• Nenhum resultado encontrado

Fermentation process for production of apple-based kefir vinegar: microbiological, chemical and sensory analysis

N/A
N/A
Protected

Academic year: 2021

Share "Fermentation process for production of apple-based kefir vinegar: microbiological, chemical and sensory analysis"

Copied!
10
0
0

Texto

(1)

h ttp : / / w w w . b j m i c r o b i o l . c o m . b r /

Food

Microbiology

Fermentation

process

for

production

of

apple-based

kefir

vinegar:

microbiological,

chemical

and

sensory

analysis

Roberta

Oliveira

Viana

a,1

,

Karina

Teixeira

Magalhães-Guedes

a,1

,

Roberto

Alves

Braga

Jr.

b

,

Disney

Ribeiro

Dias

c

,

Rosane

Freitas

Schwan

a,∗ aFederalUniversityofLavras(UFLA),BiologyDepartment,Lavras,MG,Brazil

bFederalUniversityofLavras(UFLA),DepartmentofEngineering,Lavras,MG,Brazil cFederalUniversityofLavras(UFLA),DepartmentofFoodScience,Lavras,MG,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28June2016 Accepted13November2016

AssociateEditor:AdalbertoPessoa

Keywords: Yeast Saccharomyces Lactobacillus Apple MALDI-TOF BiospeckleLaser Vinegar

a

b

s

t

r

a

c

t

Theaimofthisstudywastodevelopakefirapple-basedvinegarandevaluatethis fermen-tationprocessusingnewmethodologywithBiospeckleLaser.Braziliankefirgrainswere inoculatedinapplemustforvinegarproduction.Inthisstudy,themicrobialcommunity presentinkefir,andcorrespondentvinegar,wasinvestigatedusingMatrixAssistedLaser Desorption/Ionization–TimeofFlightMassSpectrometry(MALDI-TOFMS)technique. Sac-charomycescerevisiae,Lactobacillusparacasei,Lactobacillusplantarum,Acetobacterpasteurianus andAcetobactersyzygiiwerethemicrobialspeciesidentified.S.cerevisiae,L.plantarum,A. pasteurianusandA.syzygiiwerefoundinsmallerquantitiesatthebeginningofthealcoholic fermentation,butwerefoundthroughoutthealcoholicandaceticfermentation.Kefirgrains wereabletoutilizeapplemustassubstratetoproduceethanol,andaceticacid.Acetate, volatilealcoholsandaldehydesinthevinegar-basedkefirwerealsoproduced.Theyield ofaceticacidinthekefirvinegarswas∼79%.Theaceticacidconcentrationwas∼41gL−1, reachingtherequiredstandardfortheBrazilianlegislationacceptsitasvinegar(4.0%acetic acid).Kefirvinegarshowedgoodacceptanceinthesensoryanalysis.Thetechnology pro-posedhereisnovelbytheapplicationofimmobilized-cellbiomass(kefirgrains)providinga mixedinoculaandeliminatingtheuseofcentrifugeattheendofthefermentativeprocess. Thisstepwillsaveenergydemandandinvestment.Thisisthefirststudytoproduceapple vinegarusingkefirgrains.

©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileirade Microbiologia.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthorat:BiologyDepartment,FederalUniversityofLavras(UFLA),37.200-000Lavras,MG,Brazil.

E-mail:rschwan@dbi.ufla.br(R.F.Schwan).

1 Theseauthorshavecontributedequally.

http://dx.doi.org/10.1016/j.bjm.2016.11.006

1517-8382/©2017PublishedbyElsevierEditoraLtda.onbehalfofSociedadeBrasileiradeMicrobiologia.Thisisanopenaccessarticle undertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

Introduction

Apple(Malusspp.)isprobablytheoldestfruitknowntoman andisfavoredbymillionsofpeoplearound theglobe.10 In

Brazil,someoftheseapplefruitsareconsumedbylocal popu-lations, but the majorityis wastedduring harvestbecause ofthe high productionper tree,the short shelflife ofthe freshfruit,andthe lackofuse ofthesefruitsasprocessed products.1,22Fruitswineand/orvinegarproduction,couldbe

agoodsolutionbecausetheyallowproductstobemaintained inalcohol or acetic acid.1,9 Althoughthe number of

stud-iesoffruitwines1,5,7,21 and fruitvinegars9,10,12 hasrecently

increased,nostudyhasfocusedontheproductionofapple kefirvinegar.

Kefirisacultureemployedtoproducebeverages,suchas the traditional Russian beverage alsonamed “kefir” which isfrom milk,and haslowalcoholcontent.23,13–17 Thekefir

is a mixed culture of various yeast species of the genus Kluyveromyces, Candida, Saccharomyces and lactic acid from bacteriaofthegenusLactobacilluscombinedinamatrixof pro-teinsandpolysaccharide‘kefiran’,whichareformedduring cellgrowthunderaerobicconditions.23Thegrainsofkefirare

irregularlyshaped,withyellowish-whitecolor,andhard gran-ules, which resemble miniature cauliflower blossoms.15 In Brazil,thegrainsofkefirareusedinprivatehousehold,15and

theyareaddedtodifferenttypesofmilk,suchascow,goator sheep,coconut,riceandsoymilk.21,23Thegrainsare

respon-sible for the fermentation that produce lactic acid, acetic acid,CO2, alcohol(ethyl alcohol)and aromaticcompounds. Thesecompoundsprovidekefir’suniquesensory characteris-tics:fizzy,acidtaste,tartandrefreshingflavor.15Thebeverage

containsvitamins,mineralsandessentialaminoacidsthat helpthebodywithhealingandmaintenancefunctionsand containseasilydigestiblecompleteproteins.15

Anopticaltechniquetoevaluatethebiologicalactivityof kefir grainswas used, the Laser Biospeckle.Thetechnique defineswhenalaserbeamisscatteredbyabiologicalsample; thescatteredwavesgeneratedintheilluminatedsample cre-atethespecklepatternthatchangesitsimageinaccordance withthechangesinthemonitoredmaterial.Thus,thesurface appearstobecoveredwithtinybrightdotsthatfluctuateina seeminglyrandomwayasforaboilingliquid.3,8

Theaimofthis study was todevelopanapple vinegar-basedkefir andstudy this fermentationprocessusing new methodBiospeckleLasertoevaluatethebiologicalactivityof kefirgrains.

