• Nenhum resultado encontrado

HAL Id: jpa-00224281

N/A
N/A
Protected

Academic year: 2023

Share "HAL Id: jpa-00224281"

Copied!
10
0
0

Texto

(1)

HAL Id: jpa-00224281

https://hal.archives-ouvertes.fr/jpa-00224281

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LOW FREQUENCY DYNAMICS IN WATER AND AQUEOUS SOLUTIONS OF ZnCl2 : A

COMPARATIVE INVESTIGATION BY RAMAN, RAYLEIGH WING AND INELASTIC NEUTRON

SCATTERING

M. Fontana, G. Maisano, P . Migliardo, M.-C. Bellissent-Funel, A. Dianoux

To cite this version:

M. Fontana, G. Maisano, P . Migliardo, M.-C. Bellissent-Funel, A. Dianoux. LOW FREQUENCY

DYNAMICS IN WATER AND AQUEOUS SOLUTIONS OF ZnCl2 : A COMPARATIVE INVESTI-

GATION BY RAMAN, RAYLEIGH WING AND INELASTIC NEUTRON SCATTERING. Journal

de Physique Colloques, 1984, 45 (C7), pp.C7-151-C7-159. �10.1051/jphyscol:1984716�. �jpa-00224281�

(2)

JOURNAL DE PHYSIQUE

Colloque C7, suppl6rnent au n09, Tome 45, septernbre 1984 page C7-151

LOW FREQUENCY DYNAMICS IN WATER A N D AQUEOUS SOLUTIONS OF ZnC12 : A COMPARATIVE INVESTIGATION BY RAMAN, RAYLEIGH WING AND INELASTIC NEUTRON SCATTERING

M . P . Fontana, G . ~ a i s a n o * , P . Migliardo*, M.-C. f ell is sent-Funel** and A. J . ~ianoux***

I s t i t u t o d i F i s i c a and G.N. S . M., Parma, I t a Z y

* ~ s t i t u t o d i F i s i c a and G. Ilr. S . M., Messina, I t a Z y

**

Laboratoire Le'on BriZZouin, CEIlr ~ a c Z a y + , 91191 Gif-sur-Yvette Cedex, France

***

I .

L. L., B. P. 256 X, 38042 GrenobZe Cedex, France

Resume

-

Nous presentons l e s r e s u l t a t s d'une etude (syst6matique)des spectres d e r a t i o n s ti basse ( u s 4 0 0 cm-1) e t t r e s basse (0.2 cm-1 5 w

s

40 cm-1) frequences e t de l a dynamique s t r u c t u r a l e de l ' e a u e t de solutions aqueuses de ZnC12 (pour des concentrations s1@tendant jusqu'ti l a s a t u r a t i o n ) . Des techniques de diffusion inelastique de neutrons par temps de vol e t de spec- troscopie Raman ont 6t6 u t i l i s e e s pour determiner l e s d i s t r i b u t i o n s de f r e - quence dues aux vibrations e t l a dependance en frequence de l a fonction de couplage Raman e n t r e l e s e t a t s Slectroniques e t l e s @ t a t s vibrationnels des systemes. Des temps de relaxation s t r u c t u r a l e ont 6t6 determines par d i f f u - sion de l a lumiPre Rayleigh di'polarisee. Les r e s u l t a t s confirment que czs systsmes peuvent Otre consideres comme des "solides localement amorphes

.

La

discussion e s t f a i t e en termes d'amas localement ordonnes e t dynamiquement tort-616s dont l a s t r u c t u r e e t l a dynamique sont fortement influencees par l e s o l u t e e t en p a r t i c u l i e r par l ' a c t i o n de celui-ci sur l e s l i a i s o n s hydrogene de l ' e a u .

