• Nenhum resultado encontrado

Alvesa, Sônia Regina de Souza

N/A
N/A
Protected

Academic year: 2019

Share "Alvesa, Sônia Regina de Souza"

Copied!
12
0
0

Texto

(1)

h tt p : / / w w w . b j m i c r o b i o l . c o m . b r /

Environmental

Microbiology

Contribution

of

dark

septate

fungi

to

the

nutrient

uptake

and

growth

of

rice

plants

Carlos

Vergara

a

,

Karla

Emanuelle

Campos

Araujo

a

,

Luiziene

Soares

Alves

a

,

Sônia

Regina

de

Souza

a

,

Leandro

Azevedo

Santos

a

,

Claudete

Santa-Catarina

b

,

Krisle

da

Silva

c

,

Gilmara

Maria

Duarte

Pereira

d

,

Gustavo

Ribeiro

Xavier

e

,

Jerri

Édson

Zilli

e,∗

aUniversidadeFederalRuraldoRiodeJaneiro,InstitutodeAgronomia,Seropédica,RJ,Brazil

bUniversidadeEstadualdoNorteFluminenseDarcyRibeiro(UENF),CentrodeBiociênciaseBiotecnologia(CBB),LaboratóriodeBiologia

CelulareTecidual(LBCT),CamposdosGoytacazes,RJ,Brazil cEmbrapaRoraima,BoaVista,RR,Brazil

dUniversidadeFederaldeRoraima,CentrodeEstudosdaBiodiversidade,BoaVista,RR,Brazil

eEmbrapaAgrobiologia,Seropédica,RJ,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6October2016 Accepted19April2017 Availableonline23August2017 AssociateEditor:WelingtonAraújo

Keywords: OryzasativaL. DSE

NO3−-N Tillering Colonization

a

b

s

t

r

a

c

t

Theuseofdarkseptatefungi(DSE)topromoteplantgrowthcanbebeneficialtoagriculture, andtheseorganismsareimportantalliesinthesearchforsustainableagriculturepractices. Thisstudyinvestigatesthecontributionofdarkseptatefungitotheabsorptionofnutrients byriceplantsandtheirensuinggrowth.Fourdarkseptatefungiisolatesthatwere identi-fiedbyInternaltranscribedspacerphylogenywereinoculatedinriceseeds(Cv.Piauí).The resultingrootcolonizationwasestimatedandthekineticparametersVmax andKmwere calculatedfromthenitratecontentsofthenutrientsolution.Themacronutrientlevelsin theshoots,andtheNO3−-N,NH4+-N,freeamino-Nandsolublesugarsintheroots,sheathes andleavesweremeasured.Thericerootsweresignificantlycolonizedbyallofthefungi,but inparticular,isolateA103increasedthefreshanddrybiomassoftheshootsandthenumber oftillersperplant,amino-N,andsolublesugarsaswellastheN,P,K,MgandScontents incomparisonwiththecontroltreatment.WheninoculatedwithisolatesA103andA101, theplantspresentedlowerKmvalues,indicatingaffinityincreasesforNO3−-Nabsorption. Therefore,theA103Pleosporalesfunguspresentedthehighestpotentialforthepromotion ofriceplantgrowth,increasingthetilleringandnutrientsuptake,especiallyN(duetoan enhancedaffinityforNuptake)andP.

PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeMicrobiologia. ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.

org/licenses/by-nc-nd/4.0/).

Correspondingauthor.

E-mail:jerri.zilli@embrapa.br(J.É.Zilli). https://doi.org/10.1016/j.bjm.2017.04.010

(2)

Introduction

Despitetheincreasingyieldscausedbygeneticprogressover thelast30years,improvementsincropyieldshavenotbeen very evident, especially for rice,1,2 which is the most

fre-quentlycultivatedandconsumedcerealintheworld.3That

said,farmershavetofacetheincreasedcostsofseeds, chem-icals,andfertilizers.2Inthisscenario,increasingcropyields

atlowercostscouldbeachievedbyincreasingtheroot sur-faceprovidedbyassociationswithfungi,culminatinginbetter nutrientuptakeandplanthealth.4,5

Dark septatefungi(DSE) are ascomycetes, and theyare characterized by having dark pigmentation, microsclerotia andmelanizedseptatehyphaethatcolonizetheroot epider-misandcortexinter-andintracellularyinthehostroots.6–11

Manyofthesefungiareabletocolonizetherootcellsofplants, promotinggrowthwithoutcausingpathologies.12,13

Thesefungiofteninhabitoligotrophicsoilsthatare asso-ciated with the roots of hundreds of plant species in all climateregionsandmajorbiometypes.12,14–20AlthoughDSE

research is increasing, our knowledge of the diversity of thesefungiremains restricted.21 DSE classificationis

grad-uallybeingimprovedand newspeciesarebeing described, but many isolates do not yet have adequate taxonomic positioning.21,22 For example,the three novel genera

Dark-sidea,AquilomycesandFlavomycesbelongingtoLentitheciaceae, Morosphaeriaceae and, Massarinaceae family were recently documented.21 Todate,approximately40 DSEspecieshave

beendescribed.6,21,23–26

Theability ofthese fungito promote plantgrowth has attractedattention because oftheir potentialuse in differ-entspecies,suchasconifers,grasses,andcabbages,among others.6,22,27–29 Furthermore, because they readily grow in

culture media and are not biotrophic, DSEs have advan-tages over other fungi because their inoculant production canbeeasier.6,30 Newsham13 performedameta-analysisof

18 independent studies to assess the inoculation of DSE in differentcrops, concludingthat this practice raisedthe nitrogen (N) and phosphorus (P) contents as well as the plantbiomassby26–103%.Conversely,anothermeta-analysis suggestednegativetoneutraleffectsfrominoculating with non-clavicipitaceousrootfungalendophytes(includingDSE) ontheplantbiomassandNcontent.31Althoughtheinfluence

ofDSEonitshostisstillunderdebate,theidentificationof DSEwithbiotechnologicalpotentialexpandsthehorizonsfor itsuseinagriculture,asisalsothe casefornitrogen-fixing bacteriaandotherbeneficialmicroorganisms.

InBrazil,recentstudieshaveshownthepresenceofDSE intherootsofhealthyOryzaglumaepatulaplantsinthe natu-ralenvironment.32Inthisstudy,someisolateswereableto

colonizeand contributetothedevelopmentofOryza sativa L.withoutcausingdiseasesymptoms.32–34 Inthesameway,

basedonintergenicspaces,Bonfimetal.35identified35DSE

groupsrepresenting27speciesthatwereisolatedfrom7native trees,indicatingthehigh diversityofthesefungi.Likewise, anewdarkseptate fungusspeciesfrom China(Harpophora oryzae)wasrecentlyidentifiedinthehealthyrootsofOryza granulata,whichwasabletoincreasethebiomassofO.sativa, alsowithouttriggeringdiseasesymptoms.22

ThewayinwhichDSEestablishtheirassociationwiththe hostisnotfullyunderstood,butstudieshaveindicatedthat growthpromotioncanbeperformeddirectly,byenhancingthe nutrientuptake;orindirectly,byprotectingtheplantagainst abiotic stresses (drought,salinity, and high concentrations of heavymetals)and the productionof phytohormonesor analogoussubstances.27,36–38InBrassicacampestrisL.,a

mutua-listic association was found with the fungus Heteroconium chaetospira,inwhichthefungussuppliesNtotheplantand theplantprovidescarbontothefungus,resultinginsignificant increasesinplantbiomass.27

ThebestgrowthpromotionresponsesfromDSEusehave beenobservedwhenorganicsourcesofNareused.12,13,27,28

However,becauseofthegeneralizedoccurrenceofdark sep-tatefungiinawiderangeofenvironments,20,39therearelikely

DSEspeciesthatarealsoabletoassistinnutrientuptakefrom inorganicsources.27

DSEs have been shown to form intraradical structures resemblingthoseformedduringmycorrhizalsymbioses.For example,Acephalamacrosclerotiorumformedectomycorrhizae inpineandspruce29andH.chaetospiraformedloose

intracel-lularhyphalloopsthatmorphologicallyresembledtheericoid mycorrhizaeinRhododendronobtusumvar.kaempferi.40

How-ever,therolesoftheseintraradicalhyphalstructuresarestill atthehypothesislevel.