Materials

and

methods

Brazilianmilkkefirgrains(Stock-cultureoftheMicrobial Fer-mentation Laboratory of the Federal University of Lavras, Brazil)wereusedintheexperiments.Theapplefruitswere obtainedfromLavrascitymarket,MinasGeraisStateinBrazil. Theseapplefruits,whichfailtomeetthequalitystandards requiredformarketing,werewashedincleanwatertoremove residues.Thepulpwasextractedusinganautomatic depulp-ingmachine(ITAMETAL0.5DS,Itabuna,BA,Brazil).The◦Brix

was analyzed,and the juicewasdivided into three500mL Erlenmeyerflaskstostartbatchfermentation.

Theprocessofvinegarproduction

Alcoholicfermentation

Themust was inoculated withkefir grainsin aproportion of10%(w/v).Allfermentationswereperformedintriplicate. Theflaskswereincubatedstaticallyatatemperatureof28◦C and fermentation was monitoreddaily to observe the end ofthefermentation(stabilityoftheconsumptionofsugars –Brix).Thefermentationmustwasfilteredbykitassato fil-ters(0.5␮m).Thekefirgrainswererecovered.Thealcoholic must wasusedforapple kefirvinegarproduction. Microbi-ological analysis (grains and must), measurement of Brix, reducing sugar analysisand pH 11 were carriedout during

fermentation.

Todeterminefermentationperformancewere calculated the substrateconversion factorsinethanol(Yp/s),substrate conversion in glycerol(Yg/s), substrate conversion in acetic acid (Yac/s),ethanolvolumetricproductivity ofethanol(Qp), biomassproductivity(Px)andconversionefficiency(Ef).The totalconcentrationofsugarswascalculatedconsideringthe conversionforeachmoleofsucrose(342g)in1molofglucose (180g)and1moloffructose(180g).

Aceticfermentation

Theapplefermentedmustobtainedintheprevioussection wereacetifiedin500mLErlenmeyerflasks,whichwere con-trolled temperature of28◦C and agitation of150rpm. The aceticfermentationwasconductedusingthefollowing treat-ments:(1) kefirgrains 10%(w/v);(2) kefirgrains 20%(w/v). Duringaceticfermentation,dailysamplesweretaken(6days) intriplicateforacidityanalysis(pHmeter)andalcohol (alco-holometer).Theaceticfermentationwasfinishonthesixth daywhenthevinegarpresentedalcoholcontentbelow1.0% (v/v).

Theyieldwas calculatedasthe acetic acid producedin relationtothetheoreticalyield.Thetheoreticalyieldwas cal-culated asthe amount ofethanol convertedto aceticacid, inwhich 1.0gofethanolyields1.304gofaceticacid.5 The

ethanol,methanol,higheralcoholswereanalyzedaccording toMagalhãesetal.15usingaJascochromatographequipped

with a refractive index (RI) detector (Jasco 830-RI, Madrid, Spain).AChrompackcolumn(30cm×6.5mm)at60◦C,using 5mMsulphuricacidastheeluent,ataflowrateof0.5mL/min. Glycerol, organic acids (lactic, acetic, tartaric, malic, cit-ric and succinic acid) and carbohydrates (glucose, sucrose and fructose) contents were quantified according to Puer-ari et al.21 using a Jasco chromatograph equipped with a

refractiveindex(RI)detector(Jasco830-RI,Madrid,Spain)and UV–visibledetector(Jasco870-UV-visible).AChrompack col-umn(300×6.5mm)at60◦C,using5mMsulphuricacidasthe eluent,ataflowrateof0.5mL/minandasamplevolumeof 20Lwasused.Allthesampleswereexaminedintriplicate.

Microbiologicalanalysis

Yeast,lacticacidbacteria(LAB),andaceticacidbacteria(AAB) counts were performed on Yeast Extract Peptone Glucose [YEPG:1%yeastextract,2%peptone(Himedia,Mumbai,India),

(3)

2%glucoseatpH3.5,containing100mgL−1chloramphenicol (Sigma,St.Louis,Missouri,USA),and2%agar(Merck, Darm-stadt,Germany)]foryeast,DeManRogosaSharpeagar[MRS (Merck),containing0.4%(v/v)nystatin(Merck)]forLAB count-ing,GlucoseYeastExtract[GYC:5%glucose(Merck),1gyeast extract(Merck),3gcalciumcarbonate(Merck)forAAB,and2g agar(Merck)perliter,pH5.6].

Morphologicalandbiochemicalcharacterization

A total of 358 isolates were subjected to macroscopic and micro-morphologicalanalysesand biochemicalassays. Yeast strains were characterized by determining spore formation and by testing fermentation on different car-bon sources (glucose, fructose, and sucrose), as described elsewhere.15,17

All bacterial strains were characterizedmorphologically andbiochemicallyviaGramstaining,catalasereaction, motil-ity test, sporulation, and oxidase activity. Bacterial cells were grownon MRSmediumand underwent fermentation testsusingdifferentcarbonsources:glucose,maltose, man-nitol, and sorbitol. Furthermore, the bacterial cells were grownonGYCmedium.Strainsthatweregram-negativeand oxidase-negativewereassessedusingtheBactrayIandIIkits forclusteranalysis. For gram-negativebut oxidase-positive strains,theBactrayIIIkitwasused.

