

methods

Cyanobacterialstrains

The cyanobacteria were filamentous heterocystous A. flos-aquaeUTCC64,thefilamentousnon-heterocystousP. autum-nale UTEX1580, and unicellular Synechococcus sp. PCC7942, all from the Culture Collection of the Centro de Energia NuclearnaAgricultura–CENA/USP.Thesestrainswerechosen basedon astudybyFiore andTrevors16 on the

bioremedi-ation ofmetals bythecyanobacterium,inwhich the three selectedstrainshadthehighestdetoxificationcapability.The organismsweremaintainedinflaskscontaining50mLofAA medium17 forA.flos-aquae UTCC64,orBG-11medium18 for

P.autumnaleUTEX1580andSynechococcusPCC7942;1mLfrom

thesesevendaycultureswasusedtoinoculatethedifferent treatments.

Textilewastesampling

Liquid effluentwassampled (3L) afterbiologicaltreatment (biological filters) and the sludge also was sampled (3kg) after aerobic-anaerobic treatment in the Municipal Treat-ment Station of Americana, SP, Brazil.Samples were kept at 4◦C until use. Both of these residues still contained a highamountoforganicsafterthetreatment,andremained strongly-coloured.

Dyediscolorationbycyanobacteria

ThesyntheticdyesRBBR[(RemazolBrilliantBlueR)purchased fromSigma(Sigma–Aldrich,St.Louis,MO,USA)],indigoand sulphurblack(Bayer,SãoPaulo,SP,Brazil),wereaddedata concentrationof0.02%(m/v)toErlenmeyerflaskscontaining 50mLofAAorBG-11culturemedia.Eachflaskwasinoculated with1mLofthecyanobacteriumculturemedium,in tripli-cate. Theeffluent and thesolid waste,whichwere diluted toaconcentrationof10%inanAAoraBG-11media,were treatedinthesamewayasthedyes.Allofthetreatedflasks were incubated for14 days at25◦C with constant fluores-centillumination(4000±10%lux).Controlexperimentswere conducted in light and dark conditions in the absence of microorganisms toevaluatetheeffectofphotodegradation. Thediscolorationwasevaluatedbyabsorptionspectroscopy. Theabsorptionmaximumforeachdyewas680nm(indigo), 595nm(RBBR)and454nm(sulphurblack).Thesampleswere centrifugedat10,000×gforfiveminandthecolourreduction was based on astandard curve comparing dye concentra-tion inthetreatmentsinrelationtonon-inoculatedcontrol flasks.

Ananaerobic–aerobicdegradation systemwasalso eval-uated for dye discoloration in the liquid wastewater. The anaerobicconditionswereobtainedbycompletelyfillingthe triplicate 150mL penicillin bottles with the effluent, and sealingthemwithrubbertopsinaCO2atmosphere.The

bot-tles were kept for15 days at28◦C in the dark. Then, the bottles were opened and 50mLofeffluent wastransferred to sterilized Erlenmeyer flasks and re-enriched with 1mL ofinoculum obtainedfrom afresheffluent. Thisinoculum waspreparedthroughcentrifuging(2000×g)100mLoffresh effluentandresuspendingthepelletsinsaltsolution(0.85% NaCl). Theflaskswere incubated aerobicallyfor15daysat 28◦C.

Toxicityevaluationofthetreatedeffluentandsludge

Thetoxicityoftheeffluentandsludgewasevaluatedusing the bioindicatororganismsHydraattenuata, thegreenalgae Selenastrum capricornutum and root growth of Lactucasativa seedlings.TheseorganismsaremaintainedatCENA/USPand bioassays were conductedas described byTrottier et al.,19

Blaiseetal.,20andDutka,21respectively.The50%inhibitory

concentrations(IC50)weredeterminedforeachsampleusing

(3)