Abstract

-

In t h i s paper we report the r e s u l t s of a comprehensive investiga- tion on the low (w ,$ 400 cm-1) and very low (0.2 cm-1 ,$ w 40 cm-l) f r e - quency vibrational and s t r u c t u r a l dynamics i n water and aqueous solutions of ZnC12 ( f o r concentrations up t o s a t u r a t i o n ) . Time-of-flight i n e l a s t i c neutron s c a t t e r i n g and Raman spectroscopy were used t o obtain the vibrational frequency d i s t r i b u t i o n s and the frequency dependence of the Raman electron vibration coup1 ing function. Structural relaxation times were determined by depolarized Rayleigh wing s:attering. The r e s u l t s , which confirm t h a t these systems a r e best viewed as l o c a l l y amorphous s o l i d s " , a r e discussed i n terms of locally ordered, dynamically correlated patches i n which s t r u c t u r e and dynamics are strongly influenced by the s o l u t e , especially by i t s action on the water hydroqen bond.

I - INTRODUCTION

Several experimental techniques can y i e l d information on the relaxation times which characterize the short time microscopic motion in water and aqueous solutions ( o r , more generally, in liquids and amorphous or disordered s o l i d s ) . Most of these tech- niques ( f o r instance NMR, ultrasonic attenuation, d i e l e c t r i c relaxation, neutron, X-ray and l i g h t s c a t t e r i n g ) rely t o some extent on a dynamical model of the system t o connect the experimental r e s u l t s with the fundamental dynamical quantities of i n t e r e s t . We feel however t h a t in the short time domain ( T 5 10-lo sec.) scattering spectroscopy yields experimental q u a n t i t i e s which a r e c l o s e s t t o the i n t r i n s i c dy- namics of the system, i . e . , they require the smallest amount of intermediary mode- l i n g . Thus the connection between what i s actually measured and what one wishes t o , or thinks hd i s measuring i s c l e a r e r and more d i r e c t . A f u r t h e r advantage of t h i s + ~ a b o r a t o i r e commun C E A , CNRS

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984716

(3)

C7-152 JOURNAL DE PHYSIQUE

is t h e p o s s i b i l i t y of q u a n t i t a t i v e comparisons between t h e q u a n t i t i e s determined by d i f f e r e n t types o f s c a t t e r i n g spectroscopy a p p l i e d t o t h e same system, and o b t a i n t h u s a s e l f - c o n s i s t e n t and d e t a i l e d p i c t u r e of t h e time development of t h e micros- copic motions i n t h e system.

To our knowledge such approach has never been t e s t e d f u l l y i n any system. In t h i s paper we p r e s e n t t h e r e s u l t s of such a t y p e of study on pure H20, D20, and aqueous s o l u t i o n of ZnC12. O u r main i n t e r e s t was t h e determination of t h e low frequency (w 5 50 meV) and very low frequency (0.01 meV

x

w s 5 meV) v i b r a t i o n a l and d i f f u - sional motions i n such systems and t h e i r i n t e r p r e t a t i o n i n terms of c o l l e c t i v e motion i n l o c a l l y ordered s t r u c t u r e s , i n which t h e c o r r e l a t i o n range and t h e s t r u c - t u r e could be v a r i e d by changing t h e s o l u t e concentration a t c o n s t a n t temperature.

The experimental techniques used were t i m e - o f - f l i g h t i n e l a s t i c and q u a s i - e l a s t i c neutron s c a t t e r i n g , Raman and depolarized Rayleigh wing spectroscopy. O u r r e s u l t s concerning q u a s i - e l a s t i c s c a t t e r i n g a r e reported elsewhere / I / , although we s h a l l use them i n t h i s paper a l s o . An obvious extension of our measurements i s t h e study of t h e e f f e c t s of temperature v a r i a t i o n , e s o e c i a l l y i n t h e supercooled region.

Actually B r i l l o u i n and Rayleigh wing s p e c t r a have already been taken i n supercooled water down t o 247K, and t h e r e s u l t s w i l l be published elsewhere / 2 / .

Thus i n t h i s paper we s h a l l l i m i t our account t o room temperature ( e . g . 298K) vibra- t i o n a l and d i f f u s i o n a l dynamics, with p a r t i c u l a r emphasis on what can be learned by t h e simultaneous a p p l i c a t i o n of t h e t h r e e experimental techniques j u s t mentioned.