MALDI-TOFsamplepreparation,measurement,anddata

analysis

Basedonthe resultsfrom themorphologicaland biochem-ical characterization, strains were selected for MALDI-TOF MSanalysis.11Cellsweregrownonplatesusingspecific

cul-turemediumforeachtaxonomicgroup,asdescribedabove. Cellswereincubatedat28◦Cfor18handthenapproximately 7.11logCFU/mL (107 cells) of each strain were aseptically transferredtomicrotubes.Subsequently,3␮Loforganic solu-tion(water/acetonitrile/trifluoro-aceticacid,50:47.5:2.5)was addedtoeachmicrotubecontainingthebacterialisolates,and 3␮Lofformicacid/acetonitrile(25:75)wasaddedtoyeast iso-lates.

The microtubes were immediately and vigorously vor-texed for 1min and then 1␮L ofthe resulting suspension wastransferredtoa96-wellMALDIflextargetplate(Bruker Daltonics, Bremen, Germany). When the liquid phase was almostevaporated,1␮Lofmatrixsolution[saturatedsolution of␣-cyano-4-hydroxy-cinnamicacid(CHCA)in50% acetoni-trile/2.5%trifluoro-aceticacid]wasaddedandthesolutionwas gentlymixed.11

AnEscherichiacoliK12colonywasobtainedfromthe Pub-licPortugueseCultureCollection Micoteca da Universidade doMinho(MUM,www.micoteca.deb.uminho.pt)andusedfor insituextractionofproteins,whichwereusedasstandardfor theMALDI-TOFMSexternalcalibration.CellsofE.coliK12were grownonLuria-Bertanimediumagar(LB;1%Bacto-tryptone, 0.5%Bacto-yeastextract,and1%NaClperliter)at37◦Cfor 18h,aspreviouslydescribedbyLimaetal.11Briefly,

approxi-mately1␮gofcellularmaterialfromasingleE.coliK12colony wastransferredfromtheplatetotheMALDIflexplate,and

CHCAmatrixsolutionwasaddedfollowedbygentlemixing. EachMALDI-TOFsamplewasspottedintriplicatetoevaluate reproducibility. Samples were then analyzed in a MALDI-TOF microflex LTspectrometer (Bruker Daltonics, Bremen, Germany),usingthe MALDIBiotyper3.0automaticsystem. For MALDI-TOF microbial identification, reference strains werefromtheCultureCollectionofAgriculturalMicrobiology (CCMA-UFLA,https://sites.google.com/site/ccmaufla/).

AssessmentofmetabolicactivitybyBiospeckleLaser

DailyanalysesofkefirgrainsweredonebyBiospeckleLaser toobservethebiologicalactivity.Thegrainsofkefirwere illu-minatedbyaHeNelaser,wavelengthof632nm,and10mW power,enlargedbyaplaneconcavelensinordertocoverthe entiresample.Theinterferencepatternsformedonthemwere captured byaCCD camera 640×486pixels, withashutter speedof1/60sandinarateof0.08screatingacollectionof 128images.Theanalysisoftheimages,fromthelaser illumi-nation,wasperformedaccordingtoGuedesetal.8 Thekefir

grainswereilluminatedbyalaserHeNe17mW632nmand analyzedbythenumericalSpeckleLasermethod. Organolep-tic properties were evaluated individually via the senses, including taste, sight, smell, and touch. Alcoholmeter was usedforalcohol,thetitrationmethodforacidityandsugars byFehling’ssolution

Vinegartreatment

Thekefir applevinegarwasthenfilteredthrough diatoma-ceous earth, bottled and pasteurized at 65◦C for 20min. Samples were analyzed by optical microscopy (National Optical 131Microscope)toevaluatethe clarityofthe vine-gar.Analyses(organolepticevaluation,real-alcoholicdegree, volatileacidityandtotalsugar)wereperformedfollowingthe “operatingmanualofbeveragesandvinegars”asinstruction No.24.

Sensoryevaluation

Thefinalvinegarwasevaluatedinasensorytest.Thetasters were asked to indicate how much they liked or disliked each productona9-pointhedonicscale(9=likeextremely; 1=dislikeextremely)according tooverall acceptability18 by

twenty-five trained tasters, bothmales and females,25–35 years ofage(studentsandstaffoftheBiologyDepartment, Federal University of Lavras, Brazil). The evaluationof the appearance,color andodorattributeswerealsoconducted. Randomized,refrigerated(10◦C)10mLsampleswereserved inclear,tulip-shapedglasseswithavolumeof50mL.These samplesweremarkedwithathree-digitrandomnumberand coveredwithPetridishes.

Statisticalanalyses

Each fermentation process (alcoholic and acetic) was con-ducted in duplicate and the mean values±standard devi-ations are reported. TheTukey’s testwas performed using StatgraphicsPlusforWindows4.1software(Statistical Graph-icsCorp.Software–(Freedownload))toevaluatethestatistical significance(levelofp<0.05).

(4)

Results

Microbiologicalanalysis

MicrobiologicalanalysisisinFig.1.LABcountsstartedwith apopulationof8.10logCFU/mL(approximately108cells)on theseconddayoffermentation,therewasaslightdecrease, where the population was 7.55logCFU/mL (107 cells). The largest LAB population was observed on the fourth day, where8.45logCFU/mL was reached, comingto the end of the fifthdaywitha populationof8.22logCFU/mL. Accord-ingtothedatapresented,thepopulationofLABperformed between7.73logCFU/mL107 and 8.522logCFU/mL 108 cells throughoutthe fermentation. Theacetic fermentationwas dividedintotwotreatments,oneconductedwith10% inocu-lum (treatment 1) and another 20% (treatment 2). At the beginningofaceticfermentation,thepopulationofLABwas thesameforbothtreatments,8.22logCFU/mL(108cells),the second to the fifth day, the population has remained sta-ble,with108cells.Thefinalfermentationshowspopulation of9.75logCFU/mL-(treatment1)and10.73logCFU/mL (treat-ment2).Theinitialyeastpopulationwasof4.56logCFU/mL, increasing in third day to 7.97logCFU/mL (107 cells). The populationdeclinedinthefourthdayto7.89logCFU/mL.In thetreatment1ofaceticfermentationtheyeastpopulation increasedto8.81logCFU/mL.Inthesixthdaythepopulation decreaseto3.98logCFU/mL.Thetreatment2wassimilarto treatment1.AABwerefoundinbothfermentations.Atthe beginningofthealcoholicfermentationthepopulationwas

