• Nenhum resultado encontrado

[PENDING] opencourses.auth | Ανοικτά Ακαδημαϊκά Μαθήματα ΑΠΘ | Αρχές Κβαντικής Χημείας και Φασμ... | LCAO - Εξισώσεις Roothaan-Hartree-Fock - Αυτοσυνεπές πεδίο

N/A
N/A
Protected

Academic year: 2024

Share "opencourses.auth | Ανοικτά Ακαδημαϊκά Μαθήματα ΑΠΘ | Αρχές Κβαντικής Χημείας και Φασμ... | LCAO - Εξισώσεις Roothaan-Hartree-Fock - Αυτοσυνεπές πεδίο"

Copied!
36
0
0

Texto

(1)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Ενότητα # (6): LCAO - Εξισώσεις Roothaan-Hartree-Fock - Αυτοσυνεπές πεδίο

Καραφίλογλου Παντελεήμων

Τμήμα Χημείας

(2)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας Τμήμα Χημείας

Άδειες Χρήσης

• Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

• Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

2

(3)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Χρηματοδότηση

• Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.

• Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.

• Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού

Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση

(Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

3

(4)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

LCAO - Εξισώσεις Roothaan-

Hartree-Fock - Αυτοσυνεπές πεδίο

(5)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Περιεχόμενα ενότητας

1. Γραμμικοί συνδυασμοί ατομικών τροχιακών (Linear Combination of Atomic Orbitals-L.C.A.O.)

2. Μοριακά Τροχιακά σ, π, δ - Δεσμικότητα και αντιδεσμικότητα Μοριακών Τροχιακών

3. Εξισώσεις Roothaan-Hartree-Fock – Αυτοσυνεπές πεδίο

5

(6)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας Τμήμα Χημείας

Σκοποί ενότητας

6

• Γραμμικοί συνδυασμοί ατομικών τροχιακών (Linear

Combination of Atomic Orbitals-LCAO): Εξοικείωση με τους LCAO μέσω παραδειγμάτων. Μοριακά Τροχιακά σ, π, δ.

Δεσμικότητα και αντιδεσμικότητα Μοριακών Τροχιακών.

• Εξισώσεις Roothaan-Hartree-Fock: Εξοικείωση και φυσική

σημασία των μονο-ηλεκτρονιακών και δι-ηλεκτρονιακών

ολοκληρωμάτων. Υπολογισμός ηλεκτρονιακής δομής με το

αυτοσυνεπές πεδίο (Self Consistent Field-SCF).

(7)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

1. Γραμμικοί συνδυασμοί ατομικών

τροχιακών (Linear Combination of

Atomic Orbitals-L.C.A.O.)

(8)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Τμήμα Χημείας 8

 Ας θεωρήσουμε ένα απλό μοριακό σύστημα που αποτελείται από δύο πυρήνες Α, Β, δύο ατομικά τροχιακά (AO) φA, φB, και περιέχει ένα ηλεκτρόνιο (π.χ. τo μοριακό ιόν του υδρογόνου H2+ . Η εξίσωση του Schrödinger για το σύστημα αυτό είναι:

Όπου ο τελεστής Hamilton, (δηλ. ο τελεστής ενεργείας), σε ατομικές μονάδες (a.u.) είναι:

(κινητική ενεργ.) (δυναμική ενεργ.)

Η ακριβής επίλυση της παραπάνω εξίσωσης δίνει ότι η μοριακή κυματοσυνάρτηση ΨΑΒ (που είναι μία συνάρτηση της θέσεως, r1, του ηλεκτρονίου) έχει τις εξής ιδιότητες:

• Όταν r1 είναι κοντά στον πυρήνα Α : ψΑΒ(r1) φA (r1) • Όταν r1 είναι κοντά στον πυρήνα Β : ψΑΒ(r1) φΒ (r1)

H ψ

ΑΒ =

Ε ψ

ΑΒ

H = 2 1 2

1 − rA,1

1 − rB,1

1

Γραμμικοί συνδυασμοί ατομικών τροχιακών

(L.C.A.O.) (1/4)

(9)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

9

Τα παραπάνω μας οδηγούν στην εξής προσέγγιση. Μια μοριακή κυματοσυνάρτηση, δηλ.