Inapreviousstudy,thecompositionaldiversityoftheDSE that colonized native rice(O.glumaepatula)inthe Brazilian Amazonwasinvestigated.33 Basedoninvitrotests,32

non-pathogenicisolateswereconsideredasDSEfungi.33Thisstudy

wasperformedtoaddress thephylogeneticpositionandto assessthecontributionofdarkseptatefungalisolates(A101, A103,A104andA105)obtainedfromO.glumaepatula33tothe absorptionofnutrientsandthegrowthofriceplants(O.sativa) undercontrolledconditions.

Materials

and

methods

Fungalisolates,DNAextraction,andphylogenetic analyses

All of the isolates investigated here are deposited in the CRB-JD(CentrodeRecursosBiológicosJoannaDöbereinerat EmbrapaAgrobiologia–www.embrapa.br/agrobiologia/crb-jd) (A101, A103, A104, and A105). For the phylogenetic analy-ses,genomicDNAwasextractedfromeight-day-oldcultures growninPDAmedium.Fivediscsof6mmeachwere trans-ferredfromtheplateto2mLsterilemicrotubes,towhich0.2g ofglassbeads(106␮m;Sigma)and1mLofsterilizedultrapure waterwereadded.Thesuspensionwasvigorouslyagitatedby vortexandcentrifuged(1.5min;13000rpm).Thesupernatant was transferredtocleanmicrotubes, and 600␮Lofthe cell lysissolutionfromthekitWizard®GenomicDNAPurification (Promega)wasadded.Thesampleswerevigorouslyagitated byvortex(10min)andsubjectedtothreecyclesof95◦C/ice, with10minforeach step.Thesecycleswere followedbya Wizard® GenomicDNAPurificationprotocol.The ITS1-5.8S-ITS2regionoftherDNAfragmentwasamplifiedusingprimers ITS1andITS4.41PCRwasperformedwith25Lreactions

(3)

dNTP,0.2␮Mofeachprimer(ITS1andITS4),1.25UofTaqDNA polymerase(5U␮L−1),and 1.0␮LofDNAtemplate(approx. 50ng).Theamplificationconditionsfrom Maharachchikum-buraetal.42wereused.DNAsequencingwasperformedfor

bothDNAstrands,andthesequenceswereassembledwith Bionumericssoftwarev.7.1.

Thedatasetusedforthephylogeneticanalysiscontained taxonbelongingtodothideomyceteordersandonly Pleospo-raleswasrepresentedbytheirknownfamilies.Theorder-level dataset was used to gain information about the phyloge-neticpositionofA101,A104andA105isolatesinPleosporales (Fig.2).Alignmentsofoursequencestogetherwithsequences from GenBank were performed using MUSCLE in MEGA v. 7.43 The sequences were edited using MEGA v. 7. Aligned

datasetofITSwasanalyzedusingMaximumlikelihood(ML). Thebest model forML was selected based on the Akaike InformationCriterion(AIC), whichwascalculated inMEGA v. 7. ML analysis was done by calculating an initial tree usingBioNJandthesubsequentHeuristicsearchdonewith the Nearest-Neighbour-Interchange (NNI) option. Distance matriceswerecalculatedusingtheKimurathree-parameter substitutionmodel43 and the robustnessof the treenodes

wasevaluatedbybootstrapanalysis44using1000replicates.

The software default parameters were considered in all analyses.TheITSregionsequenceswere depositedin Gen-Bank (KR817246=A101, KR817248=A103, KR817249=A104, andKR817250=A105).

Experimentaldesign,treatments,andconditionsofthe incubatorroom

This experiment was performed in an incubator room at EmbrapaAgrobiologia,inSeropédica,RiodeJaneirostate.The experimentaldesignwascompletely randomized,withrice planttreatmentsgrownwithout(control)andwiththe inocu-lationofdarkseptateendophyticfungi(DSE).Eachtreatment includingthecontrolhad4replications,andeachreplication hadfourplants.ThePiauíricevariety,agenotypeadaptedto thenaturallow-fertilityofBraziliansoilwasused,alongwith thefungalisolatesA101,A103,A104andA105.Theplantswere grownwitha13h/11h(light/dark)photoperiod,aluminosity of384␮molm−2s−1(photosyntheticallyactivephotonflux),a relativehumidityof50–60%andatemperatureof28◦C/24C (day/night).

Inoculationandgrowthconditions

Thericeplants were grownindisposable Petriplates con-taining sterilized agar-water (1% concentration), and they were adaptedtoallowfor themycelial growth.Two plates (oneinverted) andonelidcontainedfour equidistantholes (approximately8mmindiameter),andtheholesonthe bot-tomweresealed withadhesivetapetoholdthe previously autoclavedagarwater(Fig. 1). Theset ofplates wassealed withhigh-resistanceadhesivetape(Fig.1)andthenexposed toultravioletlightfor20mininalaminarflowhoodtoprevent contamination.

ThefungalisolateswerepreviouslygrownonPDAmedium for seven days at 28◦C. The rice seeds were washed in 70% alcohol for 5min and disinfested with 2.5% sodium

hypochlorite for10min, followed bysuccessivewashing in autoclaveddistilledwater.Theseedswereplacedonthe agar-watermediumatthespotswhereeachplatewasperforated. Additionally,onediskofPDAmedium(approximately8mm) indiametercontainingmyceliawasplacedalongsideofeach seed.ThePetriplatesforthecontrolplantswereinoculated withPDAplugswithoutfungalmycelium.Aftertheirsowing, theplateswereincubatedforthreedaysat28◦Ctofavorfungal germinationandestablishment.

Aftertheseedshadgerminated,fourplateswithuniformly sizedseedlingswereselectedfortransfertoglasspots contain-ingonlyautoclaved,distilledwater(120◦Cfor1h).Afterfive days,thewatercontainedinthepotswasreplacedbynutrient solutionthatwasformulatedaccordingto45at1/4oftheionic

strength,whichwasmodifiedwith1.5mmolL−1 ofNO 3−-N (KNO3assource).Afterthreedays,thissolutionwasreplaced byanothersolutionat1/2ionicstrength,with2.0mmolL−1 ofNO3−-N and0.5mmolL−1 ofNH4+-N, withCa(NO3)2 and (NH4)2SO4, respectively.Thisstrategywasadoptedtoavoid causingsaltstressintheplantlets.46Thereafter,the1/2ionic

strengthsolutionwasreplacedeverythreedays.

