• Nenhum resultado encontrado

font-family:Times;color:#231f20"> <div style="position:absolute

N/A
N/A
Protected

Academic year: 2024

Share "font-family:Times;color:#231f20"> <div style="position:absolute"

Copied!
16
0
0

Texto

(1)

SCANNING OF THE e +

e !

+

CROSS-SECTION BELOW 1 GeV

AT DANE BY RADIATIVE EVENTS

M. I. Konhatnij, N. P. Merenkov

*

NationalSieneCentreKharkovInstituteofPhysisandTehnology

61108,Kharkov,Ukraine

Submitted21February2002

Thetaggedphotoneventsforthemeasurementofthee +

e ! +

totalross-setionbytheradiativereturn

methodatDANEis disussed. Theeetsausedbythenotexatlyhead-onollisionofbeamsandbythe

QEDradiative orretions are investigated. Theessential partonsists ofthe analysis ofthe event seletion

rulesthatensuretherejetionofthe3-pionhadronistateandtakethemainpropertiesofthemultiplepurpose

KLOEdetetorinto aount. Thestudyofthenon-head-oneetis performedintheBornapproximationby

integratingoverthetaggedphotonangles,whereastheradiativeorretionsarealulatednegletingthiseet.

Togetherwith the quasireal eletronapproah, this allows us toderive analytial formulasforthe orretion

tothe ross-setionoftheinitial-stateradiativeproess. Somenumerialalulationsillustrateouranalytial

results.

PACS:12.20.-m,13.40.-f,13.60.-Hb,13.88.+e

1. INTRODUCTION

The reent measurement of the muon anomalous

magneti moment a

= (g 2)

=2 performed in the

BrookhavenE861experimentwiththeeletroweakpre-

ision[1℄hasboostedtheinterestinarenewedtheoret-

ialalulationofthis quantity[2℄. Thereportednew

worldaverage has shown the disrepany of 2.6 stan-

dard deviations with respet to the theoretial value

basedonthe StandardModel alulation[3℄, and this

mayopen awindowinto possiblenew physisbeyond

the Standard Model. On the other hand, theonlu-

sion about a signiant disrepany between the re-

ported data and the Standard Model predition may

besomewhatpremature.

Theoretial estimations of a

inlude several on-

tributions involvingthenonperturbativehadronise-

toroftheStandardModel: vauumpolarization,light-

by-light sattering, and higher-order eletroweak or-

retions. Hadronieets in thetwo-loop eletroweak

ontributionaresmall,oftheorderoftheexperimental

error,andtheassoiatedtheoretialunertaintyanbe

broughtunder safeontrol[4℄.

Thesituationwithhadronieetsin thelight-by-

*

E-mail:merenkovkipt.kharkov.ua

lightsatteringradiallyhangedinreentmonths(af-

ter the E861 data were reported) due to works ited

in Ref. [5℄. In these works, the authors used the de-

sriptionofthe 0

transitionformfator basedon

alarge-N

C

expansionandshort-distanepropertiesof

QCD to alulate the pseudosalar hannel ontribu-

tion (in the

system). The orresponding result

disagreesby only its overall sign with the latest pre-

vious alulationsof two dierent groups[6, 7℄. It is

interesting to note that the result in Ref. [5℄ fored

both these groups to arefully hek their programs,

and they reently found their own (dierent) soures

ofthewrongsignforthepseudosalarhannel[8,9℄.

Themainingredientofthetheoretialpreditionof

a

,whihisresponsibleforthebulkofthetheoretial

error,istheontributionofthehadronvauumpolar-

ization. The problem is that it annot be omputed

analytially beause perturbative QCD loses its pre-

ditionpoweratlowand intermediateenergies,where

on the other hand, the orresponding eet is maxi-

mum. But this ontribution an be alulated from

thedata onthetotalhadroniross-setion

h forthe

proess e +

e ! hadrons using a dispersion relation

[10℄. Beause the existing data about

h

ome from

dierentsouresand donot alwaysmeettherequired

auray,theyaresupplementedwithatheoretialin-

(2)

put. Therefore, dierent estimationsgive dierentre-

sults, whih either strengthen the dierene between

theoretial and experimental values of a

or make it

onlymarginal[1114℄.