ένα Μοριακό Τροχιακό (Molecular Orbital (M.O.)) μπορεί να θεωρηθεί σαν ένας γραμμικός συνδυασμός ατομικών τροχιακών (Linear Combination of Atomic Orbitals (L.C.A.O.)):

ψΑΒ = cAφA + cBφB (όπου cA, cB είναι συντελεστές)

Ας θεωρήσουμε τώρα ένα πολυατομικό μόριο που αποτελείται από τα ΑΟ φ1, φ2…φΜ. Ένα ΜΟ, ψi, αυτού του πολυατομικού συστήματος έχει τη μορφή:

ψi = c1,i φ1 + c2,i φ2 + … + cM,i φM (ή ψi = cμ,i φμ)

Γενικά, ένα ΜΟ είναι ένας συνδυασμός των εξής γινομένων:

[αριθμητικός συντελεστής, c] x [ατομική κυμ/ση (δηλ. κβαντικό κύμα ατόμου), φ ].

 Τα τετράγωνα των συντελεστών ( ) καθορίζουν τη συμμετοχή (π.χ. την πιθανότητα) του κάθε ΑΟ (και κατά συνέπεια του κάθε ατόμου) σ’ ένα δεδομένο ΜΟ ψi.

 Τα σχετικά πρόσημα των συντελεστών ανά δύο (π.χ. c1,i και c2,i, c2,i και c3,i,…) καθορίζουν τις σχετικές φάσεις με τις οποίες τα ΑΟ (δηλ. τα κβαντικά κύματα των ατόμων) συμμετέχουν στα ΜΟ (δηλ. στα κβαντικά κύματα του μορίου).

2 i

cμ,

Γραμμικοί συνδυασμοί ατομικών τροχιακών

(L.C.A.O.) (2/4)

(10)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

Τμήμα Χημείας 10

Δεσμικά και αντιδεσμικά Μοριακά Τροχιακά.

Έστω ένα διατομικό μόριο, που περιγράφεται από το Μοριακό Τροχιακό (ΜΟ),

ΨΑΒ = Ν [φA + λ φB], στο οποίο τα φA και φB δε συμμετέχουν με την ίδια πιθανότητα και έστω ότι Ν είναι ο συντελεστής κανονικοποίησης του ΜΟ ΨΑΒ.

Η πυκνότητα πιθανότητας ενός ηλεκτρονίου στη θέση r δίνεται (σύμφωνα με την ερμηνεία του Born) από το Ψ2ΑΒ(r):

Ψ2ΑΒ (r) = Ν2A(r) + λ φB(r)]2 = Ν22Α(r) + λ2 φ2Β(r) + 2 λ φA(r) φB(r)]

Το γινόμενο φA(r) φB(r) ονομάζεται πυκνότητα επικάλυψης, και είναι ιδιαίτερης σημασίας όταν το r λαμβάνει τιμές στο ενδιάμεσο (π.χ.στο μέσο) της διατομικής απόστασης Α-Β.

Όταν η ποσότητα, 2 λ φA(r) φB(r) είναι:

(i) Θετική => δεσμικό ΜΟ => συμβάλει στην ισχυροποίηση του δεσμού Α-Β.

(ii) Αρνητική => αντιδεσμικό ΜΟ => συμβάλει στην εξασθένηση του δεσμού Α-Β.

Γραμμικοί συνδυασμοί ατομικών τροχιακών

(L.C.A.O.) (3/4)

(11)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας

11

Δεσμικά και αντιδεσμικά Μοριακά Τροχιακά.

• Η επικάλυψη των τροχιακών φA και φB περιγράφεται από

το ολοκλήρωμα επικάλυψης, S, που λαμβάνει τιμές από το 0 έως 1:

Όταν φA και φB συμπίπτουν (φA = φB) τότε S = 1, ενώ όταν S=0 σημαίνει ότι τα δύο αυτά τροχιακά δεν επικαλύπτονται και κατά συνέπεια δεν σχηματίζουν χημικό δεσμό μεταξύ Α και Β, (επίσης, δεν σχηματίζουν δεσμικό και αντιδεσμικό ΜΟ).

• Υπολογισμός του συντελεστή κανονικοποιήσεως, Ν.