Thirty-twodaysaftergermination(DAG),theplantswere deprivedofnutrientsolutionNO3−-Nforaperiodof72hto increasetheroots’capacitytoabsorbN47afterwhicha

nutri-entsolutioncontaining0.5mmolL−1ofNO

3−,againbyusing KNO3asthesource,wassupplied.During11h,samplesofthe solutionwerethencollectedevery30minbyremoving0.5mL aliquotsfromeachpottoplotthedepletioncurvesand deter-minethekineticparametersVmax andKm.48,49Thesamples wereplacedinmicrotubesandtheNO3−concentrationwas measuredaccordingto50asadjustedfollowingAlvesetal.51

TheVmaxandKmvaluesweredeterminedbyusingthe math-ematicalgraphingmethodproposedbyComettietal.52with

theCineticawin1.0program(UniversidadeFederaldeVic¸osa, MinasGerais,Brazil).

Solublefractionandcolonizationmeasurement

Followingthecollectionofthelastnutrientsolutionsample, the plantswere cutandtheheightsandnumbers oftillers fromeachplantweredetermined.Thefreshanddrymasses oftherootsand shootswere measured,inthesecondcase afterbeingdriedinaforced-airchamberat65◦Cuntil reach-ingaconstantweight.Thefreshsamples(onegramofroot, sheath and leaftissue)were homogenized in80% ethanol, and after partitioning the samples with chloroform,53 the

levels of NO3−-N,50 free amino-N,54 NH4+-N,55 and soluble sugars56inthesolublefractionweremeasured.Theremaining

shoot material was used to determine the macronutrient concentrations.57Afterremovingtheshoots,afreshrootwas

removedfromeachpotandkeptonalcohol50%toobservethe colonized roots.Thediafanizationand stainingoftheroots were performed according to.58 The rootsections (approx.

(4)

A

B

D

C

E

F

G

Lid

Inverted plate

Holes

Plate

P

etri plates

Pot 0.07

1.3

1.3

ø 9.00cm

ø 8.50cm

ø 8.50cm

8.50

12.00

Fig.1–VesselusedtostudytheNO3−-Nuptakekineticsinriceplants(var.Piauí)thatwereinoculatedwithdarkseptate

fungiandsubjectedto0.5mMofNO3−-Nafter72hofNnutrientdeprivation.(A)Petridishescontainingagar-waterwith

seedsandmyceliumdiscs;(B)fungalbiofilmofA103(10DAG);(C)fungalcharacteristicsatthecollectiontime(35DAG);(D) non-inoculatedplantat41DAG;(E)thestartofA103establishment(3DAG);(F)Potused;(G)overviewofvessel.

lightmicroscopy,the samplesweredehydratedtwiceinan ethanolseriesof70,90and100%for1heach.After dehydra-tion,thecolonizedrootswereinfiltratedwithhistoresin(Leica, Wetzlar,Germany)and100%ethanol(1:1,v/v)for12handthen with100%historesinfor24hbeforebeingembeddedin his-toresin.Sections(thatwereapproximately5␮mthick)were slicedusing a rotary microtome (Leica).The sampleswere observedandtheimageswereanalyzedasdescribedabove.

Statisticalanalyses

Ananalysisofvariance and at-test forthe comparisonof meanswereappliedtothedata(p<0.05)withAssistat61and

Sisvarsoftware.62

Results

and

discussion

PhylogeneticsoftheisolatesbasedonITS

The sequences obtained from the isolated fungi were first subjected to a BLAST search (http://www.ncbi.nlm.

nih.gov) and to pairwise sequence alignment (http://www.

fungalbarcoding.org).FortheA101fungus,onlymatcheswith

lessthan 88% similaritywere found,indicating thatit rep-resentedanunknowntaxon.Fortheother threeisolates,a similaritytoafungusbelongingtothePleosporalesorderwas

found;thisisthelargestorderintheDothideomycetesclassand encompassessomerecognizeddarkseptatefungalfamilies.21

According to the results of the phylogenetic analyses, the three isolates (A103, A104 and A105) belonged to the Pleosporalesorderandarenestedinfamiliesofthesuborder Massarineae,neartheMorosphaeriaceae(Fig.2).Additionally, the three new isolates are closely related to some genera that were treated as incertae sedis (a genus notyet placed withinaspecificfamily/genus),suchasMassarinaigniaria(CBS 845.96),Periconiamacrospinosa (CBS135663),Noosiabankssiae (CPC17282),Flavomycesfulophazii(CBS135761)andFlavomyces fulophazii(CBS135664)(Fig.2).21Therefore,theITSsequence

analysisindicatedthatourisolatesrepresentnewtaxathat willrequireaproperpolyphasicanalysisinthefuture,butat leastthreeisolatesbelongtotheclassicaldarkseptatefungal group,i.e.,thePleosporalesorder.

Colonization

The inoculation of the rice plants withfour different DSE isolatesdidnotcauseanydiseasesymptoms,indicatingthe compatibilityoftheassociation.Otherstudiesalsoindicated thatDSEcancolonizetherootcortexofplantswithout caus-inganypathologies.13Inthesameway,therootsofallofthe

(5)
(6)
(7)

Table1–Heightsoftheshoots,numberofriceplant tillers(Piauívariety)at35DAG,withandwithout inoculationwithdifferentdarkseptatefungalisolates andthepercentagefungalcolonizationofriceroots.

Treatment Heightof shoots(cm)

Numberof tillers(pot−1)

Colonization(%)

Control 67.1±1.6b 2.0±0.00c – A101 67.6±0.9b 3.13±0.06b 33.3±6.0b A103 72.4±1.1a 4.06±0.26a 60.3±10.6a A104 62.88±1.0c 3.25±0.20b 63.6±9.0a A105 67.7±1.0b 3.44±0.05b 77.2±5.4a

CV(%) 3.90 10.85 23.79

Means±SE(n=4)followedbythesamelower-caselettersinthe columndonotdiffersignificantly(t-test(LSD),p<0.05).DAG,days aftergermination.Themeansoffourcomposedrepetitions(each repetitionhadfourplantsperpot).SE,standarderror.

microsclerotiainthecortexroot(Fig.3E,D,F,K,L,P,QandR). A104andA105formedintracellularhyphaethatwerestained withmethyl blue inthe roots ofall of the inoculated rice plants(Fig.3I,M,and N).A103andA101formed intracellu-larmelanizedseptatehyphae (Fig.3GandS),andthe A103 fungusalsoformedchlamydospore-likestructuresthat sur-roundedthevascularbundleregion(Fig.3H)aswellasaloose intracellularhyphalloop(Fig.3C)andA101formed microscle-rotia(Fig.3S)intherootsofalloftheinoculatedriceplants.In addition,duringtheexperiment,thefunguswasfoundtobe growingabundantlyalloverthewater-agarinthePetridish thathadbeentossedintothepotplantedwithrice(Fig.1C). Moreover,abundantfungalgrowthwasdirectlyobservedover therootsurface,evenwhentherootsweresubmergedinthe nutrientsolution(Fig.1B).Thecontrolplantsdidnotdisplay anyfungalcolonization(Figs.1Dand3A).However,inallofthe treatmentswithdarkseptateinoculation,abundant coloniza-tionswereobserved,varyingfrom33to77.2%(Table1).The percentageofcolonizedrootsintheplantsinoculated with A103,A104,A105wassignificantlyhigherthanthatofA101 fungus(Table1).Theseresultsaresimilartoresultsobtained recentlybyLukeˇsováetal.,29inwhichtheauthorsobserved

alooseintracellularhyphalloopformedbyA. macrosclerotio-rum in birchroots, with colonization varyingfrom 51–61% when the birches were inoculated with Acephala applanata andA.macrosclerotiorumand 50–80%whenblueberrieswere inoculatedwithPhialocephalafortiniiss.l.–A.applanataspecies complex(PAC).