In n a r t i c u l a r , we s h a l l compare t h e v i b r a t i o n a l information obtained by i n e l a s t i c neutron and by Raman s c a t t e r i n g , and we s h a l l show t h e complementary n a t u r e of t h e information obtained by q u a s i - e l a s t i c neutron and by depolarized Rayleigh winq s c a t - t e r i n g r e s o e c t i v e l y . F i n a l l y , we s h a l l p r e s e n t a reasonably d e t a i l e d narametrization of t h e time e v o l u t i o n of o r i e n t a t i o n a l , s t r u c t u r a l and v i b r a t i o n a l degrees of f r e e - dom i n water and how a l l t h i s i s a f f e c t e d by t h e a d d i t i o n of ZnC12.

I1

-

LOCAL STRUCTURE AND DIFFUSIONAL MOTION

In pure water each molecule i s surrounded on t h e average by 4-5 molecules i n preva- l e n t t e t r a h e d r a l coordination, o r i g i n a t e d by t h e s a t u r a t i o n of t h e f o u r H-bonds of which t h e s i n g l e molecule i s caoable /3/. Although each molecule w i l l r e t a i n i t s

p o s i t i o n i n t h e s t r u c t u r e f o r an estimated time of t h e o r d e r of picoseconds, a t any given time t h e r e i s a high p r o b a b i l i t y of f i n d i n g f o u r molecules i n t h e t e t r a h e d r a l p o s i t i o n s around a given one. From t h e point of view of d i f f u s i o n a l dynamics we should exoect t h e r e f o r e t h a t t h e d i f f u s i o n be somewhat s o l i d - l i k e . Independently of t h e s ~ e c i f i c model chosen /4/ t h e most r e l e v a n t parameter w i l l be t h e "residence time" T! o f a molecule i n i t s p o s i t i o n , which can be defined a s "quasi-equilibrium"

a s long a s r! i s l a r g e r t h a t t y p i c a l v i b r a t i o n a l periods. I t i s t h e r e f o r e t h i s quan- t i t y which i s determined i n a q u a s i - e l a s t i c neutron s c a t t e r i n g exoeriment, which probesotime c o r r e l a t i o n s on t h e nicosecond t o 100 nsec s c a l e over d i s t a n c e s of up t o 10 A . I s T! synonimous with t h e s o - c a l l e d H-bond l i f e t i m e , o r with t h e H-bond breaking time T~ ? The answer may be found by an indenendent, d i r e c t measurement of r S . This can be obtained by depolarized Rayleigh wing s c a t t e r i n g . Such e f f e c t i s connected t o t h e a n i s o t r o o i c p o l a r i z a b i l i t y f l u c t u a t i o n s induced by molecular motions i n t h e long time l i m i t ( a t s h o r t e r times t h e v i b r a t i o n a l component would dominate). Therefore t h e non-vibrational p a r t of t h e d e ~ o l a r i z e d spectrum w i l l be a c t i v a t e d , i . e . w i l l be v i s i b l e a s i n a f l a s h , only when t h e molecules a r e i n t h e process of breaking a p a r t ( o r coming t o g e t h e r ) . When i n t h e i r " s t a b l e " t e t r a h e d r a l o o s i t i o n s , t h e molecules may c o n t r i b u t e only t o t h e v i b r a t i o n a l d e n s i t y of s t a t e s g(w). Assuming an exponentially decaying time c o r r e l a t i o n f u n c t i o n of t h e a n i s o t r o - pic p o l a r i z a b i l i t y f l u c t u a t i o n s , t h e r e s u l t i n g spectrum w i l l be a Lorentzian cen- t e r e d a t z e r o frequency s h i f t with a half-width a t h a l f maximum (HWHEI) T-rl4/-cs.

Therefore i n p r i n c i p l e t h e combined q u a s i - e l a s t i c neutron and l i g h t s c a t t e r i n g measurements should r e s o l v e t h e question of whether t h e H-bond breaking time coin-

c i d e s with t h e molecular residence time.

