• Nenhum resultado encontrado

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. Grupo I

N/A
N/A
Protected

Academic year: 2021

Share "Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. Grupo I"

Copied!
11
0
0

Texto

(1)

Professora: Rosa Canelas 1 Ano Letivo 2012/2013 Escola Secundária com 3º ciclo D. Dinis

10º Ano de Matemática – A

TEMA 1 – GEOMETRIA NO PLANO E NO ESPAÇO I

1º Teste de avaliação – versão 2

Grupo I

1. Num certo prisma, cada uma das bases tem n vértices. Quantas faces e arestas tem esse

prisma?

(A) 2n faces e 2n arestas (B) 2n faces e 3n arestas

(C) n+2 faces e 2n arestas (D) n+2 faces e 3n arestas

2. Se o círculo da figura tem área 2 cmπ 2, então o quadrado nele inscrito tem área:

(A) 1cm2 (B) 2 cm2 (C) 4 cm2 (D) 2 cm2

3. Considere um prisma e uma pirâmide que têm bases geometricamente iguais, sendo a altura

da pirâmide metade da do prisma.

O volume do prisma é n vezes o volume da pirâmide, sendo n igual a:

(A) 2 (B) 3

(C) 4 (D) 6

4. Na figura, as retas BC e DE são paralelas. De

acordo com os dados da figura a medida de BC é:

(A) 2 cm (B) 7 cm

(C) 3 cm (D) 5 cm

• As cinco questões deste grupo são de escolha múltipla.

• Para cada uma delas são indicadas quatro alternativas, das quais só uma está correta.

• Escreva na sua folha de respostas a letra correspondente à alternativa que selecionar para cada questão.

• Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.

• Não apresente cálculos ou justificações.

• Cada resposta certa vale 10 pontos, cada pergunta errada, não respondida, ou anulada, vale 0 (zero) pontos.

6 cm 6 cm 4 cm 3 cm B E C A D

(2)

Professora: Rosa Canelas 2 Ano Letivo 2012/2013

5. Na figura estão representados um paralelepípedo e um prisma triangular

reto. Escolha a afirmação verdadeira.

(A) As retas FE e AD são não complanares

(B) Os planos AFE e BCG são paralelos

(C) A reta JA é paralela ao plano DEF

(D) As retas JA e DA são perpendiculares

Grupo II

1. A figura representa um cubo com 3 m de aresta, onde se escavou uma

pirâmide quadrangular regular.

1.1. Mostre que os elementos do sólido assim obtido verificam a

igualdade de Euler.

1.2. Sabendo que a altura da pirâmide é 2

3 da aresta do cubo, determine

que percentagem do volume do cubo representa o volume da pirâmide que foi retirada.

2. Nas figuras seguintes, estão representadas uma peça metálica plana na qual se marcou a

tracejado um quadrado [ABCD] com 3 dm de lado e na outra que se obteve a partir da primeira peça, cortando e retirando o quadrado [EFGH].

Relativamente à segunda figura, sabe-se que:

• Cada vértice do quadrado [EFGH] pertence a um lado do quadrado [ABCD]

• Os quatro triângulos retângulos [EDH], [HCG], [GBF] e [FAE] são geometricamente iguais e, em cada um deles, o cateto maior é igual ao dobro do cateto menor.

2.1. Mostre que a área do quadrado [EFGH] é 5 dm2.

J D A C E F H G B I

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos ou esquemas que tiver de efetuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado,

(3)

Professora: Rosa Canelas 3 Ano Letivo 2012/2013

2.2. Na figura ao lado, está representada uma pirâmide

quadrangular regular [IJKLV] cuja base tem 45 dm2 de área e cuja altura é 12 dm.

Sobre esta pirâmide deixou-se cair a peça metálica da alínea anterior, de tal modo que a peça ficou paralela à base da pirâmide e os vértices do quadrado [EFGH] ficaram sobre as arestas laterais da pirâmide.

Determine a distância, d, em dm, entre a peça metálica e a base da pirâmide.

NOTA: Admita que a espessura da peça metálica

é desprezável e tenha em conta que a área do quadrado [EFGH] é 5 dm2.

3. A figura representa um cubo com aresta 8 cm, onde se desenhou uma

secção produzida no cubo por um plano perpendicular a uma das diagonais espaciais.

3.1. Determine a área da secção, sabendo que os vértices do hexágono

são os pontos médios das arestas a que pertencem.

3.2. Considerando agora que GI 1GC

3

= desenhe um cubo e nele, com todo o rigor, desenhe a secção produzida pelo plano AIB.