Το άθροισμα των πιθανοτήτων (σύμφωνα με την ερμηνεία του Born) Ψ2ΑΒ (r), για όλα τα σημεία του χώρου είναι 1:

ή (λόγω της κανονικοποιήσεως των ΑΟ φA και φB):

Ν2 [1 + λ2 + 2 λ S] = 1

2ΑΒ

ψ (r) dr = Ν2[ φ2Α(r) dr + λ2 φ2Β(r) dr + 2 λ S ] = 1

N =

2 / 1

) λ λS 2 1

1

2

Γραμμικοί συνδυασμοί ατομικών τροχιακών (L.C.A.O.) (4/4)

φA(r) φB(r) dr

S

=
(12)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

2. Μοριακά Τροχιακά σ, π, δ -

Δεσμικότητα και αντιδεσμικότητα

Μοριακών Τροχιακών.

(13)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

13

Διάγραμμα σχηματισμού δεσμικών, ψ, και αντιδεσμικών, ψ*, ΜΟ.

ψ =

=

λ

ψ* φB φA

φB

φB

φA λ

φA φA

φA

φB

φB φB φA ψ*

=

ψ =

Μοριακά Τροχιακά σ, π, δ - Δεσμικότητα και

αντιδεσμικότητα Μοριακών Τροχιακών (1/9)

(14)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Τμήμα Χημείας 14

Διάγραμμα σχηματισμού δεσμικών, ψ, και αντιδεσμικών, ψ*, ΜΟ.

Παραδείγματα – Ασκήσεις:

Μοριακά τροχιακά σ,σ*, π,π*, δ,δ*.

• Τάξη δεσμού (ΤΔ):

ΤΔ = ½ [Αριθμός ηλεκτρ. σε δεσμικά ΜΟ – Αριθμός ηλεκτρ. σε αντιδεσμικά ΜΟ].

Παραδείγματα – Ασκήσεις:

Να δοθούν τα διαγράμματα σχηματισμού ΜΟ (σ,π,δ) και να υπολογισθεί η τάξη δεσμού (ΤΔ) στα παρακάτω μοριακά συστήματα.

Τι συμπεράσματα εξηγούνται για την ισχύ των δεσμών;

H2, Li2, Li2+, Li2*, He2, C2, N2, O2, F2, Cl2 κλπ.

Μοριακά Τροχιακά σ, π, δ - Δεσμικότητα και

αντιδεσμικότητα Μοριακών Τροχιακών (2/9)

(15)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

15

Μ.Ο. ΣΙΓΜΑ (σ) ΔΕΣΜΩΝ.

σ *

σ

σ *

σ

σ *

σ σ σ *

Μοριακά Τροχιακά σ, π, δ - Δεσμικότητα και

αντιδεσμικότητα Μοριακών Τροχιακών (3/9)

(16)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Τμήμα Χημείας 16

Μ.Ο. ΣΙΓΜΑ (σ) ΔΕΣΜΩΝ.

σ*

σ σ σ*

σ σ*

σ σ*

Μοριακά Τροχιακά σ, π, δ - Δεσμικότητα και

αντιδεσμικότητα Μοριακών Τροχιακών (4/9)

(17)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

17

Μ.Ο. ΠΙ (π) ΔΕΣΜΩΝ.

π * *

π π

π

Μοριακά Τροχιακά σ, π, δ - Δεσμικότητα και

αντιδεσμικότητα Μοριακών Τροχιακών (5/9)

(18)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Τμήμα Χημείας 18

Μ.Ο. ΔΕΛΤΑ (δ) ΔΕΣΜΩΝ.

δ δ *

δ δ *

είτε:

είτε:

Μοριακά Τροχιακά σ, π, δ - Δεσμικότητα και

αντιδεσμικότητα Μοριακών Τροχιακών (6/9)

(19)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

19

Δεσμικά και Αντιδεσμικά Μοριακά Τροχιακά.

Βουταδιένιο:

Μοριακά Τροχιακά σ, π, δ - Δεσμικότητα και αντιδεσμικότητα Μοριακών Τροχιακών (7/9)

Εξατριένιο:

(20)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Τμήμα Χημείας 20

ΑΡΩΜΑΤΙΚΟΤΗΤΑ.