Plantbiomass,growthandnutrientaccumulation

Anevaluationofthedrymattershowedthattheplantsthat wereinoculatedwithisolateA103hadhighervaluesforthe roots,sheathes,leavesandshoots,withincreasesof44%,43%, 25%and 32%,respectively,incomparisonwiththecontrol, indicatingthatthisfunguscontributestoriceplantgrowth (Fig.4A).However,theinoculationwithA104caused reduc-tionsof24%,11%and22%inthedrymatterofthesheaths, leavesandshoots,respectively(Fig.4A),andisolatesA101and A105didnotinfluencetheplantdrymatter(Fig. 4A). Like-wise,theheightsoftheplantswereinfluencedpositivelyby

A103inoculation.However,A104causedanegativeeffect,and therewasnoeffectfromA101andA105incomparisonwith thecontrol(Table1).Thehigherrootmassprobablyindicates thegreaterpresenceoflateralandsecondaryrootsandroot hairs,whichisacharacteristicofrootsthatare morphologi-callyadaptedforamoreefficientuptakeofnutrients.Thistrait isdesirable,primarilybecauseitisanimportantattributefor the absorptionofnutrientssuchasNand Punderlowsoil fertilityconditions.48,63,64

Theresultsofthedrymatterandplantheightevaluations were widely variable among the fungal isolates. The A103 isolatepromotedthegreatestaccumulationofbiomassand the greatestelongationofthe shoot,which waspreviously observed.Forexample,inDendrobiumnobile65and Saussurea

involucrata,66 DSE inoculation also promoted greater plant

heightsandbiomassesintheshootsandrootsincomparison withthecontrolplants.Moreover,theinoculationofthehost plants(blueberries)andbirchseedlingswithA.applanataand A.macrosclerotiorumshowedincreasingdryshootweightsand freshrootweights.29However,thelatterauthorobserved

neg-ativeeffectswhentheblueberrieswereinoculatedwithPAC, whichisinaccordancewith.31

Forthedrymattervaluesandheightsoftheplantstreated withA103,therewasalargernumberoftillersintheplants inoculatedwiththefungalisolates,withthestandoutagain being the plants that were inoculated with A103, with an increase of100% comparedwiththecontrol(Table1).This more intensetillering likely resultsfrom the greater plant vigorthatoccurswheninoculatingwiththisisolatebecause other studies have shown a high correlation between the nutritionalstateandsupplementationofcarbohydrates.67,68

Newsham69 foundthattheDSEfungusP.graminicola,which

iscurrentlycalledHarpophoraradicicola,wasbeneficialtothe grassVulpiaciliatabecauseinoculatedgrasseshadincreased tillernumbers,rootlengths,anddrybiomassesfortheshoots androots,whencomparedwithnon-inoculatedseedlingsin agrowthroomandaglasshouseexperiment.

Anassessmentofthemacronutrientcontentsintheshoots showedthattheA103treatmentincreasedtheN,MgandS contentsinrelationtothecontrol(by29,19and30%, respec-tively), andthose levelswerelower intheinoculationwith A104;therewerenodifferenceswithA101andA105(Table2). Therefore,A103inoculationpromotedagreateraccumulation ofthesenutrientswhiletheotherfungalisolatestendednot toproduceeffects.

The 30% higher accumulation ofN foundin this study intheA103-inoculatedplantswhenammoniumnitratewas appliedas theNsourceappearstoindicate that greaterN accumulationdoesnotnecessarilyoccurwhentheNsourceis organic.Thisfindingmightresultfromthelowavailabilityof thistypeofnitrogensourceorthespecializationofthisfungus fortheabsorptionofmineralNintropicalsoils,aspreviously observedformycorrhizalfungi.70–73

(8)

b a

B

A

D

C

a a a

a a a

a a a a a a a a a a a a a a a a a ab ab ab ab ab ab b a c c c c c c c c c ab c c c

b bb b b bc b b b ab b b b b b b d b b b b b bc bc bc bc cd d b b b b b b Control A101 A103 A104 A105

Dry mass(g pot

-1)

NH

4

+-N (µmol pot -1)

Free amino-N (µmol pot

-1)

Soluble sugar (mg pot

-1) 3.0 2.5 2.0 1.5 1.0 0.5 0.0 300 60 40

Root Sheath Leaf Shoot Root Sheath Leaf Shoot

20 0 250 200 150 100 50 0 140 120 100 80 60 40 20 0

Fig.4–Drymass(A),thecontentsoffreeamino-N(B),freeNH4+-N(C)andsolublesugars(D)asdeterminedat35DAGin

riceplants(Piauívariety)withoutinoculation(whitebar)andthoseinoculatedwiththefollowingdifferentdarkseptate fungalisolates:A101(checkeredbars),A103(closedbars),A104(greybars)andA105(stripedbars).Differentletterswithina givenplanttissue(rootorsheathorleaforshoot)indicatesignificantdifferencesamongthetreatmentatp<0.05(t-test (LSD)).Theerrorbarsarestandarderror(n=4).Themeansoffourcomposedrepetitions(eachrepetitionhadfourplantsper pot).Theshootbiomassisthesumofthesheathesandleaves.

inorganicsourceofP.12,13TheCalevelwasequalforallofthe

treatmentsincomparisonwiththecontrol,eventhoughthere wasatendency forhigheraccumulationintheplantsthat wereinoculatedwithA103andA105(Table2).

Nitrogenabsorptionkinetics

In evaluating the NO3− exhaustion rate obtainedfrom the nutrientsolution,inoculatingwithA101andA103increased NO3−consumptionincomparisonwiththecontroltreatment

(Fig.5AandB).Ingeneral,theabsorptionspeedwashigher duringthefirsthourswithA101,butintheplantsinoculated withA103,thehighestabsorptionspeedwasobserved approx-imately 7hafter inoculation,and the NO3− content ofthe nutrientsolutionwasdepleted11hafterthestartofthe exper-iment(Fig.5B).However,inoculatingwithA104andA105did notcauseanychangeinrelationtothecontrol.

AmongthekineticparametersofNO3−absorption,there wasonlyasignificanteffectforKm (Table3).TheA101and A103inoculationledtolowerKmvaluesthanthecontrol.

Table2–Macronutrientcontentsinthericeplantshoots(Piauívariety),at35DAG,withandwithoutinoculationwith differentdarkseptatefungalisolates.