The ross-setion

h

also plays an important role

in the evolution of the running eletromagneti ou-

pling

QED

from low to high energies. This means

thattheinterpretationofmeasurementsathigh-energy

eletronpositron and eletronproton olliders de-

pendsonthepreiseknowledgeof

h

,withoneperent

aurayorevenbetter.

The updated hadroni light-by-light ontribution

[5, 8,9℄ dereasesthe disrepanybetween thetheory

and theexperimentfor a

to 1.5 standarddeviations,

andthedisagreementbetweentheStandardModeland

thereportedexperimentalvaluebeomesnotsosharp.

Nevertheless,whenthefullsetofdataattheBNLol-

laborationisanalyzed,theexperimentalerrorbarsare

expetedto derease bytheadditionalfator threeat

least, and this hallenges a new test of the Standard

Model. Thehigh-preisiondataabout

h

willplaythe

keyrolein thistest.

Wenotethatthedatareentlyderivedinthediret

sanning of

h

by CMD-2 [15℄ and BES II [16℄ ol-

laborationswereinludedin anewanalysis [17℄. This

signiantly redues the error in the hadroni ontri-

bution to the shiftof

QED

but doesnot removethe

disrepany in a

. Therefore, there existsan eminent

physial reason for new measurements to aumulate

high-preisiondataabout

h

atthetotalenter-of-mass

frameenergiesbelow1GeV.

Theoldideatousetheinitial-stateradiativeevents

in theeletronpositronannihilationproess

e (p

1 )+e

+

(p

2

)!(k)+hadrons(q) (1)

for thesanningof thetotalhadroniross-setion

h

hasbeomequite attrativereently[1822℄. Thisra-

diativereturnapproahallowsperformingthesanning

measurements at the aelerators running at a xed

energy, and this irumstane is the main advantage

ompared to thetraditionaldiret sanning. Therea-

sonisthatthemostimportantphysialparameters,the

luminosityandthebeamenergy,remainthesamedur-

ingtheentiresanningatxed-energy olliders. They

mustthereforebedeterminedonlyone,whihanbe

done with a very high auray. The drawbak is of

ourse a loss in the event number, and it is obvious

thatonlyhigh-luminosityaeleratorsanbeompeti-

tivewhentheradiativereturnmethodis used.

It is a general opinion that the high-luminosity

DANE mahineoperating in theresonaneregion

withmultiple-purpose detetorKLOEistheidealol-

lidertosan

h (q

2

)withtheenter-of-massenergy p

q 2

varyingfrom thethresholdto 1GeV just byradiative

events. Itisnowwellunderstoodthatinthisenergyre-

gion,thetotalhadroniross-setionismainlyfullled

by the ontribution of the resonane. This in turn

impliesthat the dominanthadroni nalstate is that

ofthehargedpion pair +

, and theKLOEdete-

torallowsmeasuringboththephotonenergydeposited

in alorimeters and the 3-momenta of pions running

throughthedrifthamber[20;23℄.

Suh a wide range of experimental possibilities of

the KLOE detetor an provide a realization of two

approahestosanningthe +

hannelontribution

to

h (q

2

): with tagged photonevents [19;20;22℄ and

withoutphoton tagging [22;24;25℄. The last method

has some advantages beause it allows inluding the

events with ollinear initial-state radiative photons,

whih leadstotheinreaseof theross-setionbythe

energylogarithm enhanementfator[26℄.

On theother hand,therst data aboutthe tradi-

tionaltaggedphotonsanningof

h (q

2

)atDANEare

reported [26℄ (we also note that large radiative event

rateswereobservedbytheBaBarCollaboration[27℄).