(Συστήματα με 4n ηλεκτρόνια) (Συστήματα με 4n+2 ηλεκτρόνια) Κυκλοβουταδιένιο (αντιαρωματικό) Βενζόλιο (αρωματικό)

ε4

ε2

ε1

ε3

ε6

ε4

ε2

ε1

ε

= 0

ε5

ε3

Μοριακά Τροχιακά σ, π, δ - Δεσμικότητα και

αντιδεσμικότητα Μοριακών Τροχιακών (8/9)

(21)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

3

1 2

ε ε ε

ε3

ε1

ε2

ε4

ε5

ε= 0

21

ΕΛΕΥΘΕΡΕΣ ΡΙΖΕΣ. (Περιττός αριθμός ηλεκτρονίων, 2n+1 ηλεκτρόνια).

Αλλύλιο Πενταδιενύλιο

Μοριακά Τροχιακά σ, π, δ - Δεσμικότητα και

αντιδεσμικότητα Μοριακών Τροχιακών (9/9)

(22)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

3. Εξισώσεις Roothaan-Hartree-Fock

– Αυτοσυνεπές πεδίο.

(23)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Εξισώσεις Roothaan-Hartree-Fock – Αυτοσυνεπές πεδίο (1/9)

23

 ΟΙ ΕΞΙΣΩΣΕΙΣ ROOTHAAN-HARTREE-FOCK.

Οι εξισώσεις Roothaan-Hartree-Fock (ή απλά Hartree-Fock) μας επιτρέπουν να υπολογίσουμε τα μοριακά τροχιακά λαμβάνοντας υπ’ όψιν τις (μέσες) απώσεις μεταξύ των ηλεκτρονίων (δηλαδή, τις αλληλεπιδράσεις ηλεκτρονίων- ηλεκτρονίων). Οι εξισώσεις αυτές έχουν τη μορφή του παρακάτω ‘προβλήματος των ιδοτιμών’ (βλ. μέθοδος μεταβολών):

F C = C E (1) C+ C = 1 (2)

Φυσική σημασία του πίνακα του Fock, F

Στις παραπάνω εξισώσεις, ο F, ονομάζεται πίνακας του Fock, και κάθε στοιχείο του,

(F)μ,ν ≡ Fμ,v , περιέχει τις αλληλεπιδράσεις των ηλεκτρονίων στα ατομικά τροχιακά, φμ και φν, και δίνεται από τον εξής τύπο :

Fμ,v = hμ,v +

M λ

M σ

Pλ,σ[ (μ,ν λ,σ) − 1/2(μ,λ ν,σ) ] (3)

(24)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Τμήμα Χημείας

Εξισώσεις Roothaan-Hartree-Fock – Αυτοσυνεπές πεδίο (2/9)

24

 ΟΙ ΕΞΙΣΩΣΕΙΣ ROOTHAAN-HARTREE-FOCK.

Ο όρος Pλ,σ είναι η γνωστή μας τάξη δεσμού, δηλαδή ένα στοιχείο του πίνακα της τάξης δεσμού, (P)λ,σ ≡ Pλ,σ , που δίνεται από τον τύπο:

Ο όρος hμ,v στον πίνακα του Fock (5) είναι ένα μονο-ηλεκτρονιακό ολοκλήρωμα (δηλ. ένα ολοκλήρωμα που εξαρτάται από τη θέση ενός μόνον ηλεκτρονίου) που παριστάνει τη κινητική+δυναμική ενέργεια ενός ηλεκτρονίου υπό την επίδραση των πυρήνων.

Όπου είναι το μονο-ηλεκτρονιακό μέρος του τελεστή ενέργειας (χαμιλτόνιου).

P

λ,σ =

ΜΟ κατειλ.

i

2 c

λ,i

c

σ,i (4)

hμ,ν = <

φ

μ

h ˆ (

1

) φ

ν > = <

φ

μ

h ˆ

(1)

φ

ν > (5) )

( h 1 ˆ

h ˆ

(1) ═

− ½

12

W A

r

A,1

Z A

(6)

(25)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Εξισώσεις Roothaan-Hartree-Fock – Αυτοσυνεπές πεδίο (3/9)

25

 ΟΙ ΕΞΙΣΩΣΕΙΣ ROOTHAAN-HARTREE-FOCK.