Treatment N P K Ca Mg S

mgpot−1

Control 56.3±3.1b 13.1±0.3cd 49.2±3.8bc 7.9±0.6ab 8.0±0.3b 11.4±0.6b

A101 53.2±1.7b 13.7±0.7c 40.5±1.3c 6.4±0.2b 8.0±0.2b 10.3±0.3b

A103 72.8±1.1a 19.4±0.4a 65.0±4.9a 9.7±1.2a 9.5±0.3a 14.9±0.5a

A104 42.7±3.2c 11.6±0.6d 43.8±2.3c 6.8±0.5b 5.6±0.3c 8.6±0.5c

A105 53.9±1.0b 15.6±0.4b 54.6±1.2ab 9.6±0.3a 7.2±0.2b 11.4±0.2b

CV(%) 9.22 7.47 13.94 18.41 7.44 8.73

(9)

Controly=0.571055+0.012101x-0.012916x2+0.000715x3 R2=0.99*

Controly=0.571055+0.012101x-0.012916x2+0.000715x3 R2=0.99* Controly=0.571055+0.012101x-0.012916x2+0.000715x3 R2=0.99*

Controly=0.571055+0.012101x-0.012916x2+0.000715x3 R2=0.99*

A101y=0.567379-0.021279x-0.006336x2+0.000353x3 R2=0.99*

A104y=0.580133-0.022386x-0.006526x2+0.00039x3 R2=0.99* A105y=0.555153+0.031065x-0.013024x2+0.000573x3 R2=0.96*

A103y=0.557485+0.058437x-0.022065x2+0.00109x3 R2=0.98*

0.8

B

A

D

C

0.6

0.4

0.2

0.0

0.8

0.6

0.4

0.2

0.0 0

Time (h)

NO

3

- - N (mM)

NO

3

- - N (mM)

Time (h) 6

4

2 8 10 0 2 4 6 8 10

Fig.5–DepletionofN-NO3−inthenutrientsolutionforeachriceplant(Piauívariety)inoculatedwithdarkseptatefungi

A101(A),A103(B),A104(C)andA105(D),thensubjectedto0.5mMofN-NO3−after72hofNdeprivation.*Significant

accordingtotheF-testat5%probability.Theerrorbarsarestandarderror(n=4).

Table3–KineticparametersKmandVmaxforNO3− absorptionasdeterminedat35DAGinriceplants(Piauí variety)withandwithoutinoculationwithdifferent darkseptatefungalisolates.

Treatment Vmax(␮molg−1h−1) Km(␮molL−1)

Control 56.5±4.4a 88.6±4.1a

A101 55.1±3.0a 49.7±10.8bc

A103 46.8±3.2a 22.0±3.4c

A104 60.6±16.5a 76.4±14.8ab

A105 48.4±2.7a 96.1±11.9a

CV(%) 25.81 26.21

Means±SE(n=4)followedbythesamelower-caselettersinthe columndonotdiffersignificantly(t-test(LSD),p<0.05).Themeans offourcomposedrepetitions(eachrepetitionhadfourplantsper pot).SE,standarderror.

LowerKm valueswere estimatedforthe A101and A103

treatments(44and75%lowerthanthecontrol,respectively), indicatinggreater affinity fortransporting theNO3− ofthe

plantsthatwerecolonizedbythesetwoisolatesincomparison withtheothertreatments.Inthesameway,thebetternitrate uptakeefficiencyofthecolonizedtomatorootbyarbuscular mycorrhizalfungi(AMF)comparedwithanon-inoculated con-trolwaspreferentiallymediatedbyahigherexpressionofNRT 2.3,amemberofthehigh-affinitytransportsystem.74Another

studyshowedthat soilinoculationwithAMFincreasedthe plantgrowthandNuptakeofwheatwhencomparedwitha non-inoculatedcontrol,anditwasattributedtoupregulation bytheAMFofnitratetransportergenes.75

Morphology, physiology and root system development, amongotheraspects,determinethevariationsinthe absorp-tionkineticsfactors(Km,VmaxandCmin)ofplantspecies.This variationisassociatedinturnwiththeadaptationofplantsto differentecosystems.48 Thesemorphophysiologicaltraitsof

therootsystemareinfluencedbythemicroorganismsthatare presentintherhizosphere.75,76Therefore,itcanbeassumed

thatthegreater NO3− absorptionefficiencyobservedinthe A103-colonized plantsisexplained bythelower Km values causedbythepresenceofthisfungus.Thisgreaterefficiency inacquiringNO3−whentherearelowconcentrationsin solu-tioncouldbeanindicationofplantadaptationstonutritional stressconditionsintropicalregions,whicharecausedbythe nitrogendynamicoftheenvironment.49

Plantsolublefraction

Thenitratecontentsoftheroots,sheathes,leavesandshoots ofthericeplantswerenotinfluencedbythetreatments, con-firmingtheabilityofthePiauívarietytoaccumulatenitrate, alongwithamino-Ninthesheathes,asalreadyobservedin previousstudies.49,64,77–79However,thefreeamino-Ncontent

(10)

andshootspresentedlowercontentsofamino-Nthanthe con-trolplants,withrespectivereductionsof18%and 24%.The amino-Ndecreaseintheshootscouldberelatedtothe trans-portofaminoacidsfromthisparttotheroot,tosupplythe metabolicdemandsoftheA104andA105fungibecausethere arereportsthatsomedarkseptatefungiusefreeaminoacids astheirsolesourceofcarbonandnitrogen.27Otherstudies

haveshownthatthemetabolicactivityofmycorrhizalfungi cancauseconsiderablechangesintheNmetabolism,witha reducedconcentrationoffreeamino-N.80–82

TheNH4+-N content wasgenerally higher inthe leaves thanintherootsandsheathes(Fig.4C).Similarresultshave beenobservedinthisvarietybyotherauthors.64,78,79,83 The

inoculationdidnotinfluencetheNH4+-Ncontentsintheroots and sheathes(Fig. 4C). In contrast,there was lower NH4+ -NaccumulationintheleavesforA104andA105treatments comparedwiththecontrol(Fig.4C).Intheshoots,withthe exceptionoftheA105treatment,whichpresentedareduction of30%intheNH4+-Ncontent,allofthetreatmentspresented NH4+-Ncontentsequaltothatofthecontrol.Anotherstudy foundan NH4+-N reduction intransgeniccarrot rootsthat wereinoculatedwithAMF.82

Ingeneral,the solublesugar contentsofthe rootswere lower thanthose ofthesheathes, whichinturn contained a lower content than the leaves (Fig. 4D). Similar results were obtained by49 for the same rice variety. The soluble

sugarcontent oftherootswas notinfluencedbythe pres-enceofthefungi(Fig.4D).Bycontrast,therewasadifference betweenthetreatmentsinthesheathes,leavesandshoots, withtheA103inoculationcausingthehighestsolublesugar contents,atanincreaseof46%comparedwiththecontrol. Thisresultindicatesthatinoculatingriceplants(Piauívariety) withA103canenhance maintenancerespirationand plant growth.Thehigherobservedsugarcontentisanindicationof moreefficientphotosynthesisintheA103-inoculatedplants. Thisfindingcanbeexplainedbythefactthatplants associ-atedwithDSEcanpresenthigher levelsofchlorophylland betterefficiencyofphotosystemIIphotochemistry.84 Inthis

case,theestablishmentoftheassociationbetweenthehost plantandDSEshouldbesimilartotheeffectofmycorrhizae formation,whichresultsinchangesinthehostplant’s phys-iology,withincreasesinthechlorophylllevelsintheleaves and a consequently higher productionof photoassimilates andcarbohydrates.85,86

Theincreasesintheroot,sheath,leafandshootmasses along withthe greater heightand number of tillersinthe plantstreatedwiththeA103fungal isolateisanindication ofthebetternutritionalstateoftheseplantsaspromotedby anassociationwiththisfungus.Thistrendwasalsoevidenced bythehigheraccumulationsofsolublesugarsandthemore efficientuptakeofnutrients,especiallynitrogen(asindicated bythelowervalueofKm).