12 10 8 6 4 2 0 12 10 8 6 4 2 0 1 2 3 4 5 1 2 3 4 5 6

Fermentation time in days

Number of cells log CFU mL

–1

Number of cells log CFU mL

–1

Fermentation time in days

a

b

Fig.1–Numberofcells(LogCFU/mL)duringthe fermentationprocess.(A)Alcoholicfermentation,

Lactobacillus( ),Acetobacter( ),Yeasts( ).(B)

Aceticfermentation,10%inoculum(Lactobacillus( ),

Acetobacter( ),Yeasts( )),20%inoculum

(Lactobacillus( ),Acetobacter( ),Yeasts( )).

low(4.01logCFU/mL)increasingto6logCFU/mL(treatment1) and9logCFU/mL(treatment2)infinalfermentation.Inboth aceticfermentationtreatments(1and2)thepopulationofAAB increasedto109and108cells,respectively.

Atotalof358organismswereisolated,and31(9%)were yeastsand 327 (91%)were bacteria(divided into lactic and aceticbacteria’s).TheisolateswereidentifiedbyMALDI-TOF MStechnique(Fig.2).AccordingtoFig.2a,thebeginningof fermentation(0h)showedhigherpopulationofLactobacillus paracasei (106CFU/mL). Saccharomyces cerevisiae, Lactobacillus plantarum,AcetobacterpasteurianusandAcetobactersyzygiiwere foundinsmallerquantities(105CFU/mL)atthebeginningof thealcoholicfermentation.Thesemicroorganismswerefound throughoutthealcoholicand aceticfermentation(10% and 20%kefir).AccordingtoFig.2b,attheendof264h(11days) offermentationthepopulationofS.cerevisiae,remainedthe same initialpopulationof105CFU/mL.ThepopulationofL. paracaseiandL.plantarumincreased,comparedtotheinitial timereaching108CFU/mLand107CFU/mL,respectively.The populationofA.pasteurianusand A.syzygiihadthehighest increase109CFU/mLattheendofaceticfermentation.

KefirgrainswereanalyzeddailyusingBiospeckleLaserand thebiologicalactivityvalueobtainedwas14.21.Thisvaluewas consideredtheinitialfermentationtime(0h).Thetestof sen-sorialanalysesofthegrainsofkefircanbeseeninFig.3,where inFig.3atheimageofthekefirgrainispresentedwithan illus-trationofawindowwherethelaserwasilluminatedandthe imagesassembled.

The resultofthe biological activity testis presentedin

Fig. 3(b andc). Inthe alcoholicfermentationthe biological activityofthekefirgrainsdecreasedintheearlydaysofthe fer-mentationprocess(Fig.3b).Thedecreaseinbiologicalactivity persisteduntilthethirddayoffermentation.Onthefourthday thebiologicalactivityofkefirgrainsinapplemustincreased to11.51.Onthelastdayoffermentationthebiologicalactivity ofkefirgrainsdecreasedtovalue7.12.

Theacetic fermentationoccurred simultaneouslyas the alcoholicfermentation.Intheaceticfermentationthe biolog-icalactivityofthekefirgrainsdecreasedintheearlydaysof thefermentationprocessfortreatment1and2(Fig.3c).The decreaseinbiologicalactivitypersisteduntilthethirddayof fermentation.Onthefifthday,thebiologicalactivityofkefir grainsincreasedto8.01(treatment1)and8.79(treatment2). Onthelastdayoffermentation,thebiologicalactivityofkefir grainsdecreasedto6.36(treatment1)and6.77(treatment2).

Chemicalanalysis

Applealcoholicmustproduction

Theapplealcoholicmustwasproducedandwhereaslactic, acetic,citric,succinicandmalicacidswerefoundintheapple alcoholic must (1.37, 0.92, 1.37,1.71 and 1.00gL−1, respec-tively)(Table1).Tartaric,butyricandpropionicacidswerenot detected.

Thefermentationtemperatureselectedwas28◦Candthe kefirgrainswerechosenastheinoculumforthefermentation process.Aninoculum of10%kefir inoculum wassufficient becausethe ethanolconcentrationat120hoffermentation wasapproximately97.0g/L(∼12.3GL(GayLussac))(Table1). Small amounts of sucrose(0.09g/L), fructose (0.06g/L) and

(5)

Saccharomyces cerevisiae

a

b

Acetobacter pasteurianus and acetobacter syzygii

Lactobacillus paracasei

Lactobacillus plantarum

Saccharomyces cerevisiae

Acetobacter pasteurianus and acetobacter syzygii Lactobacillus paracasei Lactobacillus plantarum 0 101 102 103 104 105 CFU mL–1 106 107 108 108 110 0 101 102 103 104 105 CFU mL–1 106 107 108 108 110

Fig.2–MicrobialIdentificationbyMALDI-TOFMStechnique.(A)inoculumkefirgrainsand(B)kefirvinegar.

reducingsugars(0.04g/L)weredetectedintheapplealcoholic must.Methanol was notdetected inthe samples ofapple alcoholicmust.Thedecreaseinthetotalsolublesolidsand the increase inthe content of ethanolduring the fermen-tativeprocessareshowninTable1. ThepHvaluewas3.82 and ◦Brix was 4.37 inthe final alcoholicmust. Oxalicacid wasdetectedintheapplealcoholicmustbeforetheaerobic phaseofacetic fermentation.Theconcentrationofglycerol waslow(5.10g/L)(Table1).Thevaluesofthekinetic parame-tersobtainedfromtheapplealcoholicmustaredescribedas ethanolproductivity(Yp/s)/g0.47g,yieldglycerol(Yg/s)0.05g/g, ethanol yield (qp) 0.37g/L/h and fermentation efficiency (Ef)93.12%.

After the alcoholic fermentative process, the alcoholic mustwasprocessedasdescribedinthemethodologyforthe subsequentproductionofapplevinegar.