4. Na figura estão traçadas seis diagonais de um cubo, uma em cada face, de

modo que as seis diagonais representadas concorrem apenas em quatro dos vértices do cubo.

H G F E D C B A H G F E C B A

1.1. Justifique porque é que o poliedro cujas arestas são as diagonais traçadas é um tetraedro

regular. I H G F E D C B A

(4)

Professora: Rosa Canelas 4 Ano Letivo 2012/2013

1.2. Há elementos deste poliedro representados em verdadeira grandeza? Quais são?

Justifique.

1.3. Supondo que a aresta do cubo é igual a duas unidades, prove que a área de cada face do

tetraedro é 2 3 e que a área total do tetraedro é 8 3 .

2. Uma embalagem cilíndrica acondiciona, sem folgas, três bolas de ténis. Que fração do volume

da embalagem representa o volume das bolas?

NOTA: Considere o raio da bola igual a r.

Formulário

Geometria

Perímetro do círculo: 2 rπ , sendo r o raio do círculo

Áreas

Paralelogramo: base altura×

Losango: diagonal maior diagonal menor

2

×

Trapézio: base maior base menor altura

2

+ ×

Polígono regular: apótema perímetro

2

×

Círculo: πr2, sendo r o raio do círculo

Superfície esférica: 4 rπ 2, sendo r o raio da esfera

Volumes

Prismas e cilindro: área da base altura×

Pirâmide e cone: 1 área da base altura

3× ×

Esfera: 4 r3

3π , sendo r o raio da esfera

Álgebra

Fórmula resolvente de uma equação do segundo grau da forma 2 ax +bx+ =c 0: 2 b b 4ac x 2a − ± − = Questão 1 2 3 4 5 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 4.3 5 TOTAL Cotação 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 200

(5)

Professora: Rosa Canelas 5 Ano Letivo 2012/2013 Escola Secundária com 3º ciclo D. Dinis

10º Ano de Matemática – A

TEMA 1 – GEOMETRIA NO PLANO E NO ESPAÇO I

1º Teste de avaliação – versão 2 – Proposta de resolução

Grupo I

1. (D) Num certo prisma, cada uma das bases tem n vértices. esse prisma tem n+2 faces e 3n

arestas

2. (C) Se o círculo da figura tem área 2 cmπ 2, é porque o seu raio é 2 então o quadrado nele inscrito tem 2 2 de diagonal e tem área:

2 2 2 2 2 A 4 cm 2 × = =

3. (D) Considere um prisma e uma pirâmide que têm bases geometricamente iguais, sendo a

altura da pirâmide metade da do prisma. Seja A a área das bases do prima e da pirâmide e

seja h a altura do prima. Então Vprisma = ×A h e pirâmide

h A A h 2 V 3 6 × × = =

O volume do prisma é n vezes o volume da pirâmide, sendo n igual a 6

4. (A) Na figura, as retas BC e DE são paralelas. De

acordo com os dados da figura, da semelhança dos triângulos resulta que

6 BC 3 6 BC BC 2 cm 9 3 9 × = ⇔ = ⇔ = E a medida de BC é 2 cm :

5. (B) Na figura estão representados um paralelepípedo e um prisma triangular

reto. Escolhamos a afirmação verdadeira.

(A) As retas FE e AD são não complanares FALSA (B) Os planos AFE e BCG são paralelos VERDADEIRA (C) A reta JA é paralela ao plano DEF FALSA

(D) As retas JA e DA são perpendiculares FALSA

J D A C E F H G B I 6 cm 6 cm 4 cm 3 cm B E C A D

(6)

Professora: Rosa Canelas 6 Ano Letivo 2012/2013

Grupo II

1. A figura representa um cubo com 3 m de aresta, onde se escavou uma

pirâmide quadrangular regular.

1.1. Mostremos que os elementos do sólido assim obtido verificam a

igualdade de Euler.

• Nº de faces = 9

• Nº de vértices = 9

• Nº de arestas =16

• Relação de Euler: 9+ =9 16+ ⇔2 18=18

Conclusão: Os elementos do sólido assim obtido verificam a igualdade de Euler.

1.2. Sabendo que a altura da pirâmide é 2

3 da aresta do cubo, determinemos que percentagem do volume do cubo representa o volume da pirâmide que foi retirada.

• Volume do cubo: 3 3 cubo V =3 =27 m • Volume da pirâmide: 2 3 pirâmide 1 2 V 3 3 6 m 3 3 = × × × = O volume da pirâmide é 6 2 0, 2

( )

27= =9 do volume do cubo ou seja é de 22,(2)% do volume do cubo.