To extrat

h (q

2

) at dierent squared di-pion invari-

natmasseswith one perentauray, onemustpre-

iselyanalyzetheinitial-stateradiativeeventsandtake

thenal-stateradiativeeventsandtheinitial-statera-

diative interferene as a bakground. Moreover, the

radiative orretions must be alulated for all these

ontributions [21℄. For a realisti experimental event

seletion,this task anusually besolved by meansof

MonteCarloeventgenerators. Butforsomeidealon-

ditions,analytialalulationsmaybeperformedwith

highauray,andthisis averyimportanttestofthe

requiredoneperentaurayproduedbytheMonte

Carlogenerators.

The high-preision analysis of the initial-state ra-

diativeeventsisthemainattributeoftheradiativere-

turnmethod. Theorrespondingradiationorretions

were onsidered in a number of papers by both the

MonteCarlogenerators[19;22℄andanalytialalula-

tions[18;22;24℄. Inpresentpaper,wederiveanalytial

formulasfordierent ontributionsto theinitial-state

radiative ross-setion inluding the rst-order radia-

tive orretions. We use the samerules for the event

seletionasgivenin[24℄.Theseseletionrulesaremax-

imumdrawneartheexperimental ones [20;23℄exept

thedi-pionangular phasespae, forwhihweusethe

entire 4 openingangle. Thisisnottheasewiththe

realisti measurements at DANE beause there ex-

istsaso-alledblind zone in theKLOEdetetor with

(3)

the opening angle about 15 Æ

along the eletron and

positronbeamdiretions.Anypartileinsidethisblind

zoneannotbedetetedeitherbytheKLOEalorime-

tersorbytheKLOEdrifthamber.

InSe. 2,webriey reall the seletionrules used

hereandanalyzetheBornross-setionbynumerially

integrating the suiently ompliatedanalytial for-

mulasgivenin[24℄,whihtakethenon-head-onbeam

ollision into aount. In Se. 3, theontributions to

radiative orretions due to the virtualand soft pho-

ton emission are obtained by analytially integrating

over the angular phase spae of the photon that de-

posits its energy in alorimeters. InSe. 4, theeet

ofanadditionalhardphotonemissioninside theblind

zone is investigated and the orresponding ontribu-

tion to radiative orretions is derived. To perform

the analytial alulation, we use the quasireal ele-

tronapproximation[28℄forboththedierentialross-

setionandunderlyingkinematis. InSe.5,thetotal

radiativeorretionis derivedandsomenumeriales-

timates aregiven. Theeliminationoftheauxiliaryin-

fraredparameterisdemonstratedand thedependene

oftheradiativeorretionstotheinitial-stateradiative

ross-setiononthe squareddi-pioninvariantmassq 2

and physial parametersdening theseletion rulesis

investigated. WebrieysummarizeourresultsinCon-

lusion. IntheAppendies,wegivesomeformulasthat

areusefulinourintermediatealulations.

2. SELECTION RULESANDTHE

INITIAL-STATE BORNRADIATIVE

CROSS-SECTION

As mentioned above, the multiple purpose KLOE

detetor allows independently measuring the photon

energywithtwoalorimeters QCALand EMCALand

the 3-momenta of the harged pions with the drift

hamber. The seletion rules that we onsider here

an be formulated as follows: any event is inluded

if only one hard photon with the energy ! > !

m ,

!

m

= 50 MeV, hits the alorimeters and if the dif-

ferene between the lost energy and the lost 3-

momentummodulusjKjdoesnotexeedasmallvalue

E; 1;whereE is thebeamenergy. Thelost en-

ergyisdenedasthedierenebetweenthetotalinitial

energy andthe sumofthe hargedpion energies, and

thelost3-momentumisdened similarly.

Therst ruleimplies that in addition to onehard

photon, onlysoftphotonsthat annot bereordedby

the KLOE detetor anhit thealorimeters. Thera-

diationoftheadditionalhardphotonisallowedinside

the blind zone. The seond rule ensures the removal

of the 3-pion hadroni state arising due to possible

!