Kefirvinegar

The kefir vinegar was produced and lactic, citric, succinic andmalicacids weresimilar inthetreatment1and treat-ment2(Tables2and3).Theyieldofaceticacidinthekefir vinegarswas∼79%.Thetotalaceticacidconcentrationwas

∼41.00gL−1, reachingthe required standard forthe Brazil-ianlegislationacceptsitasvinegar(4.0%aceticacid)(Brasil, 20094).Inourstudy,fiveflavor-activecompounds,including

threealcohols,oneacetateandonealdehydewereidentified (Table4).Thevaluesofthesecompoundsweresimilarforthe kefirvinegarsintreatment1andtreatment2.Thekefir vine-garsshowedtheclearappearanceandhadagoodcolor(pale yellow).

Sensoryanalysis

Sensoryanalyseswereconductedtokefirvinegar(10%and 20% of kefir grain inoculum) and the commercial apple vinegar. Using the check-all-that-apply (CATA) testing, the vinegarsweresubjectedtosensoryevaluationtoassesstheir acceptanceandpreference.Vinegarsat10%,20%and commer-cialhadgoodacceptance(scores7.1,7.4and7.2,respectively). Consumers classified vinegars in “liked slightly”. Vinegars were evaluated as “sour, acetic acid, limpid and translu-centappearance”(Fig.4).Nosignificantdifferencesobserved betweenallevaluatedvinegars.Theapplekefirvinegars pro-ducedwerewellacceptedbytheevaluators(95%ofconsumers wouldbuykefirvinegar).

(6)

10mm 12 10 8 6 4 2 0 10 9 8 7 6 5 4 3 2 1 0 0 1 2 3

Fermentation time in days

Biological activity

Biological activity

4 5

0 1 2 3

Fermentation time in days

4 5 6

a

b

c

Fig.3–BiologicalactivityofkefirgrainsbyBiospeckleLasertechnique.(A)KefirgrainsandimageformedbyBiospeckle Laser.(B)Alcoholicfermentation().(C)Aceticfermentation,( )10%kefirinoculum,()20%kefirinoculum.

Discussion

Theapplepulpwasprocessedtoobtainafermentablemust from which the alcoholic must was produced. The inocu-lumforthefermentationprocess(kefirgrains)wassufficient becausetheethanolconcentrationat120hoffermentation wasapproximately 97.0gL−1 (∼12.3GL(Gay Lussac)).These resultsarecomparabletothatobtainedbyDiasetal.,5who

foundavalueof89.5gL−1whenfermentingcocoapulpwith aninitial22◦Brix.

Smallamountsofsucrose,glucose,fructoseandreducing sugars were detectedinthefinal alcoholicmustofapples. The rapid decrease in the sugar content and increase in theconcentrationofethanolduringaninoculated fermenta-tion(74.78gL−1)wasalsoobservedbyDomizioetal.6during

fermentation of grape must under controlled temperature conditions. Nurgelet al.19 foundthatfermentationof

non-pasteurized grapeusing the selected yeast(6.7logCFU/mL) was completed in 6 days, while indigenous fermentation lasted10days.TheseauthorsalsofoundthatthepHvaluesof thefermentersweresimilar(approximately3.08).

(7)

Table1–Chemicalandphysicalcharacteristicsoftheapplealcoholicmust.

Periodof

fermentation

Acids(gL−1)

Aceticacid Lacticacid Citricacid Tartaric

acid

Butyric acid

Succinic acid

Malicacid Oxalicacid Propionic

acid

0h 0.11±0.01a 0.10±0.01a 1.99±0.01a n.d. n.d. 0.25±0.01a 0.11±0.01a 0.09±0.01a n.d.

120h 0.92±0.01b 1.37±0.01b 1.37±0.01b n.d. n.d. 1.71±0.01b 1.00±0.02b 0.29±0.01b n.d.

Periodof

fermentation

Sugars(gL−1)

Sucrose Glucose Fructose Reducing

sugars

0h 92.60±0.11a 12.60±0.08a 23.47±0.21a 36.46±0.31a

120h 0.09±0.01b n.d.b 0.06±0.01b 0.04±0.01b

Periodoffermentation Alcohols(gL−1)

Ethanol Glycerol Methanol

0h n.d.a n.d.a n.d.

120h 96.78±0.41b 5.10±0.01b n.d.

Periodoffermentation pH Brix

0h 4.05±0.02a 13.5±0.02a

120h 3.82±0.02a 4.37±0.02b

Thedataarethemeanvaluesoftriplicatemeasurements±standarddeviation.Differentlettersintherowandcolumnindicatesignificant

differences(p<0.05).n.d.,notdetected.

Aceticacidwasformedduringthefermentationofapple alcoholic must. Acetic acid provides a pleasant taste and inhibits the development of undesirable or pathogenic microorganisms,duetothehighacidity.Duringthe fermen-tationprocess,thecitricacid concentrationwasalmostthe same as at 0h; the citric acid concentration decreased of 1.99–1.37g/L.Itispossiblethatcitricacidwasmetabolizedby S.cerevisiae(presentinkefirgrains)asacarbon andenergy source; which have the ability to ferment/assimilate this organic acid,causingthe increase inthe pHvalue.15 Citric

and malic acids are commonly found in fermented fruit beverages,wheretheyactaspreservativeswithantimicrobial properties.20Theorganicacidsproducedbyyeastand

bacte-rialspeciescontributetotherefreshingflavor,uniquearoma and the texture, in addition to controlling the growth of food-spoilagemicroorganisms.2Theconcentrationofglycerol

intheapplealcoholicmustwaslow(5.10g/L).Thisvaluewas consistent with the value ofless than ∼10.0g/Lsuggested byDiasetal.5 toconferthecharacteristicbodyandtexture

ofthe beverage.Glycerolisthe mainsecondaryproductof

Table2–Chemicalandphysicalcharacteristicsoftheapplekefirvinegarintreatment1(10%kefirinoculum).