2. Nas figuras seguintes, estão representadas uma peça metálica plana na qual se marcou a

tracejado um quadrado [ABCD] com 3 dm de lado e na outra que se obteve a partir da primeira peça, cortando e retirando o quadrado [EFGH].

Relativamente à segunda figura, sabe-se que:

• Cada vértice do quadrado [EFGH] pertence a um lado do quadrado [ABCD]

• Os quatro triângulos retângulos [EDH], [HCG], [GBF] e [FAE] são geometricamente iguais e, em cada um deles, o cateto maior é igual ao dobro do cateto menor.

2.1. Mostremos que a área do quadrado [EFGH] é 5 dm2, começando por reproduzir os dois quadrados: 2x x F E G H D C B A

(7)

Professora: Rosa Canelas 7 Ano Letivo 2012/2013 Como x+2x= ⇔3 3x= ⇔ =3 x 1dm

Aplicando o Teorema de Pitágoras ao triângulo [BFG] temos:

2 2 2 2 2 2

FG = +1 2 ⇔FG = + ⇔1 4 FG =5 dm O que prova que a área do quadrado [EFGH] é 5 dm2.

2.2. Na figura ao lado, está representada uma pirâmide

quadrangular regular [IJKLV] cuja base tem 45 dm2 de área e cuja altura é 12 dm.

Sobre esta pirâmide deixou-se cair a peça metálica da alínea anterior, de tal modo que a peça ficou paralela à base da pirâmide e os vértices do quadrado [EFGH] ficaram sobre as arestas laterais da pirâmide.

A aresta da base da pirâmide é 45 =3 5 dm O lado do quadrado da peça é 5 dm

Então podemos desenhar a secção produzida na

pirâmide passando pelo vértice e por dois pontos médios de lados opostos da base:

Da semelhança dos dois triângulos resulta: 3 5 12

x 4 dm x

5 = ⇔ =

A distância, d, em dm, entre a peça metálica e a base da pirâmide é então 12− =4 8 dm

NOTA: Admita que a espessura da peça metálica é desprezável e

tenha em conta que a área do quadrado [EFGH] é 5 dm2.

3. A figura representa um cubo com aresta 8 cm, onde se desenhou uma

secção produzida no cubo por um plano perpendicular a uma das diagonais espaciais.

3.1. Determinemos a área da secção, sabendo que os vértices do

hexágono são os pontos médios das arestas a que pertencem.

Observando a face superior do cubo verificamos que o lado do hexágono é 4 2 cm por ser a diagonal de um quadrado de lado 4 cm.

x

12 - x

3 5 5

(8)

Professora: Rosa Canelas 8 Ano Letivo 2012/2013 4 4 4 2 h 4 2 4 2 2 2

Aplicando o Teorema de Pitágoras a um dos 6 triângulos equiláteros em que podemos dividir o hexágono vamos determinar o apótema h:

( ) ( )

2 2 2 2 h + 2 2 = 4 2 ⇔h =32− ⇔ =8 h 24⇔ =h 2 6 A área do hexágono é 2 hexágono 4 2 6 A 2 6 24 12 48 3 cm 2 × = × = =

3.2. Considerando agora que GI 1GC

3

= desenhe um cubo e nele, com todo o rigor, desenhemos a secção produzida pelo plano AIB.

4. Na figura estão traçadas seis diagonais de um cubo, uma em cada face, de modo que as seis

diagonais representadas concorrem apenas em quatro dos vértices do cubo.

H G F E D C B A H G F E C B A

4.1. Justifiquemos porque é que o poliedro cujas arestas são as diagonais traçadas é um

tetraedro regular.

De facto o poliedro tem 4 faces que são triângulos equiláteros geometricamente iguais por terem os 3 lados iguais já que são diagonais faciais do cubo, além disso concorrem 3 faces em cada um dos 4 vértices do cubo onde concorrem as diagonais do cubo.

4.2. Há elementos deste poliedro representados em verdadeira grandeza. São as arestas [AF]

e [CH] pois estão nas faces da frente e de trás do cubo que estão desenhadas em verdadeira grandeza. I H G F E D C B A

(9)

Professora: Rosa Canelas 9 Ano Letivo 2012/2013

4.3. Supondo que a aresta do cubo é igual a duas unidades, prove que a área de cada face do

tetraedro é 2 3 e que a área total do tetraedro é 8 3 .

Se a aresta do cubo é igual à duas unidades a sua diagonal facial medirá 2 2 então:

• A altura de um triângulo equilátero cujo lado mede 2 2 é h 3 2 2 6 2

= × =

• A área desse triângulo é A 3

( )

2 2 2 2 3 4

= × = .