BiodegradationoftheindigodyebyPhormidiuminthe bioreactor

ThebiodegradationofindigodyebyP.autumnaleUTEX1580, thestrainthatshowedthehighestpercentageofindigo dis-colorationintheprevioustests,wasfurtherstudiedina15cm wide,60cmhigh,6Lbioreactor.Inpreparationforthe inocula-tion,P.autunmnalewasgrownpreviouslyin500mLofaBG-11 mediumfor14 days.Thebioreactor received constant aer-ationandillumination byfour verticallyplacedlamps. The indigodyewasaddedtoaconcentrationof0.02%inthe BG-11culturemedium.Thecontrolwaskeptinthedarkat4◦C. Samples were collected on days 2, 4, 7, 14, 15, 16, 17, 18 and19forabsorptionspectrophotometry analyses(583and 680nm)andtoxicitybioassayswithHydraattenuatta. Biodegra-dationwasmonitoredbymassspectrometryanalysisusing a hybrid quadrupoletime-of-flight (Q-TOF) high resolution (7000)andhigh accuracy(5ppm)Q-TOF massspectrometer (Micromass,Manchester,UK)equippedwithanelectrospray ion source (ESI). The conditions for the positive ESI were: nitrogengasdesolvationat180◦C,capillaryheldata poten-tialof3.5kVandaconevoltage25kV.Growthcultureswere centrifugedat10,000×gfor10minandthesupernatantwas mixedwith0.5mLofmethanol: formicacid1%(50:50,v/v) and introduced into the ion source at 5␮Lmin−1 with a syringepump.Duringthefinalincubationperiod(19days),the cyanobacteria-incubatedmediumwasassessedforits muta-genicitypotentialusingtheAlliumsp.micronucleusassayas describedbyFernandesetal.22andtoxicitybytheHydra

bioas-say.

Results

Dyediscolorationbycyanobacteria

TheCyanobacteriumPhormidiumwasabletodecolorizethe indigodyeextensively (91%),but wasnotabletodecolorize the sulphur black and RBBR dyes. Low discoloration was produced bySynechococcus for all three dyesand Anabaena was able to degrade the indigo, but the discoloration per-centage was lower than for Phormidium (Table 1). The sulphur black was decolorized by Anabaena, which pro-ducedonly a partial degradation.The three strains tested wereabletoremovethe effluentcolour,but for Synechococ-cus a decrease in absorption was not detected because theabsorptionmeasureswere affectedbythegreencolour of the cultures (Table 1). Phormidium caused more colour removalthanAnabaenaand,forSynechococcus,visual discol-oration seemed higher than the methodology was able to detect.

For the anaerobic–aerobic system, 17% and 33% discol-oration was obtained after anaerobic treatment and the combined anaerobic–aerobic one,respectively. The anaero-bicdegradationresultedincolourremoval,butproducedan effluentwithhigh turbidity,whichwasremovedbyaerobic degradation.Thesecompoundsrequirethepresenceofa com-bination of anaerobic and aerobic conditions for complete degradation,sincetheyareverycomplexandrecalcitrantdue totheirxenobioticcharacter.

Toxicitytestsontheeffluent

Thecyanobacteriumtreatmentwasabletoreducetheeffluent toxicityandshoweddegradationofthecompoundspresent intheeffluent.Therewasgrowthinhibitionoftheorganism Selenastruminthelightanddarkcontrols;however,therewas nogrowthinhibitionintheeffluenttreatedbythe cyanobac-teriumstrains.

In the lettuceseeds test,toxicity was reducedafter the treatment too, as demonstrated by a lack of root growth inhibitionafterthecyanobacteriumtreatment.TheIC50

deter-mination(concentrationthatinhibited50%oftheorganism growth) was possibleonlyforthe darkcontrol (IC50=95%),

whereasothertreatmentsshowedlessthan50%inhibitionat themaximalconcentration(Table2).

IntheHydratest,ahigherLOECandNOECwereobserved aftertreatmentwiththethreestrains.SinceLOECisdefinedas thelowobservedeffectconcentrationandtheNOECisdefined asthenoobservedeffectconcentration,thecyanobacterium treatment resultsinatoxicity reductionforthe organisms (Table2).

Inthesludge,thePhormidiumtreatmentcausedanincrease inthetoxicity(Table2),whereastheAnabaenapresentedthe highesttoxicityreductioninthelettuceseedstest.Theslight toxicityreductionshowninthesludgebyPhormidiumand Syne-chococcusintheHydratest(Table2)meansthatalthoughthe algalgrowthwasslow,somedegradationdidoccur.Thesludge detoxificationwaslowerthanthatoftheeffluent, demonstrat-ingthatthisresidueismoreresistanttothedegradationand thatthecyanobacteriastrainwithmoreefficiencyinsludge detoxificationisdifferentthanthemosteffectiveoneforthe effluent,sinceAnabaenashowedmoresludgedetoxification thanPhormidium.

There wasmoretoxicity inthe darkcontrolthan inthe lightonesuggestingthatphotodegradationcontributedtothe detoxificationprocessinsuchconditions.