Periodof

fermentation

Acids(gL−1)

Aceticacid Lacticacid Citricacid Tartaric

acid

Butyric acid

Succinicacid Malicacid Oxalicacid Propionic

acid

0h 0.96±0.01a 1.12±0.01a 1.39±0.01a n.d. n.d. 5.52±0.01a 1.07±0.01a 0.22±0.01a n.d.

144h 41.66±0.31b 1.11±0.01a 6.67±0.01b n.d. n.d. 5.60±0.01a 7.02±0.01b 0.18±0.01a n.d.

Periodoffermentation Alcohols(gL−1)

Ethanol Glycerol Methanol

0h 94.02±0.01a 5.32±0.01a n.d.

144h 1.76±0.01b 5.36±0.01a n.d.

Periodoffermentation PH

0h 3.08±0.01a

144h 2.74±0.11b

Thedataarethemeanvaluesoftriplicatemeasurements±standarddeviation.Differentlettersinthesamecolumnindicatesignificant

(8)

Table3–Chemicalandphysicalcharacteristicsoftheapplekefirvinegarintreatment2(20%kefirinoculum).

Periodof

fermentation

Acids(gL−1)

Aceticacid Lacticacid Citricacid Tartaric

acid

Butyric acid

Succinicacid Malicacid Oxalicacid Propionic

acid

0h 0.96±0.01a 1.11±0.01a 1.42±0.01a n.d. n.d. 4.59±0.01a 1.01±0.01a 0.16±0.01a n.d.

144h 40.06±0.31b 1.09±0.01a 5.27±0.01b n.d. n.d. 4.90±0.01a 6.04±0.01b 0.11±0.01a n.d.

Periodoffermentation Alcohols(gL−1)

Ethanol Glycerol Methanol

0h 94.02±0.01a 4.82±0.01a n.d.

144h 2.16±0.01b 4.76±0.01a n.d.

Periodoffermentation PH

0h 3.09±0.01a

144h 2.42±0.11b

Thedataarethemeanvaluesoftriplicatemeasurements±standarddeviation.Differentlettersinthesamecolumnindicatesignificant

differences(p<0.05).n.d.,notdetected.

Viscous 100 90 80 70 60 50 40 30 20 10 0 Limpid Translucent Sour Astringent Bitter Acetic acid Wine Fruity

10% Kefir inoculum 20% Kefir inoculum Commercial vinegar

Fig.4–Kefirvinegarsensoryanalysis.

alcoholicfermentationsbyS.cerevisiae,which ispresentin thekefirinoculuminthisstudy.Theglycerolconcentrationof approximately5.1g/Lwasclosetothevaluesof6and10g/L suggestedbyVogt etal.24 toconfer the characteristicbody

andtextureofthebeverage.

Atotalof358organismswereisolated,and31wereyeasts and 327werebacteria(divided intolactic andacetic bacte-ria).TheisolateswereidentifiedbyMALDI-TOFMStechnique (Fig.2).ThepopulationwereL.paracasei,S.cerevisiae,L. plan-tarum,A.pasteurianusandA.syzygii.Thesemicroorganisms arecommonlyfoundinkefirgrains.23,13–17Rapiddiagnosisof

microorganismsisdecisivetoguaranteeadequate identifica-tion insamples.Culturemethodsarepreciseandsensitive, butratherslow.Newresourcesareavailabletoenablefaster diagnosis,and the mostpromisingisMALDI-TOFMS tech-nologyappliedtomicrobiologicaldiagnosis.Timesasfastas 10–15mintoetiologicaldiagnosisarepossibleafterapositive bloodcultureresult.20

Kefir grainswere alsoanalyzed bythe Biospeckle Laser technique. The results presented the activity of the kefir

Table4–VolatilecompoundsinthekefirvinegaridentifiedbyGC-FID.

Compounds Finalconcentration(mgL−1)

Treatment1a Treatment2b

Aldehyde

Acetaldehyde 21.33±0.24a 20.33±0.54a

Alcohols

1-Hexanol 9.01±0.06a 9.38±0.56a

2-Methyl-1butanol 7.01±0.06a 7.38±0.56a

3-Methyl-1-butanol 12.76±10.08a 12.23±12.68a

Acetate

Ethylacetate 9.24±0.32a 9.94±0.45a

Thedataarethemeanvaluesoftriplicatemeasurements±standarddeviation.Differentlettersinthesamelineindicatesignificantdifferences (p<0.05).

a 10%kefirinoculum. b 20%kefirinoculum.

(9)

grainsduringfermentation(Fig.3),whereitwaspossibleto observethesensitivityofthetechniquetofollowtheexpected activity.Theproposed techniqueissimple,relativelycheap andfast, easytoimplement,and requiresonlyalaserand standarddigitalimagingprocessinghardwarecomponents.8

TheapplicationofBiospeckleLasermethodtothekefir via-bilitydetection wasoneofobjectives ofthiswork,but the opticaltechniquecould alsobe appliedtocharacterizethe kefirgrainsinothertypesofprocesses.BiospeckleLaser tech-niqueshowedanefficienttoolformonitoringandquantifying biologicalactivityofkefir grains,showingtheviabilitytime of these grains in a fermentation process, which demon-stratesthetechniquepotentialforevaluatingandmonitoring ofkefir grains in productionofkefir vinegars inindustrial scale.

