• Nenhum resultado encontrado

MODIFICATION OF SURFACE LAYERS FOR SILICATE GLASSES BY ELECTRON IRRADIATION

N/A
N/A
Protected

Academic year: 2017

Share "MODIFICATION OF SURFACE LAYERS FOR SILICATE GLASSES BY ELECTRON IRRADIATION"

Copied!
6
0
0

Texto

(1)

546.571 (621.793.79)

Ы

Ы

Э

1

. .

a

, . .

b

, . .

a,

, . .

b

a И

, - , , brunov@oi.ifmo.ru

b

- , - , , olegpodsvir@mail.ru

- « Э И», - , ,

aisidorov@qip.ru

5–50 20–50 / 2. ,

20–50

Δn = 0,01–

0,04. ,

. 10 , ,

20 . 20–50

20–50 / 2 ,

-. , , :

-,

.

, .

: , , , ,

.

MODIFICATION OF SURFACE LAYERS FOR SILICATE GLASSES

BY ELECTRON IRRADIATION

1

V.S. Brunov

a

, O.A. Podsvirov

b

, A.I. Sidorov

a,

, D.V. Churaev

b

a

ITMO University, Saint Petersburg, Russia, brunov@oi.ifmo.ru

b

Saint Petersburg Polytechnic University, Saint Petersburg, Russia, olegpodsvir@mail.ru

Saint Petersburg Electrotechnical State University «LETI», Saint Petersburg, Russia, aisidorov@qip.ru

Experimental research results of silicate glass surface layers modification by the influence of electron beams with 5-50 keV energies and 20-50 mC/cm2 doses are presented. It is shown that during the glasses exposure to an electron beam with 20-50

keV electron energies, a gradient optical waveguide with increased refractive index on waveguide axis Δn = 0.01-0.04 is

formed in the surface layer. hemical etching rate is increased in the exposed area by up to two times which is related to glass grid destruction. Depending on irradiation dose thin film or silver nanoparticles with the size less than 20nm are formed on the surface of the silver containing glasses for electron energies less than 10 keV. Silver films drawn on the surface of the

glass are dissolved into the glass bulk for electron energies 20-50 keV and 20-50 mC/cm2 dose. Basic mechanisms causing

these effects are: chemical bonds breaking of spatial glass grid by high energy electrons, formation of negative volume charge inside the glass and field migration of positive metal ions into the volume charge region. Achieved results can be used in photonics, integral optics and nanoplasmonics device fabrication.

Keywords: electron irradiation, optical waveguide, silver film, silver nanoparticles, plasmon resonance.

,

,

[1–7].

[7],

[8],

[6, 9],

[10],

.

[11–14]

,

,

,

,

.

0,2

30

5

50

.

Ц

.

,

-1 Ц

« - »

2009–2013 . ( № 14. 37.21.0169 20.07.2012).

1

The paper was supported by the Federal Program "Scientific and Scientific-pedagogical Personnel of Innovative Russia" for

(2)

8

: SiO

2

-B

2

O

3

-Al

2

O

3

-BaO-K

2

O-Na

2

O (

-).

8

Ag

+

Na

+

NaNO

3

+AgNO

3

t

= 320°C.

8

80–100

.

Э

JEBD-2

E

= 5–50

,

j

= 40–50

А

/

2

Q

= 20–50

/

2

.

1

.

-.

,

,

,

,

110°C.

,

,

Al

100

,

.

Al

KOH.

Cary500

.

Э

.

8

.

Э

50

,

– 50

/

2

.

-,

,

-.

. 1, ,

,

-.

(

. 1, ).

И

. 1, ,

,

,

,

.

И

.

. 1. (E = 50 , Q = 50 / 2).

(a). : 1 – ;

2 – , ; 3 – ,

; 4 – ( )

,

-.

(

. 2, ).

. 2. ( )

t = 500° 3 ( )

Э

,

,

.

,

4

1

2

3

0,2

(3)

Δ

n

= 0,04–0,01.

.

:

1.

Na

+

,

,

,

.

10

–4

–10

–5

[7];

2.

-;

3.

.

t

= 500°

3 .

-.

,

(

.

. 2, ,

. 2, ).

Э

,

-.

,

.

,

.

.

,

.

Э

.

3

N

(HF)

1,5 .

. 3

.

И

,

.

19

.

,

-.

Э

,

,

-,

,

,

-

,

,

.

,

0,23

/

.

И

.

,

2,1

.

.

.

. 3.