+

0

and ! ! +

0

deays. Theneutral

pionquiklydeaysintotwoquanta;oneofthesehas

timetolightinthealorimeters,whereastheotheran

yawayintotheblindzone. Itiseasytosee thatthis

ruledoesnotallowthelostinvariantmasstobegreater

than2E 2

,andthe3-pionstateisthereforeforbidden

if < 0:035:Thus, the following event seletionuts

areimposed[20℄:

jKjE; !>!

m

;

=0:02; !

m

=50MeV:

(2)

Therstinequalityin(2) isimportantinalulat-

ingtheontributionausedbytheemissionoftwohard

photons(one inside the alorimeters and the other in

theblind zone)beauseitonlyaetsthephasespae

oftwohardphotons. AttheBornlevel(withonlyone

photoninsidethealorimeters),wemustthereforetake

theseondrestritionin (2)into aountbyintrodu-

tionthetrivialfuntion. Thedierentialdistribution

overthedi-pioninvariantmassanbewrittenas[24℄

d B

dq 2

=

2 2

(q 2

)

(S q 2

)dosd'

4S(2E jP

jsinos') 2

(S+T

1 )

2

+(S+T

2 )

2

T

1 T

2

(! !

m ); (3)

!=

S q 2

2(2E jP

jsinos')

;

where and '(!) are the polar and azimuthal an-

gles (energy) of the photon deteted by the KLOE

alorimeters. The approximation used hereis valid if

E 2

2

0

m

2

; where 2

0

is the opening angle of the

blind zone and m is the eletron mass. The ross-

setion(q 2

)oftheproesse +

e ! +

isexpressed

throughthepioneletromagnetiformfatorF

(q

2

)as

(q 2

)=

2

jF

(q

2

)j 2

3q 2

1 4m

2

q 2

3=2

;

where m

is the pion mass. The invariants entering

Eq.(3)aregivenby

T

1

= 2p

1

k= !(2E 2P

z

os jP

jsinos');

P

z

=E

1 jP

j

2

8E 2

;

T

2

= 2p

2

k= !(2E+2P

z

os jP

jsinos');

S=2p

1 p

2

=4E 2

jP

j

2

; q 2

=S+T

1 +T

2 :

In writingthese expressions, wetook into aount

that at DANE, theeletron andpositron beamsex-

erisenotexatlyahead-onollisionattheinteration

(4)

1 2

3

50 100 200 250

z

0:2 0:4 0:6 0:8 1:0

0 150

2

3 1

a b

50 100 200 250

z 150

0

0:901 0:902 0:903

Fig.1. TheBornross-setion d

dz

=

2 (q

2

)

oftheinitial-stateradiativeproesse +

e !+ +

atdierentlimiting

anglesoftheblindzoneversusvariablez:Figure1aorrespondstotheontributionoftheregionD>1denedbyEq.(4).

Thesumofontributionsoftheregions1>D>s

0 ands

0

>D> 1isshownin Fig.1b(seeRef.[24℄, Eqs.(19)(21),

fortheorrespondinganalytialformulas). Itdependsontheminimumenergyofthetaggedphoton!

m

,whihwehoose

as50MeV.0=5 Æ

(1),10 Æ

(2),15 Æ

(3)

point,but there exists asmall rossingangle between

themthatisequaltojP

j=E,wherejP

j=12:5MeV.

Beause ofanonzerorossingangle, theenergyofthe

tagged photonbeomes dependent on its angular po-

sition, whihompliates theexatanalytialalula-

tions. Thus,thequestionarisesastothemagnitudeof

theorrespondingeet. Asshownin [24℄,thereexist

threeregions,

D>1; 1>D>sin

0

; sin

0

>D> 1;

where

D=

4E(E !

m ) q

2

jP

j

2

2!

m jP

j

;

andtheformoftheinitial-stateradiativeross-setion

is dierent in eah region. The analytialexpressions

for the distribution overthe di-pioninvariantmass is

simpleinthersttworegions,butitseemsthatonlya

numerialintegrationwithrespettothephotonpolar

angleispossibleinthethird region. Wealsonotethat

in the limitingaseasjP

j!0, onlytherst region

anourwiththeobviousrestrition

4E(E !