Volatile compounds are important contributors to the flavorsofbeverages,andareresponsiblefordifferent desir-ablesensorycharacteristics.14–16Previousstudieshaveshown

that the formation of volatile higher alcohols and esters duringkefir fermentationisinfluenced bythecomposition of the medium.15 Five flavor-active compounds, including

threealcohols, oneacetateandonealdehyde,were identi-fiedby gaschromatography coupledwith flame ionization detection(GC-FID)inkefirvinegars.Theconcentrationthese compounds were particularly high (Table 4) in compara-tivewithstudy of15 showing the biochemicalchanges and

volatilecompoundformationsduringtheproductionofnovel whey-based kefir beveragesand traditionalmilk kefir. The valuesofthesecompounds weresimilar forthe kefir vine-garsintreatment1andtreatment2;i.e.,fermentationwith 10%and20% inoculumkefirproducedsimilarquantitiesof volatiles.Thehigheralcoholsidentifiedduringkefirvinegar fermentations were 2-methyl-1-butanol (active amyl alco-hol)and 3-methyl-1-butanol(isoamyl alcohol).Thevolatile higheralcoholidentified,2-methyl-1-butanolisproduced dur-ingthecatabolismofthebranchedchainaminoacid(BCAA) isoleucine,or issynthesized denovoduringthe biosynthe-sisoftheAAB.13-methyl-1-butanolhasapositiveinfluence

on the aromaofthe fermentedbeverage. On the contrary, increasedconcentrationofthesealcohols,havingavolatile descriptionof“coconut-like”,“harsh”and“pungent”,can con-tribute negatively to the product aroma.1 Only one ester,

characterizedbyfruityattributes,namelyethylacetatewas detectedin kefir vinegar. Kourkoutas et al.,10 showed that

yeastswerecapableofproducingethylacetatefrom fermen-tationprocessinawiderangeofconcentrations(fromtraces to 95mgL−1). According to these authors,such concentra-tionsaretypicaloffermentedbeverages.Acetaldehyde,which impartsnuttyandpungentaromas,wasalsofoundinkefir vinegar.

Thetasteofthefilteredvinegarwasfruityandanicesmell wasnoted.Variousorganicacidsinvinegarareimportantfor impartingasuitabletasteandflavor.Thetotalaceticacid con-centrationintheapplevinegarproduced usingkefirgrains inoculumwas ∼41.0g/L, whichisapproximately twotimes theconcentrationinonionvinegar(∼25.0g/L)producedusing cell-freeofAcetobacteraceti.9Thekefirgrainswerehighly

sat-isfactoryforaceticfermentationusingapplealcoholicmust asthemedium.Thissystemachievedhigheraceticacid pro-ductivitythanthatoffermentationsbyfreecells.Ourresults

indicatedthattheuseofkefirgrainsmightbeoneofthebest fermentingstrategiesemployedtoovercomesubstrate limita-tionandachievehighproductyield.

Theperiodfortheoxidationofethanoltoyieldaceticacid was 140h. According to the stoichiometry of reaction that convertsethanoltoacetic acid,1.0gofethanolcanprovide 1.304gofaceticacid.12Inindustries,theconversionof1.0g

ethanolto1.0gofaceticacid (yieldof76.6%)isconsidered economic.12Theproductionwasfavorable,reachingvaluesof

∼79.0%yield.Therefore,wecanconcludethattheevaporation ofvolatilecompoundswaslow,whichmightbeattributedto usingappropriateaerationandthermalconditions.Methanol wasnotdetectedintheapplekefirvinegarandtheglycerol concentrationremainedlowinbothtreatments.

Basedontheanalysesofthevinegarandthelimitsrequired bylaw,9 thefinalproductofkefirvinegarhasanacceptable

aceticacidlevel,ofapproximately5.0%(w/v),andanethanol concentrationoflessthan1.0%(v/v).Thekefirvinegarproved tobeaverypromisingproduct.

Conclusions

Vinegarcouldbesuccessfullyproducedfromapplealcoholic must using kefir grains. Thisis the first study to produce kefirvinegar.Thechemicalanalysesrevealedthatkefir vine-garhashighcontentsoforganicacids,whichaddfunctional valuetothevinegar. Kefirvinegarhadagoodperformance duringtheacetylation(∼79%),reachingtherequiredstandard fortheBrazilianlegislationacceptsitasvinegar(4.0%acetic acid).4 Microorganisms were foundpreviously described in

kefirgrainsandthemicrobiotaremainedstandardizedduring thefermentationprocess.Therewasnomicrobial contami-nationduringthefermentationprocess.Anewmethodology tomeasurethemetabolicactivityofkefirgrainsbyBiospeckle Laserwaspresented.Thisfactfacilitatesthemicrobiological controloverafermentationprocess.Kefirgrainsshowed effi-ciencyintheproductionofapplevinegar.Kefirvinegarwas wellacceptedbysensoryanalysis.

Thenoveltechnologyproposeduseofkefirgrainsforthe productionofvinegarwassuccessfullydone. Thekeypoint forindustrialapplicationoftheproposedtechnologyisthe promotion offermentationbyanimmobilized-cellbiomass (kefirgrains)thateliminatetheuseofcentrifugalseparators, whichhaveahighenergydemandandrequirehighindustrial investment.

Conflicts

of

interest

Noconflictofinteresttodeclare.

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvi-mento CientíficoeTecnológico(CNPq),theCoordenac¸ão de Aperfeic¸oamentodePessoaldeNívelSuperior(CAPES)andthe Fundac¸ãodeAmparoàPesquisadoEstadodeMinasGerais (FAPEMIG)forfinancialsupportandscholarships.

(10)

r

e

f

e

r

e

n

c

e

s

1.AsquieriER,CandidoMA,DamianiC,AssisEM.Fabricación devinoblancoytintodejabuticaba(Myrciariajabuticaba Berg)utilizandolapulpaylacáscararespectivamente. Alimentaria.2004;355:97–109.

2.AthanasiadisI,BoskouD,KanellakiM,KoutinasAA.Effectof carbohydratecubstrateonfermentationbykefiryeast supportedondelignifiedcellulosicmaterials.JAgricFood Chem.2001;49:658–663.

3.BragaRAJr,DalFabroIM,BoremFM,etal.Assessmentof seedviabilitybylaserspeckletechniques.BiosystEngineer. 2003;86:87–294.

4.Brasil,Decreton◦6.871,de4deJunhode2009,Regulamenta aLeino8.918,de14dejulhode1994,quedispõesobrea padronizac¸ão,aclassificac¸ão,oregistro,ainspec¸ão,a produc¸ãoeafiscalizac¸ãodebebidas.Legislac¸ãoBebidas. PresidênciadaRepública.Retrievedfromhttp://www. planalto.gov.br/ccivil03/Ato2007-2010/2009/Decreto/D6871. htm;2009.