(E = 50 , Q = 25 / 2)

,

-.

,

.

[10].

.

Э

,

5–7

(

)

,

-.

. 4

5 7

.

(

. 4)

,

.

.

,

,

. 4.

И

,

,

(4)

,

λ

= 425

,

[15–17].

Э

,

,

.

-,

1–20

[15–17].

,

-

,

[18].

. 4. :

1 – E = 5 , Q = 20 / 2; 2 – E = 7 , Q = 33 / 2. –

. – .

2

. 5. : 1 – ;

: 2 – Е = 10 ; 3 – 30 ; 4 – 40 ; 5 – 50 ( – : 1 – Е = 50 , 2 – 40 ) ( );

t = 500° 1 : 1 – Е= 40 , 2 – 50 ( ).

80 , Q = 20 / 2, j = 50 A/ 2

.

(Ag

+

, Na

+

)

0,6

0,3

0

,

300 400 500 600 700 2

1

0,5

0,4

0,3

0,2

0,1

0

0,5

0,4

0,3

0,2

0,1

0 300 400 500 600

,

300 400 500 600 ,

5

4 3

1, 2

1

2

1

2

(5)

.

Э

,

,

,

10%

HNO

3

5

.

.

.

(

. 5, a)

80

(

),

,

Е

= 10, 30, 40 50

20

/

2

.

И

,

Е

= 50

,

Е

= 40

-.

E

= 30, 40 50

.

. 5, .

И

,

Е

= 10

.

Е

= 30, 40 50

300–650

.

-,

,

.

t

= 500°

,

Е

= 10 30

,

.

,

Е

= 40 50

,

(

. 5, ),

2–10

[12].

,

40–50

.

.

.

40–50

20–30

.

Э

Ag

+

.

,

,

.

Э

--

,

,

,

,

-.

,

.

Reference

1. Engheta N., Salandrino A., Alu A. Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and

nanoresistors. Physical Review Letters, 2005, vol. 95, no. 9, art. no. 095504. doi: 10.1103/PhysRevLett.95.095504

2. Ams M., Marshall G.D., Dekker P., Dubov M., Mezentsev V.K., Bennion I., Withford M.J. Investigation of ultrafast

laser–photonic material interactions: challenges for directly written glass photonics. IEEE Journal on Selected Topics in Quantum Electronics, 2008, vol. 14, no. 5, pp. 1370–1388. doi: 10.1109/JSTQE.2008.925809

3. Qiu J., Miura K., Hirao K. Femtosecond laser-induced microfeatures in glasses and their applications. Journal of

Non-Crystalline Solids, 2008, vol. 354, no. 12–13, pp. 1100–1111. doi: 10.1016/j.jnoncrysol.2007.02.092

4. Quaranta A., Cattaruzza E., Gonella F. Modeling the ion exchange process in glass: Phenomenological approaches and

perspectives. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, vol. 149,

pp. 133–139. doi: 10.1016/j.mseb.2007.11.016

5. Gallagher J.G., de la Rue R.M. Single-mode stripe optical waveguides formed by silver ion exchange. Electronics

Let-ters, 1976, vol. 12, no. 16, pp. 397–398. doi: 10.1049/el:19760304

6. Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials / Eds R. Osellame, G. Cerullo, R. Ramponi. Berlin, Heidelberg, Springer-Verlag, 2012, 483 p.

7. Tervonen A., West B.R., Honkanen S. Ion-exchanged glass waveguide technology: a review. Optical Engineering, 2011,

vol. 50, no. 7, art. no. 071107. doi: 10.1117/1.3559213

8. Stepanov A.L. Modification of implanted metal nanoparticles in dielectrics by high-power laser pulses. Reviews on

Ad-vanced Materials Science, 2003, vol. 4, no. 2, pp. 123–138.

9. Zavestovskaya I.N. Laser nanostructuring of materials surfaces. Quantum Electron, 2010, vol. 40, no. 11, pp. 942–954.

doi: 10.1070/QE2010v040n11ABEH014447

10.Obraztsov P.A., Nashchekin A.V., Panfilova A.V., Brunkov P.N., Nikonorov N.V., Sidorov A.I. Formation of silver

nanoparticles on the silicate glass surface after ion exchange. Physics of the Solid State, 2013, vol. 55, no. 6, pp. 1272– 1278. doi: 10.1134/S1063783413060267