Q u a s i - e l a s t i c neutron s c a t t e r i n g y i e l d s , f o r pure water a t 298K, t h e value 4 - 1 . 7 psec f o r t h e molecular residence time / 4 / . In f i g . 1 we show t h e depolarized

(4)

Fig.1

-

Depolarized Rayleigh wing spectra f o r pure Hz0 a t 298K ; spectral resolution was varied according t o the frequency s h i f t , from b e t t e r than 0.01 meV t o 0.06 meV.

Rayleigh wing spectra we obtained f o r pure H20 a t 298K. All experimental procedures are described elsewhere-/5/. Here we wfsh only t o mention-tTat i n t%e lTwest f r e - quency s h i f t region, our spectral bandpass was b e t t e r than 0.01 meV. The spectrum could be f i t t e d excellently with a resolution limited Lorentzian plus a broader one, from which the value I - ~ = 0.7 psec was obtained. Since the difference in the experi-, mental value of

r l

and .rs i s well outside the experimental e r r o r , our r e s u l t s clearly indicate t h a t H-bond breaking time and molecular residence time a r e not synonimous.

Actually any two molecules may break and re-form t h e i r H-bond several times before actually breaking away from t h e i r quasi-equilibrium positions. This important r e s u l t i n t u r n impl i e s a many-molecule c o l l e c t i v e interaction, i .e. the s t r u c t u r a l cage which keeps n molecules together holds even i f some s i n g l e bonds a r e broken here and there.

The addition of ZnC12 complicates the composition of the system considerably.

However some e f f e c t s on the residence and structural relaxation times a r e c l e a r l y evident. In p a r t i c u l a r , r! i s found t o increase up t o 8 psec a t s a t u r a t i o n . Since even a t t h i s concentration, where the ZnC12/H20 molecular r a t i o i s about 0.5, the dominant contribution t o the s c a t t e r i n g of neutrons originates from the water nrotons, t h i s r e s u l t indicates t h a t ZnC12 s t a b i l i z e s the water molecules i n a s t r u c t u r e which, as we shall see and as has been discussed i n previous papers / 6 / , i s strongly connected t o the local c r y s t a l l i n e s t r u c t u r e of t h e solute.

The structural relaxation time r s , which f o r nure water reduces t o the H-bond breaking time, features a more complex behavior. A t s a t u r a t i o n , there seems t o be only one relaxation time, r S = 1 . 4 psec, whereas a t intermediate concentrations there are a t l e a s t two s t r u c t u r a l relaxation times, of which the shorter goes i n t o the s i n g l e relaxation time observed both a t high and low (zero) concentrations (Fig.2). Such time i s therefore connected with the bond between water molecules among themselves and/or with the metal ion. I t must be emohasized t h a t i t reduces t o the H-bond breaking time only i n the l i m i t of low concentrations. Otherwise, the bond i s more complex, involving, and being modified by, the interaction between the water molecule and t h e metal ions. A t saturation (and nossibly also a t lower concentrations), the existence of a s i n g l e time impl i e s t h a t the water molecules, together with the Zn and C1 ions are packed i n a f a i r l y s t a b l e local s t r u c t u r e , and i n t e r a c t s u f f i c i e n t l y strongly t o minimize differences i n the resoective bond dynamics. In t h i s framework t h e existence of a slower component ( r s = 5 psec) a t intermediate concentrations may be ascribed t o the breaking of the metal-halogen bond. Such bond however, i n order t o y i e l d a seaarate relaxation time, must belong

(5)

JOURNAL DE PHYSIQUE

Fig.2

-

Depolarized Rayleigh wing s p e c t r a f o r 6M s o l u t i o n o f ZnC12 i n H20. Same experimental c o n d i t i o n s as f i g . 1 .

t o i s o l a t e d Zn-C1 complexes, o r a t l e a s t t o complexes n o t embedded i n t h e "polymeric"

s t r u c t u r e t o which most o f t h e s o l u t e and s o l v e n t belong i n the s a t u r a t e d s o l u t i o n / 7 / . Thus t h e i n t e n s i t y o f t h e slower r e l a x a t i o n should y i e l d the r e l a t i v e propor- t i o n o f " i s o l a t e d " and "oolymeric" Zn-C1 comol exes as c o n c e n t r a t i o n i s increased.