5.DiasDR,SchwanRF,FreireES,SerôdioR.Elaborationofa fruitwinefromcocoa(TheobromacacaoL.)pulp.IntJFoodSci Technol.2007;42:319–329.

6.DomizioP,LencioniL,CianiM,BlasiS,PontremolesiC, SabatelliMP.Spontaneousandinoculatedpopulations dynamicsandtheireffectsonorganolepticcharactersof Vinsantowineunderdifferentprocessconditions.IntJFood Microbiol.2007;115:281–289.

7.DuarteWF,DiasDR,OliveiraJM,TeixeiraJÁ,SilvaJBA, SchwanR.Characterizationofdifferentfruitwinesmade fromcacao,cupuassu,gabiroba,jaboticabaandumbu.LWT– FoodSciTechnol.2010;43:1564–1572.

8.GuedesJDS,Magalhães-GuedesKT,DiasDR,SchwanRF, Braga-Jr.RA.Assessmentofbiologicalactivityofkefirgrains bylaserbiospeckletechnique.AfrJMicrobiolRes.

2014;28:2639–2642.

9.HoriuchiJI,KannoT,KobayashiM.Newvinegarproduction fromonions.JBiosciBioeng.1999;88:107–109.

10.KourkoutasY,KomaitisM,KoutinasAA,KanellakiM.Wine productionusingyeastimmobilizedonapplepiecesatlow androomtemperatures.JAgricFoodChem.2001;49:1417–1425.

11.LimaN,RodriguesP,SoaresC,SantosC,PatersonR, VenâncioA.Modernpolyphasicmethodsthatinclude

MALDI-TOFanalysesforfungalidentificationsand authentications.In:EuropeanCultureCollections’Organization MeetingXXVII(ECCOXXVII),vol.2.2008:11.

12.MaalKB,ShafieiR,KabiriN.Productionofapricotvinegar usinganisolatedAcetobacterstrainfromIranianapricot.IntJ BiolLifeSci.2010;6:230–233.

13.MagalhãesKT,DiasD,PereiraGVM,etal.Chemical compositionandsensoryanalysisofcheesewhey-based beveragesusingkefirgrainsasstarterculture.IntJFoodSci Technol.2011;46:871–878.

14.MagalhãesKT,DragoneG,PereiraGVM,etal.Comparative studyofthebiochemicalchangesandvolatilecompounds duringtheproductionofnovelwhey-basedkefirbeverages andtraditionalmilkkefir.FoodChem.2011;126:249–253.

15.MagalhãesKT,PereiraGVM,CamposCR,DragoneG,Schwan RF.Braziliankefir:structuremicrobialcommunitiesand chemicalcomposition.BrazJMicrobiol.2011;42:693–702.

16.MagalhãesKT,PereiraMA,NicolauA,etal.Productionof fermentedcheesewhey-basedbeverageusingkefirgrainsas starterculture:evaluationofmorphologicalandmicrobial variations.BioresourTechnol.2010;101:8843–8850.

17.MagalhãesKT,PereiraGVM,SchwanRF.Microbial

communitiesandchemicalchangesduringfermentationof sugaryBraziliankefir.WorldJMicrobiolBiotechnol.2010;1:1–10.

18.MoraesMAC.Métodosparaavaliac¸ãosensorialdealimentos.8th ed.Brazil:Unicamp,Campinas;1993:93.

19.NurgelC,ErtenH,CanbasA,CabarogluT,SelliS.Influenceof Saccharomycescerevisiaestrainonfermentationandflavor compoundsofwhitewinesmadecv.EmirgrowninCentral Anatolia,Turkey.JIndMicrobiolBiotechnol.2002;29:28–33.

20.PasternakJ.Novasmetodologiasdeidentificac¸ãode micro-organismos:Maldi-Tof.Einstein(SãoPaulo). 2012;10:118–119.

21.PuerariC,MagalhãesKT,SchwanRF.Newcocoapulp-based kefirbeverages:microbiological,chemicalcompositionand sensoryanalysis.FoodResInt.2012;48:634–640.

22.RizzonLA,BernardiJ,MieleA.Característicasanalíticasdos sucosdemac¸ãGala,GoldenDeliciouseFuji.CiêncTecnol Aliment.2005;25:750–756.

23.SimovaE,BeshkovaD,AngelovA,HristozovaTS,FrengovaG, SpasovZ.Lacticacidbacteriaandyeastsinkefirgrainsand kefirmadefromthem.JIndMicrobiolBiotechnol.2002;28:1–6.

24.VogtE,JakobL,LemperleE.Elvino:obtención,elabóraciony análisis.2nded.Zaragoza,Spain:Acribia;1996:294.

Referências

Documentos relacionados

Sir Percival slowly drew his shoulder from under the Count's hand, slowly turned his face away from the Count's eyes, doggedly looked down for a little while at the parchment on

The primary external difference is the pure white color of the ventral pelage and the proportion of the white base (2/3‑4/5) of the dorsal hair in M. sanborni, in contrast with

We characterised further the formation of NMHCIIA bundles during PFT intoxication and found that host cells utilise similar mechanisms to regulate cytoskeletal dynamics

de teoria literária e musical produzidas em Portugal entre os séculos XVII e XIX permitiu-nos efectuar uma análise comparada de procedimentos de Escrita a partir de obras teóricas

Como metodologia, foram realizadas as seguintes etapas: análise bibliométrica, de forma a compreender a evolução das abordagens referentes a depósitos antropogênicos;

Através da sua utilização é possível de forma rápida fazer um estudo acerca das várias possibilidades de implementação de uma célula, obtendo resultados a nível

Destarte, para efeito comparativo do fluxo de valor para a situação atual e futura, foi possível quantificar a redução total de tempo utilizando a abordagem lean..

Cometeu a acusada, a Senhora Presidente da República, Dilma Vana Rousseff, os crimes de responsabilidade correspondentes à tomada de empréstimos junto à instituição