11.Ignat'ev A.I., Nashchekin A.V., Nevedomskii V.M., Podsvirov O.A., Sidorov A.I., Solov'ev A.P., Usov O.A. Formation

of silver nanoparticles in photothermorefractive glasses during electron irradiation. Technical Physics.The Russian Jour-nal of Applied Physics, 2011, vol. 56, no. 5, pp. 662–667. doi: 10.1134/S1063784211050148

12.Podsvirov O.A., Ignatiev A.I., Nashchekin A.V., Nikonorov N.V., Sidorov A.I., Tsekhomskii V.A., Usov O.A., Vostokov

A.V. Modification of Ag containing photo-thermo-refractive glasses induced by electron-beam irradiation. Nuclear

(6)

13. Podsvirov O.A., Vostokov A.V., Sidorov A.I., Tsekhomskiǐ V.A. Formation of copper nanocrystals in photochromic glasses under electron irradiation and heat treatment. Physics of the Solid State, 2010, vol. 52, no. 9, pp. 1906–1909. doi: 10.1134/S1063783410090192

14. Sidorov A.I., Nashchekin A.V., Nevedomsky V.N., Usov O.A., Podsvirov O.A. Self-assembling of silver nanoparticles in glasses under electron beam irradiation. International Journal of Nanoscience, 2011, vol. 10, no. 6, pp. 1265–1268. doi: 10.1142/S0219581X11008411

15. Klimov V.V. Nanoplazmonika [Nanoplasmonics]. Moscow, FIZMATLIT Publ., 2009, 480 p.

16. Kriebig U., Vollmer M. Optical properties of metal clusters. Berlin, Springer-Verlag, 1995, 532 p.

17. Nikonorov N.V., Sidorov A.I., Tsekhomsky V.A. Silver nanoparticles in oxide glasses: Technologies and properties, Sil-ver Nanoparticles / Ed. D.P. Perez. Vukovar, In-Tech, 2010, pp. 177–201.

18.Spravochnik tekhnologa-optika [Optician technologist handbook] / Eds S.M. Kuznetsov, M.A. Okatov. Leningrad, Mashinostroenie Publ., 1983, 414 p.

у яч а С ич – , , И , - , ,

brunov@oi.ifmo.ru

и ич – .- . , ,

-, - , ,

olegpodsvir@mail.ru

Си а И а ич – .- . , , И ,

-, ; ,

« Э И»,

-, , aisidorov@qip.ru

Чу а Д и а и а ич – , - ,

- , , deon_ac@yahoo.com

Vyacheslav S. Brunov – engineer, postgraduate, ITMO University, Saint Petersburg,

Russia,brunov@oi.ifmo.ru

Oleg A. Podsvirov – Professor, D.Sc., Professor, Saint Petersburg Polytechnic University, Saint Petersburg, Russia, olegpodsvir@mail.ru

Aleksander I. Sidorov – Professor, D.Sc., Professor, ITMO University, Saint Petersburg, Russia; Professor, Saint Petersburg Electrotechnical State University «LETI», Saint Petersburg, Russia, aisidorov@qip.ru

Denis V. Churaev – postgraduate, Saint Petersburg Polytechnic University, Saint Petersburg, Russia, deon_ac@yahoo.com

Referências

Documentos relacionados

A tomografia computadorizada de feixe cônico fornece imagens tridimensionais precisas das estruturas, viabiliza uma nova forma de diagnóstico em Periodontia e permite a detecção e

pouco difundido como a escola ein terrpo integral para culminar €m um pÍojeto oficina/escolq cujo objetivo é resgatar alunos com defasagem idaddserie da

O cenário educacional brasileiro exige um olhar atento à grade curricular para que se possa melhor compreender a evolução do pensamento pedagógico no país e sua

No espectro Raman do complexo [AuIIIIMOMeCl3] descrito na Figura 73 pode-se observar as seguintes bandas: em 3069 cm-1 uma banda referente ao estiramento C-H de anel aromático, em

Deste modo, a concepção desprestigiadora das fontes orais somente começa a mudar logo após o término da Segunda Guerra Mundial nos Estados Unidos da América (EUA) com a criação

Sibirtsev – PhD, leading scientific researcher, ITMO University, Saint Petersburg, 197101, Russian Federation; leading scientific researcher, "Research and Design Institute

1) In 2002—2015, the population of Saint Petersburg increased. As in many other large cities, this process was accompanied by changes in popula- tion distribution in the centre and

The Faculty of Geography and Geoecology of Saint-Petersburg State University, the Institute of Geography of the Russian Academy of Sciences, the Pacific Institute of Geography of