I t s disappearance a t s a t u r a t i o n i s i n good agreement w i t h t h e o b s e r v a t i o n t h a t t h e polymeric s t r u c t u r e dominates f o r c

2

l O M and w i t h EXAFS data, which i n d i c a t e t h a t near s a t u r a t i o n a t l e a s t 85 % o f t h e Zn ions belong t o such s t r u c t u r e /8/.

I 1 1

-

VIBRATIONAL EXCITATIONS, COUPLING AND CORRELATIONS

A l l dynamical i n f o r m a t i o n on a system o f many i n t e r a c t i n g p a r t i c l e s i s contained i n t h e v e l o c i t y t i m e a u t o - c o r r e l a t i o n f u n c t i o n , whose s p e c t r a l densi t~ i s t h e g e n e r a l i z e d frequency d i s t r i b u t i o n gN(w). For r e l a t i v e l y l o n g times g (w) describes the d i f f u s i v e m o t i o n o f t h e p a r t i c l e s , whereas f o r s h o r t times i t i s connected t o t h e v i b r a t i o n a l motion. I n f a c t , f a r a s o l i d , and a l s o f o r a s t r o n g l y associated 1 iq u i d , gN(w) should reduce t o t h e v i b r a t i o n a l d e n s i t y o f s t a t e s g(w).

I t i s w e l l known t h a t i n a system w i t h a s i z e a b l e c o n t r i b u t i o n from incoherent s c a t t e r i n g gN(w) may be obtained by t h e s o - c a l l e d E g e l s t a f f - S c h o f i e l d e x t r a p o l a t i o n , according t o which

where Ss(q,w) i s t h e i n c o h e r e n t s c a t t e r i n g law.

I f t h e e x t r a p o l a t i o n i s p r o p e r l y c a r r i e d out, and coherent s c a t t e r i n g n o t t o o interne, one may use i n p l a c e of Ss(q,w) t h e experimental s c a t t e r e d i n t e n s i t y . However, care must b e taken t o check f o r eventual modulation o f gN(w) by r e s i d u a l coherence e f f e c t s . Using t h e IN6 t . 0 . f . snectrometer a t I.L.L.(Grenoble) we have obtained p r e c i s e i n e l a s t i c s c a t t e r i n g s p e c t r a f o r H20, D20, and r e s p e c t i v e s o l u t i o n s o f ZnC12, SrC12, CuBr-2. Here we s h a l l discuss t h e r e s u l t s obtained f o r pure water and ZnC12 s o l u t i o n s i n D20. Since we are s t u d y i n g low frequency v i b r a t i o n s , we chose an

(6)

i n c i d e n t neutron wavelength of 5.9 A ; thus our a n a l y s i s has an upper frequency l i m i t of approximately 50 meV, due t o t h e poor s i g n a l - t o - n o i s e r a t i o a t higher energy t r a n s f e r s . Other experimental and d a t a hand1 ing d e t a i l s a r e discussed elsewhere / 5 / . In f i g . 3 and 4 we show t h e gN(w) d i s t r i b u t i o n obtained f o r ZnC12

Fig.3

-

Generalized frequency d i s t r i b u t i o n gN(w) f o r H20 and 3M, 6M, 12.6M, ZnC12 s o l u t i o n s r e s p e c t i v e l y .

Fig.4 - Generalized frequency d i s t r i b u t i o n gN(w) f o r D20 and 3M, 6M, 12.6M, ZnC12 s o l u t i o n s r e s p e c t i v e l y .

(7)

C7-156 JOURNAL DE PHYSIQUE

s o l u t i o n s i n Hz0 and D20 r e s p e c t i v e l y . The two sets o f d i s t r i b u t i o n s a r e very s i m i - l a r , c o n f i r m i n g e m p i r i c a l l y t h e procedure o f u s i n g t h e t o t a l s c a t t e r e d i n t e n s i t y i n t h e E g e l s t a f f - S c h o f i e l d e x t r a p o l a t i o n .