m )>q

2

:

The results of our alulations of the Born ross-

setion are shown in Figs. 1 and 2. It follows from

Fig.1thattheontributionoftherstregion(D>1)

dominates in a wide interval of the di-pion invariant

masses. Withintheapproximation

4E 2

(1

0 )P

2

;

R Φ

1

3 2

0.2 0.4 0.6 0.8 1.0

0

z 0.50

0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

Fig.2. Theeetofanon-head-onollisionoftheele-

tronandpositron beams atDANEis shownforthe

ontributionoftheregionD>1intermsoftheratio

denedby Eq.(6)atdierent

0

=5 Æ

(1), 10 Æ

(2),

15 Æ

(3). Theapproximation4E 2

(1

0 )jP

j

2

is

usedinalulatingthisratio. ThequantityRisgiven

perent

theorrespondingross-setionanbewrittenas[24℄

d B

0

dq 2

=

2 (q

2

)

2E 2

F

0

(D 1);

F

0

=

S

S q 2

1+ S q

2

2S

2ln 1+

0

1

0 +

jP

j

2

2E 2

ln 1+

0

1

0 +

0

s 2

0

S q 2

S

0

1+ jP

j

2

2E 2

(3

2

0 )

; (4)

(5)

where

0

=os

0 , s

0

=sin

0

; and thefuntion de-

nesthemaximumpossiblevalueofq 2

:

Theform ofF

0

andD in Eq.(4) is validifall po-

laranglesbetween

0

and

0

arepermittedforthe

taggedphoton. Iflarge-anglephotonsradiatedbetween

l

and

l

arenotreorded,wemustwrite

d B

l

dq 2

=

2 (q

2

)

2E 2

(F

0 F

l )(D

l

1); (5)

where F

l

anbederived from F

0

by simply replaing

0 with

l and

D

l

=

4E(E !

m ) q

2

jP

j

2

2!

m jP

js

l

; s

l

=sin

l :

InSe.3,weonsiderthis asewith

l

=40 Æ

andall

itthemodiedEMCALsetup.

ToindiatetheeetofnonzeroP

intherstre-

gion,weshowinFig.2theratio

R

= F

0

F(z;

0 )

F(z;

0 )

; F(z;

0 )=F

0 (P

=0)=

=

1+z 2

1 z ln

1+

0

1

0

(1 z)

0

; z= q

2

4E 2

: (6)

ForthemodiedEMCALsetup,theorrespondingra-

tio isgivenby

R l

= F

0 F

l

[F(z;

0

) F(z;

l )℄

F(z;

0

) F(z;

l )

: (7)

AsanbeseenfromFig.2,this eetdoesnotexeed

vepermilleat

0

=5 Æ

anddereasesastheangle

0

grows.

The ontribution of the third region (sin

0

>

> D > 1) is negligible everywhere, and the seond

region (1>D >sin

0

) ontributesonlyinside avery

narrowintervaloftheorder210 3

nearthemaximum

possible di-pion invariant mass squared(see Fig.1b).

Wetherefore onludethat for restritions(2)onsid-

ered here, the eet of non-head-on ollisions on the

event seletion at DANE is about several per mille

in themostimportantresonaneregionandisunder

ontrol where it annot be negleted. In this region,

theorrespondingross-setionanthereforebegiven

byEq.(4)with theF(z;

0

)insteadofF

0

withthere-

quiredauray.

3. VIRTUALANDSOFTCORRECTIONS

High-preisiontheoretialpreditionsareneessary

in order to reah the auray of one perent in the

measurementofthepion ontributionto thehadroni

ross-setion at DANE by radiative events. These

preditionsmustat leastinlude therst-order radia-

tive orretions that aount for the virtual and real

softphotonontributionintheoverallphasespaeand

anadditionalontributiondueto ahardphotonemis-

sioninsidetheblindzone. Inalulatingradiativeor-

retions,wenegletP

at theverybeginningand set

s;t

1 , andt

2

equalto S;T

1 ,and T

2 atP

=0;respe-

tively.