Toxicitytestsfortheanaerobic–aerobicsystem

For the Hydratest, therewasno reductionintoxicityafter anaerobictreatmentincomparisonwiththecontrol.However, a complete detoxification occurred after anaerobic–aerobic treatment,showingthetoxiccompoundswereremovedonly afteranaerobic–aerobictreatment.

Thealgaltestdemonstratedthesameresults;notoxicity reductionafteranaerobictreatmentandcomplete detoxifica-tionaftertheanaerobic–aerobicone(Table3).Notoxicitywas observedinthelettuceseedstestforanyofthetreatments, notevenfortheeffluentcontrol.

Biodegradationoftheindigodyeinabioreactor

The indigo dyebiodegradation byPhormidium was demon-stratedbycompletediscolorationafter19daysofincubation. Colourremovalwasenhancedafter14days,showingthata periodofacclimatizationwasnecessary.After19daysthere was nomorecolourleft.Thecultured cellsadhered tothe bioreactor wall, leaving a biofilm formation that adsorbed someoftheindigodye.DyediscolorationisshowninFig.1.

(4)

Table1–Percentageofeffluentandsludgediscolorationbycyanobacteriaafter14daysincubationat25C.

Treatment Indigo RBBR Blacksulphur Effluent Sludge Darkcontrol 0±0.001 0±0.001 0±0.001 0±0.001 0±0.001 Lightcontrol 56.14±0.057 4.0±0.001 29.41±0.002 12.90±0.006 39.28±0.006 Anabaenasp. 71.92±0.057 0±0.001 42.12±0.006 23.87±0 8.33±0.001 Phormidiumsp. 91.22±0.057 10.62±0.011 0±0.001 28.38±0.001 0±0.002 Synechococcussp. 0±0.002 11.53±0.009 0±0.002 1.29±0 0±0.002 ±Standarddeviation.

Table2–PercentageconcentrationcorrespondingtoNOECandLOECforHydraandIC50forthelettuceseedstests

conductedwiththeeffluentandsludgethathadbeenincubatedwithcyanobacteriafor14daysat25C.

Treatments Hydratest Seedstest

NOECa LOECb IC

50c

Effluent Sludge Effluent Sludge Effluent Sludge

Darkcontrol 6.25 6.25 12.5 3.12 94.98 17.28

Lightcontrol 12.5 6.25 25 3.12 0 51.52

Anabaenasp. 25 6.25 50 3.12 0 55.37

Phormidiumsp. 50 12.5 n.e.d 6.25 0 6.23

Synechococcussp. 25 12.5 50 6.25 0 23.89

a NOEC,noobservedeffectconcentration. b LOEC,lowobservedeffectconcentration.

c IC50,concentrationthatcaused50%inhibitionofthetestorganisms. dn.e.,noeffect.

Metaboliteanalysis

The parental indigo molecule was detectedonly until the 18thday,showingthatthedyewascompletelydegradedby Phormidiumandthatthedegradationoccurredoverthesame period that a complete discoloration was observed in the bioreactor.Afterthe17thdayofincubation,twometabolites appearedandwereidentifiedasanthranilicacid(m/z399)and isatinorindole-2,3-dione(m/z421);therefore,thedegradation oftheindigomoleculewasnotcomplete.Inthatstudy,bothof themetabolitesweredetecteduntilthe19thday,whichmeans theywerenotfullydegradedduringtheassessmentperiod.

In accord withCampos et al.,23 the first step of indigo

degradationisoxidativecleavageofthecentralbond,which produces isatin as a metabolite. Isatin might undergo hydrolysis anddecarboxylationto produceanthranilicacid (Fig.2).

Table3–Percentageconcentrationcorrespondingto

NOECandLOECfortheHydratoxicitytestandtheIC50

fortheAlgaltestafteranaerobicandanaerobic–aerobic treatment.

Treatment Hydratest Algaltest NOECa LOECb EC

50c

Control 12.5 25 73.35

Anaerobic 12.5 25 70.39

Anaerobic–aerobic 50 100 0

a NOEC,noobservedeffectconcentration. b LOEC,lowobservedeffectconcentration.

c IC50,concentrationthatcaused50%effectonthetestorganisms.

TheHydrabioassay

NotoxiceffectsweredetectedintheHydrabioassayfromthe controlindigodye,orafterthedyetreatmentbyPhormidium. Analysesperformedduringtheincubationperiodshowedthat notoxicproductswereformedduringtheperiodstudied.The presenceofthemetabolitesisatinandanthranilicaciddidnot resultinanincreaseintoxicity,suggestingthatthePhormidium treatmentofindigoisaplausibletreatment.