The most important f e a t u r e i n t h e spectra i s t h e peak a t 7 meV, which decreases s t r o n g l y w i t h i n c r e a s i n g s o l u t e c o n c e n t r a t i o n . Such a peak i s due t o t h e l i b r a t i o n a l deformation o f t h e H-bond cage about a g i v e n water molecule. I t s decrease due t o t h e Zn and C1 i o n s i n h i g h c o n c e n t r a t i o n s i n d i c a t e s then a breaking-up o f t h e H- bond s t r u c t u r e . T h i s r e s u l t helps t o understand t h e behaviour o f t h e s t r u c t u r a l r e l a x a t i o n times described i n t h e preceding paragraoh. I n f a c t , whereas a t low concentrations t h e s t r u c t u r a l r e l a x a t i o n i s dominated by t h e H-bond b r e a k i n g time, a t h i g h concentrations, where e s s e n t i a l l y no o r d i n a r y H-bonds e x i s t as shown by t h e behaviour o f t h e 7 meV peak, we see a d i f f e r e n t r e l a x a t i o n time.

We want t o discuss now t h e very low frequency r e g i o n o f t h e v i b r a t i o n a l spectrum (w 5 6 meV). I n t h i s r e g i o n i n f a c t t h e v i b r a t i o n a l dynamics m i g h t be s e n s i t i v e t o t h e existence o f l o c a l l y ordered patches. The e f f e c t o f l o c a l order, and i t s change w i t h i n c r e a s i n g s o l u t e concentration, may be o f two types : i t may a1 t e r t h e v i b r a t i o n a l d e n s i t y o f s t a t e s g(w), and i t may a l t e r t h e response o f the v i b r a - t i o n a l ensemble t o some p e r t u r b a t i o n , such as an u l t r a s o n i c wave (and i n t h i s case s p e c i f i c r e l a x a t i o n e f f e c t s have been observed / 9 / ) o r an i n c i d e n t e l e c romagnetic

a

wave (such as i n B r i l l o u i n o r Raman s c a t t e r i n g ) . I n f i g . 5 we show t h e g (w) d i s t r i - b u t i o n s f o r H20, D20 and t h e s a t u r a t e d s o l u t i o n s o f ZnC12 i n Hz0 and D20 respectively.

Fig.5

-

Very low frequency gN(w) f o r H20, D20 and s a t u r a t e d s o l u t i o n s o f ZnC12 i n Hz0 and D20 r e s p e c t i v e l y .

We n o t e t h a t i n t h i s frequency r e g i o n t h e r e seems t o be a small d i f f e r e n c e i n t h e s p e c t r a o f pure Hz0 and D20, centered a t about 1 meV. Since a t low frequencies eventual coherence e f f e c t s a r e expected t o be more important, such d i f f e r e n c e i s probably due t o r e s i d u a l i n t e r f e r e n c e e f f e c t s i n t h e D20 spectra. Thus t h e t r u e g(w) should be g i v e n by t h e Hz0 data. I n b o t h cases t h e frequency d i s t r i b u t i o n deviates from t h e Debye w2-dependence expected i n t h i s low frequency r e g i o n i f o n l y a c o u s t i c v i b r a t i o n s were present. Such d e v i a t i o n i m p l i e s t h e existence o f

(8)

o t h e r motional degrees o f freedom, very probably connected w i t h s t r u c t u r a l r e l a x a - t i o n : i n t h i s , as i n o t h e r ways, water and aqueous s o l u t i o n s o f t h e type s t u d i e d here behave as amorphous m a t e r i a l s .

We can t e s t t h e o t h e r e f f e c t o f l o c a l o r d e r i n g on dynamics by determining t h e f r e - quency dependence o f t h e c o u p l i n g o f t h e v i b r a t i o n a l ensemble t o t h e e.m. r a d i a t i o n v i a t h e e l e c t r o n i c p o l a r i z a b i l i t y . I n o r d e r t o do t h i s we must separate t h e depola- r i z e d Rayleigh wing s c a t t e r i n g from t h e v i b r a t i o n a l Raman s c a t t e r i n g i n t h e t o t a l i n t e n s i t y . This may be e a s i l y done once t h e q u a s i - e l a s t i c d e p o l a r i z e d l i g h t scat- t e r i n g has been p r o p e r l y parametrized, as we have discussed i n t h e preceding para- graph. Thus we have s u b t r a c t e d from t h e experimental s p e c t r a t h e q u a s i - e l a s t i c c o n t r i b u t i o n ( i n t h e form o f two o r t h r e e l o r e n t z i a n s depending on s o l u t e concen- t r a t i o n ) ; t h e remaining i n t e n s i t y was then normalized by t h e (n(w,T)+l)/w s t a t i s - t i c a l f a c t o r , t o y i e l d t h e Raman reduced spectrum :