To alulate the virtual and soft orretions, we

start from the orresponding expression derived in

Ref.[24℄(Eq.(30)),performthetrivialazimuthalangle

integration,andwritetheresultintheonvenientform

d V+S

dq 2

=

2

2

(q 2

)

(1 z)dos

2s

(q

2

t

1 )

2

+(q 2

t

2 )

2

t

1 t

2

+T

(1 x

m

z); (8)

where

T= 3

2 T

g 1

8q 2

T

11 (q

2

t

1 )

2

+T

22 (q

2

t

2 )

2

+

+(T

12 +T

21 )(sq

2

t

1 t

2 )

; s=4E 2

;

=4(L

s

1)ln+3L

q +

2 2

3 9

2 +

+4

ln

1

ln

1+

0

1

0 +ln

2

1 ln

1+

1

1

1

;

L

s

=ln s

m 2

; L

q

=ln q

2

m 2

; x

m

=

!

m

E :

The aboveexpressionfor ontainsthree softpa-

rameters ,

1

, and

2

: The rst restrits the soft

photonenergyinsidetheblindzonewiththevalueE:

Itisauxiliaryandanelswhentheontributionaused

bythehardphotonemissionisadded(seeSe.5). The

parameters

1 and

2

are physial. Theyare dened

bythesensitivity

1

E of theQCAL alorimeter that

surrounds the blind zone and overs polar angles of

thedetetedphotonfrom

0 to

1

=20 Æ

with respet

toboththeeletronandthepositronbeamdiretions

(

1

=os

1

)andbythesensitivity

2

EoftheEMCAL

alorimeter that oversthe photonangles between

1

and

1

. Theaseofaslightlymodiedgeometryof

EMCAL(withthepolaranglesfrom

l

=40 Æ

to

l

notovered[20℄)isonsideredinAppendix A.Theo-

eients T

g and T

ik

in theright-hand side of Eq. (5)

arealulatedasfuntions oftheinvariantss, t

1 , and

t

2

inRef.[24℄ (seealso[29;22℄).

Ouraimistoanalytiallyintegratedierentialdis-

tribution (8) withrespet to the tagged photonpolar

(6)

angle. Theintegrationofthetermontainingistriv-

ialandyields

d S+V

dq 2

=

2

2

(q 2

)

2E 2

F(z;

0

)(1 x

m

z): (9)

Toperformtheremainingintegrations,itis onve-

nienttorepresentthequantityT as

T =L 2

q L

2

s +

2s

q 2

s 2L

qs +

2s(s 2q 2

)

(q 2

s) 2

+1

L

q +

+ 2(2q

2

s)s

(q 2

s) 2

L

s +L

1q

4s 2

(q 2

s)t

2 2(q

4

+s 2

)

(q 2

s)t

1 +2

+

+ln t

1

m 2

sq 2

(s+t

2 )

2 +

q 2

+3s

s+t

2

1 2(L

q L

s )

1

2s 2

t

2 +

q 4

+s 2

t

1

1

q 2

s

+

+ 2(q

4

+3s 2

)

6L

qs +3(L

2

s L

2

q )+

2

3(q 4

2sq 2

s 2

)

6(q 2

s)t

1

sq 2

(s+t

1 )

2 (q

2

+3s)

s+t

1

L

q

2

3 +

+ s

s+t

1 +

1

2 +(t

1

$t

2

); (10)

where

L

qs

=Li

2

1 q

2

s

; L

1q

=Li

2

1 t

1

q 2

:

TheSpenefuntionL

1q

hasanonzeroimaginarypart,

butwemusttakeintoaountonlyitsrealpartinour

alulations,

ReL

1q

=

2

6 ln

t

1

q 2

ln

1 t

1

q 2

Li

2

t

1

q 2

:

We also notethat the oeientsT

g andT

i;k

ontain

the termsinvolvingt 2

1;2 and t

3

1;2

[22;24;29℄,but these

vanishin thequantityT.