Όταν μ=ν, το hμ,μ παριστάνει τη κινητική+δυναμική ενέργεια ενός ηλεκτρονίου που βρίσκεται στο τροχιακό φμ. Όταν μ≠ν, το hμ,ν παριστάνει τη κινητική+δυναμική ενέργεια ενός ηλεκτρονίου που βρίσκεται στην επικάλυψη των τροχιακών φμ και φν.

Ο όροι (μ,ν λ,σ) στον πίνακα του Fock (5) είναι μία συμβολική γραφή δι-ηλεκτρονιακών ολοκληρωμάτων (δηλ. ολοκληρωμάτων που εξαρτώνται από τις θέσεις δύο ηλεκτρονίων), που παριστάνουν απωστικές ενέργειες). Έστω ότι r1,2 είναι η στιγμιαία απόσταση δυο ηλεκτρονίων 1 και 2. Η στιγμιαία (απωστική) ενέργεια αλληλεπίδρασης αυτών των ηλεκτρονίων είναι 1/r1,2 . Όταν ένα ηλεκτρόνιο κινείται στο τροχιακό φμ και το άλλο στο φλ τότε το ολοκλήρωμα:

παριστάνει τη συνολική άπωση των δύο ηλεκτρονίων που κινούνται σ’ αυτά τα τροχιακά.

(μ,μ λ,λ) = φ

μ

(r

1

) φ

μ

(r

1

)

r

1,2

1 φ

λ

(r

2

) φ

λ

(r

2

) dr

1

dr

2
(26)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Τμήμα Χημείας

Εξισώσεις Roothaan-Hartree-Fock – Αυτοσυνεπές πεδίο (4/9)

26

 ΟΙ ΕΞΙΣΩΣΕΙΣ ROOTHAAN-HARTREE-FOCK.

Στις άλλες περιπτώσεις, ανάλογα με τα ατομικά τροχιακά στα οποία βρίσκονται τα δύο ηλεκτρόνια, οι αντίστοιχες απώσεις δίνονται από παρόμοια δι-ηλεκτρονιακά ολοκληρώματα. Η συμβολική και αναλυτική γραφή αυτών των ολοκληρωμάτων, καθώς επίσης και η φυσική τους σημασία δίνεται παρακάτω. Π.χ. το (μ,ν λ,σ) παριστάνει τη συνολική άπωση δύο ηλεκτρονίων που το ένα κινείται στην επικάλυψη των τροχιακών φμ και φν και το άλλο στην επικάλυψη των φλ και φσ.

(μ,ν λ,σ) = φμ(r1) φν(r1)

r

1,2

1

φλ(r2) φσ(r2) dr1 dr2

2

r11

φμ φν φλ φσ

(27)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Εξισώσεις Roothaan-Hartree-Fock – Αυτοσυνεπές πεδίο (5/9)

27

 ΟΙ ΕΞΙΣΩΣΕΙΣ ROOTHAAN-HARTREE-FOCK.

(μ,ν λ,λ) = φμ(r1) φν(r1)

r1,2

1 φλ(r2) φλ(r2) dr1 dr2

2

r11

φμ φν φλ

(μ,μ λ,λ) = φμ(r1) φμ(r1)

r1,2

1 φλ(r2) φλ(r2) dr1 dr2

2

r11

φμ φλ

(28)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Τμήμα Χημείας

Εξισώσεις Roothaan-Hartree-Fock – Αυτοσυνεπές πεδίο (6/9)

28

 ΟΙ ΕΞΙΣΩΣΕΙΣ ROOTHAAN-HARTREE-FOCK.

(μ,μ μ,μ) = φμ(r1) φμ(r1)

r1,2

1 φμ(r2) φμ(r2) dr1 dr2

φμ

Σύμφωνα με τα παραπάνω, στο πίνακα του Fock (5) μπορούμε να διακρίνουμε δύο μέρη. Το μονο-ηλεκτρονιακό, hμ,v , και το δι-ηλεκτρονιακό, Gμ,v :

Fμ,v = hμ,v + Gμ,v (7) όπου Gμ,v =

M λ

M σ

Pλ,σ[ (μ,ν λ,σ) − 1/2(μ,λ ν,σ) ] (8)

(29)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Εξισώσεις Roothaan-Hartree-Fock – Αυτοσυνεπές πεδίο (7/9)

29

Επίλυση των εξισώσεων Roothaan-Hartree-Fock.