R R

where C ( w ) i s t h e e l e c t r o n v i b r a t i o n c o u p l i n g f u n c t i o n . I n f i g . 6 we show t h e g (w)

Fiq.6

-

Reduced Raman i n t e n s i t y a f t e r s u b t r a c t i o n o f q u a s i - e l a s t i c deoolarized

~ a y l e i ~ h component f o r Hz0 ; D ~ O and s a t u r a t e d s o l u t i o n s o f ZnC12 i n ~ 2 0 and D20 r e s p e c t i v e l y .

s p e c t r a f o r H20, D20 and t h e s a t u r a t e d s o l u t i o n o f ZnC12 i n H20. I f t h e reasonable assumption i s made t h a t f o r these h i g h l y s t r u c t u r e d and associated f l u i d s gN(w)*g(w), then the c o u p l i n g f u n c t i o n CR(w) may be determined d i r e c t l y by experiment, by t a k i n g t h e r a t i o between gR(w) and gN(w) :

cR(w) = gR(w)/gN(w) (2)

The r e s u l t s are p l o t t e d i n f i g . 7 f o r t h e case o f s o l u t i o n s i n H20.

It i s important t o note t h a t unless combined measurements o f t h e type r e p o r t e d here are performed, i n order t o o b t a i n cR(w) one must r e s o r t t o more o r l e s s complex t h e o r e t i c a l models

/ l o /

; as f a r as we know, our's i s t h e f i r s t t o t a l l y experimental

(9)

JOURNAL DE PHYSIQUE

AE,meV

Fig.7

-

Raman c o u p l i n g f u n c t i o n C (w) f o r ZnC12 s o l u t i o n s i n H20. R d e t e r m i n a t i o n o f C (w). R

For c o u p l i n g t o a c o u s t i c v i b r a t i o n s , i t i s g e n e r a l l y assumed t h a t

C l e a r l y such behaviour c o u l d f i t o u r data o n l y i n t h e w+O l i m i t . A t h i g h e r frequen- cy t h e r e i s a damping i n t h e coupling. S i m i l a r behaviour has been observed i n B r i l l o u i n s c a t t e r i n g i n amorphous s o l i d s , and has been i n t e r p r e t e d i n t h e framework o f a v i s c o - e l a s t i c model i n which a c o u s t i c modes would be s c a t t e r e d by t h e r e l a x a - t i o n o f s t r u c t u r e s w i t h a g i v e n c o r r e l a t i o n range 20 /11/. On t h e b a s i s o f such model, cR(w) t u r n s o u t t o be :

where VL i s t h e h i g h frequency l o n g i t u d i n a l sound v e l o c i t y . Using values o f VL from t h e 1 it e r a t u r e / 7 / , we have f i t t e d eq. (4) t o t h e data o f f i g . 7 : t h e r e s u l t i s t h e s o l i d l i n e , whose obvious d e v i a t i o n a t h i g h frequencies i s o f course due t o t h e onset o f o p t i c a l modes.

From t h e f i t we o b t a i n alues f o r t h e c o r r e l a t i o n range 20, which i s found t o increase from 20 = 3.4

1

f o r "ure H20 t o 20 = 7 . 5

1

f o r t h e s a t u r a t e d s o l u t i o n o f ZnC12 i n H20.