Integrating thepiee of ross-setion(5) that on-

tainsthequantityT withrespettothetaggedphoton

polarangles,weobtain

d S+V

T

dq 2

=

2

2

(q 2

)

4E 2

(1 z)F

T (z;

0

)(1 x

m

z); (11)

where the funtion F

T (z;

m

) is given in Appendix A

for arbitrary values of the limiting angle

m

. Here,

we onsider the ase where

m

=

0

and use the ap-

proximation1

0

1, whih issuiently good for

0 10

Æ

(preisely this ase is suitable for the blind

zoneoftheKLOEdetetor),

(1 z)F

T (z;

0

!1)= 4ln

3

z

3(1 z) +

+ 2(1+z

2

)

1 z ln

1 z

z ln

2

z (3 z)ln (1 z)

2

z

lnz+

+

4(1 2z)

1 z

lnz+4(1 z)ln(1 z)

2

3 z 2(1+z)ln 1 z

z

Li

2

(1 z)+

+ 8

1 z

Li

3

(1 z)+z 2

Li

3

z 1

z

5+z

2(1+z 2

)

1 z

lnzln 2

1

0

2 +

+

1 z 2

1 z

2(1+z 2

)

1 z

ln (1 z)

2

z

lnz+2Li

2 (1 z)

ln

1

0

2

: (12)

Thetotalvirtualandsoft orretionisthe sumof(9)

and(11).

For the modied form of the EMCAL alorime-

ter, the expressions for and F(z;

0

) in Eq. (9) and

F

T (z;

0

)inEq.(11)mustbehangedas

!+4ln

2 ln

1+

l

1

l

;

F(z;

0

)!F(z;

0

) F(z;

l );

F

T (z;

0 )!F

T (z;

0 ) F

T (z;

l );

(13)

wheretheexpressiongiveninAppendixAmustbeused

forthefuntion F

T (z;

l )at

m

=

l :

In alulating the virtual and soft orretions, we

negletedtermsoftheorder

i

; i=1;2ompared to

unity. Thisaurayimpliesthesamerelationbetween

thetaggedphotonenergy!andthesquareddi-pionin-

variantmassq 2

asin theBorn approximation,

!=E(1 z) (14)

(provided that P

= 0); and it sues to guarantee

theone perentpreision.

4. HARDPHOTON EMISSION INSIDETHE

BLIND ZONE

Seletion rules (2) used here permit the radiation

ofanadditionalinvisible photoninsidetheblindzone.

Fortheevents

e (p

1 )+e

+

(p

2

)!(k

1 )+(k

2 )+

+

(q); (15)

(7)

one photonwith the4-momentum k

2

hitsthe photon

detetor andtheotherphoton(withthe4-momentum

k

1

) is ollinear and esapes it. It is obvious that re-

lation (14)betweenthetagged photonenergyandthe

squareddi-pioninvariantmassisviolatedin thisase.

Toalulatetheorrespondingontributionintora-

diativeorretionsanalytially,westartwithusingthe

quasireal eletronapproximationfor boththe form of

theross-setionandtheunderlyingkinematis. Phys-

ially, this implies that weneglet terms of the order

1

0

2

0

=2andm 2

=E 2

2

0

omparedtounity. Were-

allthat 2

0

=20:02fortheKLOEdetetor. Inaor-

dane with the quasireal eletron approximation, the

dierentialross-setionofproess(15)anbewritten

inthesameformasfortheinlusive(untaggedphoton)

eventseletion[25℄,

d H

=2

2

2

(q 2

)

4E 2

x P(x;L

0 )dx

(q 2

xu

1 )

2

+(q 2

u

2 )

2

xu

1 u

2

!

2 d!

2 d

2 (!

2

!

m

); (16)

P(x;L

0 )=

1+x 2

1 x L

0 2x

1 x

;

L

0

=ln E

2

2

0

m 2

;

2

=os

2

;

x=1

!

1

E

; u

1

= 2k

2 p

1

; u

2

= 2k

2 p

2

;

where !

2 (

2

) is the energy (the polar angle) of the

tagged photon and !