Themicronucleusassay

No mutagenicity effect was observed in the micronucleus assayfortheindigocontrolorfollowingthecyanobacterium treatment;therateofmicronucleusformationwasthesame forbothofthetreatmentsandforthewatercontrol. Micronu-cleicanspontaneouslyformduetoanunequaldistribution

0 10 20 30 40 50 60 70 80 90 100 20 18 16 14 12 10 8 6 4 2 0 Discoloration, % Days

Fig.1–PercentageofindigodiscolorationbyPhormidiumin thebioreactor.Standarddeviation:0.05.

(5)

O H H

Anthranilic acid

Isatin

Indigo

N N N H O O OH NH2 O O

Fig.2–DegradationpathwayoftheindigodyebyPhormidium.

ofgeneticmaterialduringthecellcycle.24However,therewas

anincreaseinsomechromosomalaberrations,suchas adher-ences,bridges,polyploidycellsandlatechromosomesinthe indigocontrolandfollowingcyanobacteriumtreatment com-paredwiththemineralwatercontrol(Figs.3and4).

Theseabnormalitiesconstitutesignsofmutagenicitythat indicateaninitialstageofDNAdamageinthepresenceof thedye,butthatdidnotresultinmutagenicityatthetested dyeconcentrationasdemonstratedbynoincreasein micro-nucleusformation.

Thefrequencyofcelldivisionfortheindigoand cyanobac-teriumtreatedmediumwashigherthanforthemineralwater, representinganincreaseinrootgrowthprobablybecauseof thehighamountofnitrogenandphosphoruspresentinthe BG-11medium.

Discussion

Cyanobacteria-induceddiscolorationanddetoxificationofthe effluentwasobservedforeachofthethreecyanobacteriain

thisstudy.Theseresultsshowedthatcyanobacteriawereable toreducethepollutantloadoftheeffluent.Thedegradation ofdyesbycyanobacteriaisspecies-dependent,sinceP. autum-naleUTEX1580moreefficientlydegradedtheindigodyeand A.flos-aquaeUTCC64wassuperiorinthecaseofthesulphur black.A.flos-aquaeUTCC64wasthemostefficientstrainfor sludgedecolourationanddetoxification.However decoloura-tionofthesludgewasnotsignificant,probablybecausethis residue contained more insolublehydrophobic compounds thandidtheeffluent.Acombinationofmorethanonemethod might improve the degradability of this dye-containing waste, since photodegradation was detected in the dye control.

ItseemsthatfilamentousspeciesasP.autumnaleUTEX1580 canbreakdownthedyemoreefficiently,sincethedye pene-tratesthefilaments,whichincreasesthecontactbetweenthe microorganismandthecompound.Althoughnoexperiments were performed specificallyto investigate the biosynthetic mechanisms of indigo degradation using cyanobacteria, it seemsmainmechanismmustbeenzyme-mediated,sincein thecontrolnometaboliteswereformed.

(6)

Fig.4–MutagenicitysignsfollowingtheindigodyePhormidiumtreatment:(A)polyploidy;(B)bridge;(C)latechromosomes; (D)adherence.

Phormidiumsp.wasabletodegradeseveraldyesofdifferent chemicalclasses.In astudybyShahet al.,9 the

cyanobac-teriumPhormidiumvalderianumdiscolouredupto90%ofAcid Red,AcidRed119and DirectBlack155dyes.Whenthe pH wasstronglyalkaline,anincreaseindiscolorationoccurred, whichis avery common conditionin textileeffluents due totheadditionofNaOHduringthedyeingprocess.Another strain,P.ceylanicum,alsowasfoundtodegradeAcidRed97and FFSkyBluedyesbyupto80%after26days.10Silva-Stenico

etal.25 observedgreaterthan50%degradationoftheindigo

dyeandsixotherstructurallydifferentdyesbythe Phormid-iumsp.andtwoanothercyanobacteriumstrains,Synechococcus sp.andLeptolyrigbyasp.DyedecolourizationbyAnabaenawas studiedbyQueirozandStefanelli26forBlueDrindye,andthey

showed81%colourremoval.