We wish t o emphasize how s t r i k i n g t h i s r e s u l t i s : w i t h o u t any t h e o r e t i c a l "fudging", we o b t a i n f o r CR(w) a f u n c t i o n a l form which i s i d e n t i c a l w i t h t h a t obtained inde- pendently and by o t h e r methods f o r amorphous s o l i d s . Furthermore, t h e c o r r e l a t i o n range o f l o c a l o r d e r thus determined i s found t o increase w i t h s o l u t e concentration, i n good agreement w i t h t h e r e s u l t s obtained on t h e d i f f u s i o n a l dynamics by quasi- e l a s t i c neutron s c a t t e r i n g and by depolarized Rayleigh wing s c a t t e r i n g .

I V

-

CONCLUSIONS

The combined measurements o f i n e l a s t i c neutron s c a t t e r i n g and l i g h t s c a t t e r i n g r e p o r t e d i n t h i s paper, t o g e t h e r w i t h o t h e r r e s u l t s we obtained, p a r t i c u l a r l y by

(10)

quasi-el a s t i c neutron s c a t t e r i n g , y i e l d a f a i r l y complete ~ i c t u r e of the microscopic dynamics of room temperature water and of the perturbative e f f e c t s caused by a strong e l e c t r o l y t e solute such as ZnC12. For the f i r s t time, a c l e a r experimental separation of the various relaxation r a t e s affecting t h e diffusional and low f r e - quency vibrational dynamics of the water and s o l u t e molecules has been achieved.

Conclusive evidence f o r s o l u t e connected "optical c o l l e c t i v e excitations" has been obtained and, more generally, the opnortunity of describing the vibrational motion i n these liquids in terms of c o l l e c t i v e excitations in an amorphous s o l i d - l i k e matrix has been demonstrated.

An obvious extension of these experiments i s t h e study of temperature e f f e c t s especially in the supercooled region, and also the study of d i f f e r e n t types of strong e l e c t r o l y t e s , i n order t o find out nrecisely what a r e the interactions which a r e mainly responsible f o r the c o l l e c t i v e vibrational behaviour and f o r the strong local structuring e f f e c t s we have found i n the ZnC12 and similar solutions.

REFERENCES

Bellissent-Funel M.-C., Kahn R , Dianoux A-J., Fontana M.P., Maisano G . , Migliardo P. and Wanderlingh F., 1984, Mol.Physics ( t o be published) Maisano G . , Migliardo P . , Mallamace F . , MaqazCi S., Aliotta F . , Vasi C . ,

( t o be published)

For general information on water, aqueous solutions and t h e relevant expe- rimental methods see the volumes of "Water : a comprehensive t r e a t i s e " . F.Franks, ed. (Plenum Press : N . Y . )

See f . i . t h e monography by T. Springer, "Quasi-elastic neutron s c a t t e r i n g f o r the investigation of d i f f u s i v e motions i n s o l i d s and liquids" G.Hohler ed.

(Springer Verla N . Y . 1972)

Ma-isano G . , Mig7iardo P . , Fontana M.P., Be1 1 issent-Funel M.-C., Dianoux A . J . , Submitted t o J.Phys.C.

Fontaine A . , Lagarde P . , Raoux D . , Fontana M.P., Maisano G . , Migliardo P . , and Wanderlingh F., 1978, Phys.Rev.Lett. 41, 504

Fontana M.P., Maisano G . , Migliardo P . , and Wanderlingh F . , 1978, J,Chem.Phys.

69, 676 -

Darbari G.S., Richelson M . R . and Petrucci S . , 1979, J.Chem.Phys. - 53, 859 Lagarde P . , Fontaine A . , Raoux D., Sadoc A . , and Migliardo P . , 1980, J.Chem.

Phys. - 72, 3061

Maisano G . , Migliardo P . , Aliotta F., Vasi C . , Phys.Chem.Liquids ( t o be published)

See Weaire D . L . , 1981 Amorphous Solids, P h i l l i p s W.A., ed. (Ber1in:Soringer) Jackle J . , 1981 Amorphous Solids, P h i l l i p s W.A., ed. (Ber1in:Springer) Martin A.J. and Brenig W . , 1974, Phys.Stat.So1 . ( b ) - 64, 163.

Referências

Documentos relacionados

• Assinale as alternativas corretas na folha de respostas que est´ a no final