Concluding

remarks

Thereareimportantdifferencesinriceplantbenefits, depend-ingontheassociatedfungiandrangingfromthepromotion ofplantgrowthtonoeffect.ThePleosporalesfungusA103 pre-sentedhighpotentialforuseinthepromotionofriceplant

growth,increasingthetilleringandabsorptionofnutrients, especiallyN(withanenhancedaffinityforabsorbingthis ele-ment)andP.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

WewouldliketothanktheUniversidadeFederalRuraldoRio deJaneiro(UFRRJ),particularlyfortheLaboratoryNutritionof PlantsandBiochemicalPlant,theUniversidadeEstadualdo NorteFluminenseDarcyRibeiro(UENF),especiallyforLBCT, theEmpresaBrasileiradePesquisaAgropecuária(Embrapa), the Fundac¸ão Carlos Chagas Filho de Amparo à Pesquisa do Estadodo Riode Janeiro (FAPERJ) and the Coordenac¸ão de Aperfeic¸oamento de Pessoal de Nível Superior (CAPES) forfinancial support.Weare gratefulto MarcusSperandio, MarcelaJacques,OrlandoHuertas,PeterSoaresdeMedeiros andGuilhermeGomesfortheirsupport.

r

e

f

e

r

e

n

c

e

s

1.FingerR.Evidenceofslowingyieldgrowth—theexampleof

Swisscerealyields.FoodPolicy.2010;35:175–182.

2.ChardonF,NoelV,Masclaux-DaubresseC.ExploringNUEin

cropsandinArabidopsisideotypestoimproveyieldandseed

quality.JExpBot.2012;63:3401–3434.

3.SilvaCM,KarasawaMMG,VencovskyR,VeaseyEA.Elevada

diversidadegenéticainterpopulacionalemOryza

glumaepatulaSteud.(Poaceae)avaliadacommicrossatélites. BiotaNeotropica.2007;7:165–172.

4.HogbergP.Rootsymbiosesoftreesinsavannas.In:ProctorJ,

ed.MineralNutrientsinTropicalForestandSavannaEcosystems.

Oxford,UK:BlackwellScientificPublishingHouse;

1989:121–136.

5.FinlayRD,SodestromB.Mycorrhizaandcarbonflowtosoil.

In:AllenMF,ed.MycorrhizalFunctioning.London:Chapman

andHall;1992:134–160.

6.JumpponenA,TrappeJM.Darkseptaterootendophytes:a

reviewwithspecialreferencetofacultativebiotrophic

symbiosis.NewPhytol.1998;140:295–310.

7.BarrowJR,AaltonenRE.Evaluationoftheinternal

colonizationofAtriplexcanescens(Pursh)Nutt.rootsbydark

septatefungiandtheinfluenceofhostphysiologicalactivity.

Mycorrhiza.2001;11:199–205.

8.AddyHD,PierceyMM,CurrahRS.Microfungalendophytesin

roots.CanJBot.2005;83:1–13.

9.YuT,NassuthA,PetersonRL.Characterizationofthe

interactionbetweenthedarkseptatefungusPhialocephala

fortiniandAsparagusofficinalisroots.CanJMicrobiol. 2001;47:741–753.

10.MandyamK,JumpponenA.Seasonalandtemporaldynamics

ofarbuscularmycorrhizalanddarkseptateendophyticfungi

inatallgrassprairieecosystemareminimallyaffectedby

nitrogenenrichment.Mycorrhiza.2008;18:145–155.

11.PetersonRL,WaggC,PautlerM.Associationsbetween

microfungalendophytesandroots:dostructuralfeatures

(11)

12.UpsonR,ReadD,NewshamK.Nitrogenforminfluencesthe

responseofDeschampsiaantarcticatodarkseptateroot

endophytes.Mycorrhiza.2009;20:1–11.

13.NewshamKK.Ameta-analysisofplantresponsestodark

septaterootendophytes.NewPhytol.2011;190:

783–793.

14.KovácsGM,SzigetváriC.Mycorrhizaeandother

root-associatedfungalstructuresoftheplantsofasandy

grasslandontheGreatHungarianPlain.Phyton.2002;42:

211–223.

15.MandyamK,JumpponenA.Seekingtheelusivefunctionof

rootcolonisingdarkseptateendophyticfungi.StudMycol.

2005;53:173–189.

16.RodriguezR,WhiteJ,ArnoldA,RedmanRS.Fungal

endophytes:diversityandfunctionalroles.NewPhytol.

2009;182:314–330.

17.NewshamKK,UpsonR,ReadDJ.Mycorrhizasanddark

septateendophytesinpolarregions.FungalEcol.

2009;2:10–20.

18.KhidirHH,EudyDM,Porras-AlfaroA,HerreraJ,NatvigDO,

SinsabaughRL.Ageneralsuiteoffungalendophytes

dominatetherootsoftwodominantgrassesinasemiarid

grassland.JAridEnviron.2010;74:35–42.

19.Porras-AlfaroA,BaymanP.Hiddenfungi,emergent

properties:endophytesandmicrobiomes.AnnuRev

Phytopathol.2011;49:291–315.

20.SharmaBB,JhaDK.Arbuscularmycorrhizaanddarkseptate

fungalassociationsinmedicinalandaromaticplantsof

Guwahati.JMicrobiolBiotechnolRes.2012;2:212–222.

21.KnappDG,KovacsGM,ZajtaE,GroenewaldJZ,CrousPW.

Darkseptateendophyticpleosporaleangenerafrom

semiaridareas.Persoonia.2015;35:87–100.

22.YuanZL,LlinFC,ZhangCL,KubicekCP.Anewspeciesof

Harpophora(Magnaporthaceae)recoveredfromhealthywild rice(Oryzagranulata)roots,representinganovelmemberofa

beneficialdarkseptateendophyte.FEMSMicrobiolLett.

2010;307:94–101.

23.WangCJK,WilcoxHE.Newspeciesofectendomycorrhizal

andpseudomycorrhizalfungi:Phialophorafinlandia,

Chloridiumpaucisporum,andPhialocephalafortinii.Mycologia. 1985;77:951–958.

24.KnappDG,PintyeA,KovácsGM.Thedarksideisnot

fastidious–darkseptateendophyticfungiofnativeand

invasiveplantsofsemiaridsandyareas.PLoSONE.

2012;7:e32570.

25.Andrade-LinaresDR,FrankenP.Fungalendophytesinplant

roots:taxonomy,colonizationpatterns,andfunctions.In:

ArocaR,ed.SymbioticEndophytes.Berlin:Springer-Verlag;

2013:311–334.

26.WalshE,LuoJ,ZhangN.Acidomelaniapanicicolagen.et.sp.

nov.fromswitchgrassrootsinacidicNewJerseyPine

Barrens.Mycologia.2014;106:856–864.