Thestructureofthecompoundalsoappearstobeavery importantfactor.Inspiteofthefactthatthethreedyesare veryrecalcitrant,the dyessulphurblackand Remazol Bril-liantBluehaveveryuncommonmolecularstructures,which conferahighxenobioticcharacterandgreaterresistanceto degradation.27,28InastudybyJinqiandHoutian,8dye

discol-orationwascorrelatedwiththemoleculestructureandthe recalcitrancewasincreasedfordyescontainingradicalssuch asnitroandsulphurgroups,asisthecaseforsulphurblack andRemazolBrilliantBlue.

Degradation of indigo dye by P. autumnale UTEX 1580 resulted in the formation of two metabolites, isatin and anthranilicacid,whichariseafterthedisappearanceofindigo

fromculturemediashowingthatthedegradationwas incom-plete. Toxicitydidnotincreasewiththeformationofthese metabolites,makingthetreatmentofindigobyP.autumnale UTEX1580aplausibletreatment.Themutagenicitytestwith Alliumcepaalsodidnotdemonstrateamutageniceffectafter theindigodegradation.

Thesemetaboliteswerenotdegradedduringtheperiodof assessmentbyP.autumnaleUTEX1580inapureculture. How-ever, these metabolitesare less complexthan the parental indigomoleculeandits degradationintheenvironmentby other microorganismsmayoccurmorereadily.Inatertiary treatment, the presence ofmixed algaepopulations might causetheremovalofthesemetabolitesinapossible sequen-tialdegradationprocessbyaconsortiumofalgaestrainsfor completedegradationoftheindigodye.

Thethreecyanobacteriastrainsevaluated,showed poten-tial to remediatetextile effluent and reducethe pollutant load. However, the cyanobacteriatreatment ofsludge was lessefficientthanfortheeffluent,probablyduetothehigh complexicityofthesludge.ThecyanobacteriumP.autumnale UTEX1580completelydegradedtheindigodyeintosecondary metabolites, which were nottoxic. Further studiesusing a mixedcultureofalgae,insteadofapureculture,shouldbe per-formedtoachievecompletedegradation.Algaecanbeusedfor removaloftoxicdyesinatertiarytreatmentusingfacultative lagoons,mainlytoimprovetheeffluentqualitywhenthese recalcitrant compounds are not removed in the secondary treatment.

(7)

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1.CrippsC,BumpusJA,AustSD.Biodegradationofazoand heterocyclicdyesbyPhanerochaetechrysosporium.ApplEnviron Microbiol.1990;56:1114–1118.

2.PearceCJ,LloydJR,GuthrieJT.Theremovalofcolorfrom textilewaste-waterusingwholebacterialcells.Areview. DyesPigments.2003;58:179–186.

3.BaeJS,FreemanHS.Aquatictoxicityevaluationofnewdirect dyestotheDaphniamagna.DyesPigments.2007;73:81–85. 4.CoelhoMCLS,CoimbrãoCA,ValentGU,SatoMIZ,TargaH.

MutagenicityevaluationofindustrialeffluentbyAmesassay. EnvironMolMutagen.1992;19(S20):199–211.

5.UmbuzeiroGA,FreemanHS,WarrenSH,KummrowF, ClaxtonLD.Thecontributionofazodyestothemutagenic activityoftheCristaisRiver.Chemosphere.2005;60:55–64. 6.O’NeillC,HawkesFR,HawkesDL,Lourenc¸oND,Pinheiro

HM,DelleW.Colourintextileeffluents-sources,

measurement,dischargecontentsandstimulation:areview. JChemTechnolBiotechnol.1999;74:1009–1018.

7.RalanaponglekoK,PhetsomJ.Decolorizationbyconventional treatmentisinefficient.IntJChemEngAppl.2014;5:26–30. 8.JinqiL,HoutianL.Degradationofazodyesbyalgae.Environ

Pollut.1992;75:273–278.

9.ShahV,GargN,MadamwarD.Anintegratedprocessof textiledyeremovalandhydrogenevolutionusing cyanobacterium,Phormidiumvalderianum.WorldJMicrobiol Biotechnol.2001;17:499–504.

10.ParikhA,MadamwarD.Textiledyedecolorizationusing cyanobacteria.BiotechnolLett.2005;27:323–336.

11.OmarHH.Algaldecolorizationanddegradationofmonoazo anddiazodyes.PakJBiolSci.2008;11:1310–1316.

12.VyayakumarS,ManoharauC.Treatmentofdyeindustry effluentusingfreeandimmobilizedcyanobacteria.JBiorem Biodeg.2012;3:1–6.