Tα ζητούμενα στις εξισώσεις Roothaan-Hartree-Fock (ή απλά Hartree-Fock) είναι ο πίνακας των ιδιοδιανυσμάτων C, και ο πίνακας των ιδιοτιμών E.

Ο πίνακας C περιέχει τους συντελεστές LCAO, cλ,i , δηλαδή τις συμμετοχές των ατομικών τροχιακών φμ σε κάθε μοριακό τροχιακό ψi :

ψi =

M λ

cλ,i φλ (9)

Κάθε στήλη του C αντιστοιχεί σ’ ένα μοριακό τροχιακό ψi:

ή

M M, M,

M,2 M,1

M 2, 2,

2,2 2,1

M 1, 1,

1,2 1,1

c c c

c

c c c c

c c c c

i i i

C C c(1) c(2) c(i) c(M)

Ο πίνακας Ε , που είναι διαγώνιος, περιέχει στα διαγώνια στοιχεία του τις ενέργειες των μοριακών τροχιακών ψi: (E)i,i ≡ εi,i και (E)i,j = 0 (11)

(30)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Τμήμα Χημείας

Εξισώσεις Roothaan-Hartree-Fock – Αυτοσυνεπές πεδίο (8/9)

30

Επίλυση των εξισώσεων Roothaan-Hartree-Fock.

Για να επιλυθεί το ‘πρόβλημα των ιδιοτιμών’ (βλ. μέθοδο μεταβολών) που παρουσιάζεται στις σχέσεις (1) και (2), δηλαδή για να προσδιοριστούν οι πίνακες C και E, θα πρέπει να γνωρίζουμε τον πίνακα F τον οποίον θα πρέπει να διαγωνοποιήσουμε.

Αλλά όμως, τα στοιχεία (Fμ,v) του πίνακα τούτου περιέχουν τους δι-ηλεκτρονιακούς όρους, Gμ,v (βλ. σχέσεις (7) και (8)), οι οποίοι εξαρτώνται από τους αγνώστους cλ,i (επειδή τα Gμ,v εξαρτώνται από τη τάξη δεσμού Pλ,σ που περιέχουν τους αγνώστους cλ,i , όπως φαίνεται στη σχέση (4) ).

Κατά συνέπεια έχουμε ένα ιδιόρρυθμο ‘πρόβλημα των ιδιοτιμών’, στο οποίο ο πίνακας F που πρέπει να διαγωνοποιηθεί περιέχει τους αγνώστους. Αυτό το

‘πρόβλημα των ιδιοτιμών’ επιλύεται με τη τεχνική που ονομάζεται:

<<Αυτο-συνεχές ή Αυτο-συνεπές πεδίο (Self-Consistent Field – SCF)>>.

(31)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Εξισώσεις Roothaan-Hartree-Fock – Αυτοσυνεπές πεδίο (9/9)

31

Αυτο-συνεχές η αυτο-συνεπές πεδίο (Self-Consistent Field – SCF).

Με τη τεχνική αυτή, που παρουσιάζεται σχηματικά στο διάγραμμα της επόμενης διαφάνειας, πρώτα προσδιορίζεται κατά τρόπο προσεγγιστικό, ή γενικότερα εμπειρικό, ο πίνακας της τάξεως δεσμού, P. Αυτός ο προσδιορισμός μπορεί να γίνει είτε χρησιμοποιώντας τα αποτελέσματα προηγουμένων υπολογισμών και την εμπειρία μας που βασίζεται στη χημική διαίσθηση, είτε από τη διαγωνοποίηση του μονο-ηλεκτρονιακού h (δηλ. του πίνακα που περιέχει τα μονο- ηλεκτρονιακά ολοκληρώματα), η οποία θα δώσει το πίνακα C (που περιέχει τους συντελεστές LCAO, cλ,i) και κατά συνέπεια το πίνακα της τάξεως δεσμού P.

Γνωρίζοντας τα στοιχεία Pλ,σ του πίνακα της τάξεως δεσμού, μπορούμε να προσδιορίσουμε τα Gμ,v και κατόπιν τα Fμ,v. Η διαγωνοποίηση του F δίνει ένα νέο πίνακα C (δηλ. νέες τιμές για τους συντελεστές LCAO, cλ,i) και κατά συνέπεια ένα νέο πίνακα P. Αυτός θα χρησιμοποιηθεί για τον προσδιορισμό νέων τιμών για τα Gμ,v, που θα δώσουν νέες τιμές στα Fμ,v, ενώ μία νέα διαγωνοποίηση του F θα δώσει άλλο πίνακα C, κ.ο.κ..