27.UsukiF,NarisawaK.Amutualisticsymbiosisbetweenadark

septateendophyticfungus,HeteroconiumChaetospira,anda

nonmycorrhizalplant,Chinesecabbage.Mycologia.

2007;99:175–184.

28.MahmoudRS,NarisawaK.Anewfungalendophyte,

Scolecobasidiumhumicola,promotestomatogrowthunder

organicnitrogenconditions.PLoSONE.2013;8(11):

e78746.

29.LukeˇsováT,KohoutP,V ˇetrovsk ´yT,VohníkM.Thepotential

ofdarkseptateendophytestoformrootsymbioseswith

ectomycorrhizalandericoidmycorrhizalmiddleEuropean

forestplants.PLoSONE.2015;10(4):e0124752.

30.YuanZL,SuZZ,MaoLJ,etal.Distinctiveendophyticfungal

assemblageinstemsofwildrice(Oryzagranulata)inChina

withspecialreferencetotwospeciesofMuscodor

(xylariaceae).JMicrobiol.2011;49:15–23.

31.MayerhoferMS,KernaghanG,HarperKA.Theeffectsof

fungalrootendophytesonplantgrowth:ameta-analysis.

Mycorrhiza.2013;23:119–128.

32.PereiraGMD,RibeiroKG,FernandesJuniorPI,VitalMJS,

KasuyaMCM,ZilliJE.Ocorrênciadefungosendofíticosdark

septateemraízesdeOryzaglumaepatulanaAmazônia.Pesq

AgropecBras.2011;46:331–334.

33.RibeiroKG,DissertationFungosendofíticosdarkseptatesem

arrozsilvestreOryzaglumaepatulaSteund.Universidade

FederaldeRoraima;2011.

34.RibeiroKG,PereiraGMD,MosqueiraCA,etal.Isolamento,

armazenamentoedeterminac¸ãodacolonizac¸ãoporfungos

darkseptateapartirdeplantasdearroz.Agro@mbiente.

2011;5:97–105.

35.BonfimJA,VasconcellosRLF,BaldesinLF,SieberTN,Cardoso

EJBN.Darkseptateendophyticfungiofnativeplantsalong

analtitudinalgradientintheBrazilianAtlanticforest.Fungal

Ecol.2016;20:202–210.

36.SchulzB,BoyleC.Theendophyticcontinuum.MycolRes.

2005;109:661–686.

37.ReiningerV,DissertationEcologyoffungalrootendophytesina

changingclimate–acasestudywithtaxaofthePhialocephala fortiniis.l–Acephalaapplanataspeciescomplex.ETHZurich; 2012.

38.WeiY-F,LiT,LiL-F,WangJ-L,CaoG-H,ZhaoZ-W.Functional

andtranscriptanalysisofanovelmetaltransportergene

EpNrampfromadarkseptateendophyte(Exophiala

pisciphila).EcotoxicolEnviron.2006;124:363–368.

39.GardesM,DahlbergA.MycorrhizaldiversityinArcticand

alpinetundra:anopenquestion.NewPhytol.

1996;133:147–157.

40.UsukiF,NarisawaK.Formationofstructuresresembling

ericoidmycorrhizasbytherootendophyticfungus

HeteroconiumchaetospirawithinrootsofRhododendronobtusum

var.kaempferi.Mycorrhiza.2005;15:61–64.

41.WhiteTJ,BrunsTD,LeeSB,TaylorJW.Amplificationand

directsequencingoffungalribosomalRNAgenesfor

phylogenetics.In:InnisMA,GelfandDH,SninskyJJ,White

T,J,eds.PCRProtocols:AGuidetoMethodsandApplications.

UnitedStates:AcademicPress;1990:315–322.

42.MaharachchikumburaSSN,GuoLD,CaiL,etal.A

multi-locusbackbonetreeforPestalotiopsis,witha

polyphasiccharacterizationof14newspecies.FungalDivers.

2012;56:95–129.

43.KumarS,StecherG,TamuraK.MEGA7:molecular

evolutionarygeneticsanalysisversion7.0forbigger

datasets.MolBiolEvol.2016;33:1870–1874.

44.FelsensteinJ.Confidencelimitsonphylogenies:anapproach

usingthebootstrap.Evolution.1985;39:783–791.

45.HoaglandDR,ArnonDI.Thewater-culturemethodfor

growingplantswithoutsoil.CalifAgricExpStnBull.

1950;347:1–32.

46.FurlaniAMC,FurlaniPR.Composic¸ãoepHdesoluc¸õesnutritivas

paraestudosfisiológicoseselec¸ãodeplantasemcondic¸ões nutricionaisadversas.Campinas:InstitutoAgronômico;1988

(IAC.Boletimtécnico,121).

47.LeeRB,RudgeRA.Effectsofnitrogendeficiencyonthe

absorptionofnitrateandammoniumbybarleyplants.Ann

Bot.1986;57:471–486.

48.BaptistaJA,FernandesMS,SouzaSR.Cinéticadeabsorc¸ãode

amônioecrescimentoradiculardascultivaresdearroz

AgulhaeBicoGanga.PesqAgropecBras.2000;35:

1325–1330.

49.SantosLA,SantosWA,SperandioMVL,BucherCA,SouzaSR,

FernandesMS.Nitrateuptakekineticsandmetabolic

parametersintworicevarietiesgrowninhighandlow

(12)

50.MirandaKM,EspeyMG,WinkDAA.Rapid,simple

spectrophotometricmethodforsimultaneousdetectionof

nitrateandnitrite.NitricOxide:BiolChem.2001;5:62–71.

51.AlvesLS,Torres-JuniorCV,FernandesMS,SantosAM,Souza

SR.Solublefractionsandkineticsparametersofnitrateand

ammoniumuptakeinsunflower(“Neon”Hybrid).RevCiênc

Agron.2016;47:13–21.

52.ComettiNN,FurlaniPR,RuizHA,FilhoEIF.Nutrient

solutions:formulationsandaplications.In:FernandesMS,

ed.Nutric¸ãoMineraldePlantas[MineralNutritionofPlants].

Brazil:Vic¸osa;2006:89–144.

53.FernandesMSN.Carriers,lightandtemperatureinfluences

onthefreeaminoacidpoolcompositionofRiceplants.

Turrialba.1984;33:297–301.

54.YemmEW,CockingEC.Thedeterminationofamino-acid

withninhydrin.AnalBiochem.1955;80:209–2013.

55.FelkerP.Microdeterminationofnitrogeninseedprotein

extracts.AnalChem.1977;49:1980–2977.

56.YemmEW,WillisAJ.Theestimationofcarbohydratein

plantsextractsbyanthrone.Biochemistry.1954;57:508–514.

57.TedescoMJ.Extrac¸ãosimultâneadeN,P,K,Ca,eMgemtecidode

plantaspordigestãocomH2O2-H2SO4.UFRGS;1982:23.

58.PhillipsJM,HaymanDS.Improvedproceduresforclearing

rootsandstainingparasiticandvesicular-arbuscular

mycorrhizalfungiforrapidassessmentofinfection.Trans

BritMycolSoc.1970;55:157–160.

59.McGonigleTP,MillerMH,EvansDG,FairchildGL,SwanJA.A

newmethodwhichgivesanobjectivemeasureof

colonizationofrootsbyvesicular-arbuscularmycorrhizal

fungi.NewPhytol.1990;115:495–501.