13.HenciyaS,ShankarM,MaligaP.Decolorizationoftextiledye effluentbymarinecyanobacteriumLinghyasp.BDU9001 withcoirpith.IntJEnvironSci.2013;3:1909–1918.

14.MuraliS,HenciyaS,MaligaP.Bioremediationoftannery effluentusingfreshwatercyanobacteriumOscillatoriaannae withcoirpith.IntJEnvironSci.2013;3:1881–1890.

15.JaysudhaS,SampathkumarP.Nutrientremovalfrom tanneryeffluentbyfreeandimmobilizedcellsofmarine microalgaeChlorellasalina.IntJEnvironBiol.2014;4:21–26. 16.FioreMF,TrevorsJT.Cellcompositionandmetaltolerancein

cyanobacteria.Biometals.1994;7:83–103.

17.AllenMM,ArnonDI.Studiesonnitrogen-fixingblue-green algae.I–GrowthandnitrogenfixationbyAnabaenacylindrica Lemm.PlantPhysiol.1955;30:366–372.

18.AllenMB.Simpleconditionsforgrowthofunicellular blue-greenalgaeonplates.JApplPhycol.1968;4:1–4. 19.TrottierS,BlaiseC,KusinT,JohnsonEM.Acutetoxicity

assessmentofaqueoussamplesusingamicroplate-based Hydraattenuattaassay.TechMethods.1997;12:265–271. 20.BlaiseC,ForgetG,TrottierS.Toxicityscreeningofaqueous

samplesusingacost-effective72-HexposureSelenastrum capricornutumassay.TechMethods.2000;15:352–359.

21.DutkaB.Short-termrootelongationtoxicitybioassay.Methodsfor toxicologicalanalysisofwaters,wastewatersandsediments. Ontario:NationalWaterResearchInstitute,CCIW, EnvironmentCanada;1989.

22.FernandesTCC,MazzeoDEC,Marin-MoralesMA. Mechanismsofmicronucleiformationinpolyploidizated cellsofAlliumcepaexposedtotrifluralinherbicide.Pestic BiochemPhysiol.2007;88:252–259.

23.CamposR,KandelbauerA,RobraKHA,Cavaco-PauloA, GübitzGM.Indigodegradationwithpurifiedlaccasesfrom TrameteshirsutaandSclerotiumrolfsii.JBiotechnol.

2001;89:131–139.

24.KhannaN,SharmaS.Alliumceparootchromosomal aberrationassay:areview.IndianJPharmBiolRes. 2013;1:105–119.

25.Silva-StenicoME,VieiraFDP,GenuárioDB,SilvaCSP,Moraes LAB,FioreMF.Decolorizationoftextiledyesby

cyanobacteria.JBrazChemSoc.2012;23:1863–1870.

26.QueirozBPV,StefanelliT.BiodegradationdecorantesTêxteis porAnabaenaflos-aquae.EngAmb.2011;8:026–035.

27.NguyenTA,JuangRS.Treatmentofwatersandwastewaters containingsulfurdyes:areview.ChemEngJ.

2013;219:109–117.

28.PadmanabanVC,PrakashSS,SherildarP,JacobJP, NelliparambilK.Biodegradationofantraquinonebased compounds:review.IntJAdvResEngTechnol.2013;4:74–83.

Referências

Documentos relacionados

INCQS 40211 to decolorize three reactive dyes and the mixture of these dyes, as well as the determination of their toxicity after fungal treatment using..

(2010) reached the decolorization and detoxification of textile effluents with a mixture of reactive dyes by using 4 strains of marine- derived fungi.. The highest decolorization

The separation of the solid fraction of the liquid effluent from poultry slaughterhouse influenced the lower values of production and the potential of methane and biogas

In this work, the decolorization and toxicity of effluent and solid waste of Municipal Treatment Station of Americana, SP were evaluated after treatment by the plant

Besides the degradation proile based on color removal, mineralization of the dyes (followed by TOC before and after treatment) as a function of the electrode material was

The diversity and complexity of synthetic dyes mixtures present in dye- containing effluents poses serious problems on the design of technically feasible and

The purpose of the present study was to evaluate the ability of decolorization and detoxification of mixed cultures of fungi obtained from sediment samples of pristine

Biosorption of reactive dye from textile waste water by non-viable biomass of Aspergillus niger and Spirogyra sp. Biodegradaion of Gentian Violet by red oxidative