Η παραπάνω κυκλική διαδικασία επαναλαμβάνεται έως ότου φθάσουμε σε αυτο-συνέπεια, δηλαδή έως ότου δύο διαδοχικοί κύκλοι υπολογισμών (που ονομάζονται κύκλοι SCF) να δώσουν τα ίδια αποτελέσματα. Στη περίπτωση αυτή, λέγομεν ότι το αυτό-συνεπές πεδίο έχει συγκλίνει, και έχει δώσει μια λύση για τη μοριακή κυματοσυνάρτηση, μέσα στα πλαίσια της θεωρίας των Μοριακών Τροχιακών.

(32)

32

(δι-ηλεκτρονικά) (μονο-ηλεκτρονικά) Yπολογισμός των ολοκληρωμάτων

Sμ,v hμ,v ,

(μ,ν λ,σ)

Διαγωνοποίηση του

h C = C E h C+ C = 1

μονο-ηλεκτρονικoύ

C = (c(1) c(2) ... c(i)... c(M) ) P

C+ C = 1

του Διαγωνοποίηση

C+S C = 1 F C= S C E

F F C = C E

είτε

ορθογώ-

νιες βάσεις μη- ορθογώ- νιες βάσεις

F G

Σ

κατειλ.

ΜΟ

(P)λ,σ = i 2 cλ,i cσ,i

?

ΣΥΓΚΛΗΣΗ

STOP ΝΑΙ

ΟΧΙ

(F)μ,v = (h)μ,v + (G)μ,v

Εμπειρικός ΥπολογισμόςΧημική διαίσθησηή

2

(G)μ,v = PΣΜ ΜΣ λ,σ[(μ,ν λ,σ) (μ,λ 1 ν,σ) ]

λ σ

(33)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Σημείωμα Χρήσης Έργων Τρίτων (1/1)

Το Έργο αυτό κάνει χρήση των ακόλουθων έργων:

1. Attila Szabo, Neil S.Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications, 1996.

2. Frank Weinhold, Clark Landis, Valency and Bonding: A Natural Bond Orbital Donor - Acceptor Perspective, Cambridge Univeristy Press, 2005.

3. Peter Atkins - Julio De Paula, Φυσικοχημεία, Ίδρυμα Τεχνολογίας &

Έρευνας-Πανεπιστημιακές Εκδόσεις Κρήτης (2014).

4. Π. Καραφίλογλου, Παραδόσεις και ασκήσεις του μαθήματος

«Κβαντοχημικοί Υπολογισμοί», Εκδόσεις Αριστοτελείου Πανεπιστημίου

Θεσσαλονίκης, Θεσσαλονίκη 2010.

(34)

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Τμήμα Χημείας

Σημείωμα Αναφοράς

Copyright Αριστοτέλειο Πανεπιστήμιο Θεσσαλονικης. Καραφίλογλου Παντελεήμων. «Αρχές Κβαντικής Χημείας και Φασματοσκοπίας. LCAO - Εξισώσεις Roothaan-Hartree-Fock-Αυτοσυνεπές πεδίο». Έκδοση: 1.0.

Θεσσαλονίκη 2015. Διαθέσιμο από τη δικτυακή διεύθυνση:

http://eclass.auth.gr/courses/OCRS424/

(35)

Αριστοτέλειο Πανεπιστήμιο

Αρχές Κβαντικής Χημείας και Φασματοσκοπίας.

Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Μη Εμπορική Χρήση - Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση.

Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο

«Σημείωμα Χρήσης Έργων Τρίτων».

Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.

Ως Μη Εμπορική ορίζεται η χρήση:

που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο

που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο

που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο

[1] http://creativecommons.org/licenses/by-nc-sa/4.0/

Σημείωμα Αδειοδότησης

(36)

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Τέλος ενότητας

Επεξεργασία: Ιππολύτη Γκουντενούδη - Εσκιτζή

Θεσσαλονίκη, Ιούλιος 2015

Referências

Documentos relacionados