60.KohoutP,S ´ykorováZ, ˇCtvrtlíkováM,etal.Surprisingspectra

ofroot-associatedfungiinsubmergedaquaticplants.FEMS

MicrobiolEcol.2012;80:216–235.

61.SilvaFAZ,AzevedoCAV.Principalcomponentsanalysisinthe

softwareassistat-statisticalattendance.In:WorldCongresson

ComputersinAgriculture,vol.7.Reno-NV-USA:American

SocietyofAgriculturalandBiologicalEngineers;2009.

62.FerreiraDF.Sistemaparaanálisedevariânciaparadados

balanceados(SISVAR).Versão4.3.Lavras:UniversidadeFederal

deLavras;2003.

63.SchenkMK,BarberSA.Rootcharacteristicsofcorn

genotypesasrelatedtoPuptake.AgronJ.1979;71:921–924.

64.SperandioMVL,DissertationExpressãogênicade

transportadoresdenitratoeamônio,proteínareguladoradeNARe bombasdeprótonsemArroz(OryzasativaL.)eseusefeitosna eficiênciadeabsorc¸ãodenitrogênio.UniversidadeFederalRural

doRiodeJaneiro;2011.

65.HouXQ,GuoSX.Interactionbetweenadarkseptate

endophyticisolatefromDendrobiumsp.androotsofD.nobile

seedlings.JIntegrPlantBiol.2009;51:374–381.

66.WuL,GuoS.Interactionbetweenanisolateofdark-septate

fungianditshostplantSaussureainvolucrata.Mycorrhiza.

2008;18:79–85.

67.YoshidaS.FundamentalsofRiceCropScience.LosBa ˜nos:IRRI;

1981.

68.MattjeVM,FidelisRR,AguiarRWS,BrandãoDR,SantosMM.

Evaluationofricecultivarscontrastingindosesofnitrogen

insoilsofirrigatedlowland.JBiotechnolBiodivers.

2013;4:126–133.

69.NewshamKK.Phialophoragraminicola,adarkseptatefungus,

isabeneficialassociateofthegrassVulpiaciliatessp.

ambiqua.NewPhytol.1999;144:517–524.

70.BückingH,KafleA.Roleofarbuscularmycorrhizalfungiin

thenitrogenuptakeofplants:currentknowledgeand

researchgaps.Agronomy.2015;5:587–612.

71.GamperH,PeterM,JansaJ,LüescherA,HartwigUA,

LeuchtmannA.Arbuscularmycorrhizalfungibenefitfrom7

yearsoffreeairCO2enrichmentinwell-fertilizedgrassand

legumemonocultures.GlobChangeBiol.2004;10:

189–199.

72.JohansenA,JakobsenI,JensenES.Hyphaltransportbya

vesicular-arbuscularmycorrhizalfungusofNappliedtothe

soilasammoniumornitrate.BiolFertilSoils.1993;16:

66–70.

73.JohansenA,JakobsenI,JensenES.HyphalNtransportby

vesicular-arbuscularmycorrhizalfungusassociatedwith

cucumbergrownatthreenitrogenlevels.PlantSoil.

1994;160:1–9.

74.HildebrandtU,SchmelzerE,BotheH.Expressionofnitrate

transportergenesintomatocolonizedbyanarbuscular

mycorrhizalfungus.PhysiolPlant.2002;115:125–136.

75.SaiaS,RappaV,RuisiP,etal.Soilinoculationwithsymbiotic

microorganismspromotesplantgrowthandnutrient

transportergenesexpressionindurumwheat.FrontPlantSci.

2015;6:815.

76.SilveiraAPD,CardosoEJBN.Arbuscularmycorrhizaand

kineticparametersofphosphorusabsorptionbybeanplants.

SciAgric.2004;61:203–209.

77.SantosLA,BucherCA,SouzaSR,FernandesMS.Metabolismo

denitrogênioemarrozsobníveisdecrescentesdenitrato.

Agronomia.2005;39:28–33.

78.BucherCA,DissertationAvaliac¸ãoatravésdeRT-PCRda

expressãodosgenesquecodificamparaenzimasdeassimilac¸ãode nitrogênioemvariedadesdearroz.UniversidadeFederalRural

doRiodeJaneiro;2007.

79.BucherCA,DissertationExpressãodegenesrelacionadosà

absorc¸ãoemetabolismosdenitrogênioemArrozsobaltoebaixo suprimentodenitrato.UniversidadeFederalRuraldoRiode

Janeiro;2011.

80.MartinF,BottonB.Nitrogenmetabolismofectomycorrhizal

fungiandectomycorrhizas.AdvPlantPathol.1993;9:82–102.

81.MartinF,ChalotM,BrunA,LorillouS,BottonB,DellB.

Spatialdistributionofnitrogenassimilationpathwaysin

ectomycorrhizas.In:ReadDJ,LewisAH,FitterAH,Alexander

I,eds.MycorrhizasinEcosystems.UnitedKingdom:

Wallingford;1992:311–315.

82.SouzaSR,StarkEMLM,FernandesMS.Nitrogen

remobilizationduringthereproductiveperiodintwo

Brazilianricevarieties.JPlantNutr.1998;21:2049–2063.

83.SantosLA,DissertationAbsorc¸ãoeRemobilizac¸ãodeNO3em

arroz(OrysasativaL.):atividadedasbombasdeprótonsea dinâmicadoprocesso..UniversidadeFederalRuraldoRiode

Janeiro;2006.

84.ZhangHH,TangM,ChenH,Ya-JunW.Effectsofa

dark-septateendophyticisolateLBF-2onthemedicinal

plantLyciumbarbarumL.JMicrobiol.2012;50:

91–96.

85.LiYH,ZhengF,NiDJ,YangJF,ShiYT.Studyonphysiological

characteristicofteaplantinoculatedbyVAmycorrhiza.JTea

Sci.2011;31:504–512.

86.Fu-QiangS,Xiang-ShiK,YingL,Dan-DanQ.Influence

arbuscularmycorrhizalfungihaveoversolublesugar

contentsandendogenoushormonelevelsofAmorpha

Referências

Documentos relacionados

i) A condutividade da matriz vítrea diminui com o aumento do tempo de tratamento térmico (Fig.. 241 pequena quantidade de cristais existentes na amostra já provoca um efeito

Peça de mão de alta rotação pneumática com sistema Push Button (botão para remoção de broca), podendo apresentar passagem dupla de ar e acoplamento para engate rápido

Na hepatite B, as enzimas hepáticas têm valores menores tanto para quem toma quanto para os que não tomam café comparados ao vírus C, porém os dados foram estatisticamente

didático e resolva as ​listas de exercícios (disponíveis no ​Classroom​) referentes às obras de Carlos Drummond de Andrade, João Guimarães Rosa, Machado de Assis,

Assim sendo, procuro apreender as formas como os trabalhadores do Recôncavo Sul da Bahia, mais precisamente das localidades representadas pelas Comarcas de Cachoeira, Nazaré e

Neste trabalho o objetivo central foi a ampliação e adequação do procedimento e programa computacional baseado no programa comercial MSC.PATRAN, para a geração automática de modelos

Ousasse apontar algumas hipóteses para a solução desse problema público a partir do exposto dos autores usados como base para fundamentação teórica, da análise dos dados

Despercebido: não visto, não notado, não observado, ignorado.. Não me passou despercebido