• A área total do tetraedro é Atotal = ×4 2 3=8 3 .

5. Uma embalagem cilíndrica acondiciona, sem folgas, três bolas de ténis. Que fração do volume

da embalagem representa o volume das bolas?

NOTA: Considere o raio da bola igual a r.

Calculemos o volume do cilindro com r de raio da base e altura 6r.

2 3

cilindro

V = π × ×r 6r= π6 r

Calculemos o volume de três esferas de raio r.

3 3 4 esferas 4 V 3 r 4 r 3 = × π × = π

Calculemos então a fração do volume da embalagem representada pelo volume das bolas:

3 3 4 r 2 3 6 rππ = As esferas representam 2

3 do volume da caixa cilíndrica.

Questão 1 2 3 4 5 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 4.3 5 TOTAL Cotação 10 10 10 10 10 15 15 15 15 15 15 15 15 15 15 200

(10)

Professora: Rosa Canelas 10 Ano Letivo 2012/2013 Escola Secundária com 3º ciclo D. Dinis

10º Ano de Matemática – A

TEMA 1 – GEOMETRIA NO PLANO E NO ESPAÇO I

1º Teste de avaliação – versão 2 – Critérios de classificação

Grupo I (50 pontos)

Cada resposta certa vale 10 pontos, cada pergunta errada, não respondida, ou anulada, vale 0 (zero) pontos.

1 2 3 4 5 D C D A B Grupo II (150 pontos) 1. 30 1.1. 15 •••• Indicar o nº de faces 3 •••• Indicar o nº de vértices 3 •••• Indicar o nº de arestas 3

•••• Verificar a Regra de Euler 6

1.2. 15

•••• Calcular o volume do cubo 3

•••• Calcular o volume da pirâmide 5

•••• Calcular a percentagem pedida 5

•••• Apresentar o resultado 2

2. 30

2.1. 15

•••• Calcular a medida de cada parte do lado 5

•••• Calcular a área pedida 10

2.2. 15

•••• Reconhecer a semelhança dos triângulos 5

•••• Calcular a altura da pirâmide pequena 5

•••• Calcular a distância pedida 5

3. 30

3.1. 15

•••• Calcular a medida do lado do hexágono 5

•••• Calcular a medida do apótema do hexágono 5

•••• Calcular a medida da área 5

(11)

Professora: Rosa Canelas 11 Ano Letivo 2012/2013

•••• Desenhar corretamente o cubo 5

•••• Desenhar corretamente a secção 10

4. 45

4.1. 15

•••• Referir justificando que as faces são polígonos

regulares e geometricamente iguais 10

•••• Referir que concorre igual nº de faces em cada vértice 5

4.2. 15

•••• Sim 5

•••• Indicar as arestas 5

•••• Justificar 5

4.3. 15

•••• Aresta do cubo diagonal facial 5

•••• Lado do triângulo⇒área do triângulo 5

•••• Área total do tetraedro 5

5. 15

•••• Volume do cilindro 5

•••• Volume das esferas 5

•••• Fração pedida 5

Referências

Documentos relacionados

Trata-se de uma pesquisa exploratória e descritiva quanto a medir por meio da Escala DUREL o grau de espiritualidade e de religiosidade dos formandos à vida religiosa em sua

LTD BHP Billiton Petroleum (Carlisle Bay) Limited LTD BHP Billiton Petroleum (Trinidad Block

Na busca da integração da tecnologia com a assistência, um fator pode ser considerado como inibidor: a falta de treinamentos com o uso de ferramentas informatizadas (FONSECA;

responsabilizam por todo e qualquer dano ou conseqüência causada pelo uso ou manuseio do produto que não esteja de acordo com as informações desta ficha e as instruções de

þ¾üÌ Myers and Briggs Test ±ýÚ §À÷... Advertisement in bad taste

• Para retirar resíduos de alimentos presos nas chapas do produto, basta untá-las com um pouco de óleo de cozinha, ligar o produto por alguns minutos e remover os resíduos com

O presente trabalho tinha como objetivo realizar a análise da capacidade e fluxo de produção de uma pequena empresa dedicada à fabricação de lonas, toldos, capas, tendas

ATENDIMENTO PEDAGÓGICO DOMICILIAR: A GARANTIA DO DIREITO NO ESTADO DO PARANÁ Tainara Subtil de Souza 1 Cinthya Vernizi Adachi de Menezes 2 RESUMO O presente artigo