1

is the energy of the invisible

ollinearphoton.

The fator (=2)P(x;L

0

)dx desribes the radia-

tion probability of the ollinear photon by the initial

eletron, the fator2 aounts forthe sameontribu-

tion aused bythe initial positron ollinear radiation,

and the rest is in fat theross-setion of proess (1)

with thereduedeletron4-momentum (p

1

!xp

1 )at

P

=0:

Ouraim is now to derivethe dierential distribu-

tionoverthesquareddi-pioninvariantmassq 2

;andit

is onvenientto usethe relationbetweenq 2

and

2 in

ordertoavoidtheintegrationover

2

intheright-hand

sideofEq.(16). Todisentangletheseletionrulesand

obtain the integration region, it is also useful to in-

trodue thetotal photonenergy =!

1 +!

2

instead

of!

2 ,

q 2

=4E(E )+2!

1

!

2

(1

2 );

d

2

! dq

2

2!

1

!

2

; d!

2

!d

2 :

(17)

Takingintoaountthatin termsofnewvariables,

u

1

= 4E

2

z

!

1

; u

2

= 4E

!

1 [!

1 ( !

1

) E

z

℄;

z

= E(1 z);

(18)

weanrewriteEq.(16)as

d H

dq 2

=2

2

2

(q 2

)

4E 2

M(z;L

0

;!

1

;)

d!

1 d

E

z

( !

1

!

m

); (19)

where

M(z;L

0

;!

1

;)= L

0 4(L

0

1)E

z

! 2

1

zE 2

L

0

(E !

1 )

2 +

[2z (1+z)L

0

℄E

E !

1

+

+ [2(1+z

2

)L

0

4z (1 z) 2

℄E 2

(1 z)( 2!

1 )E

!

1

( !

1

) E

z

:

(20)

Wenote that although theterm ontaining ! 2

1 in the

denominatoranbenegletedin theaseoftheinlu-

siveeventseletion[25℄,it isnowimportant andeven

ontributestotheanellationoftheauxiliaryinfrared

parameter:

Wenowndtheintegrationregionforthevariables

!

1

and determined by restritions (2) and by the

inequalities

m

<

2

<

m

; E<!

1

< Ex

m

(21)

limitingthepossibleanglesforthetaggednonollinear

photonandtheenergiesof theinvisible ollinearpho-

ton. Here,wedonotrequire1

m

tobesmall,bearing

inmindafurtherappliationtothemodiedEMCAL

setup. Therstrestritionin(2)denesthemaximum

valueof ; the minimum value of anbe obtained

fromrelation(17)at !

1

=E and

2

=

m ,

max

=E(1 z)

1+

2

;

min

=E(1 z)

1+

(1

m )

2

:

(22)

Theondition

2

>

m

impliesthat

! <!

1

<! +

;

!

=

2

"

1 s

1

8E

z

2

(1+

m )

#

:

(23)

(8)

Finally, theinequality

2

<

m

an be formulated

asfollows: ifthevaluesofaresuhas

<

;

=E(1 z)

1+

(1

m

)(1 z)

8

;

then

!

1

>!

+

or !

1

<! ;

!

=

2

"

1 s

1

8E

z

2

(1

m )

#

:

(24)

Theonsistentombinationofthesetofinequalities

(21)(24) for!

1

and denes the integration region.

Ingeneral,thisregiondependsonthedi-pioninvariant

massthroughz;itisshowninFig.3,whereweusethe

notation

=E(1 z)(1+);

x

=E(1 z)

1+

(1

0 )x

m y)

2(1 z)

;

y=1 z x

m :

(25)

This region diers from the orresponding region for

theinlusiveeventseletion[25℄.

Wenote that in the alulation,weontrolled our

analytial integration bymeans of the numerialone.

Thisallowedustoonludethat intheasewhere

z<z

=1 4

1

m

;

the ontribution of the topregion in Fig. 3a issmall,

and weexluded it from onsideration. Although the

regions in Figs. 3b and are dierent, the respetive

ontributions toross-setion(19)havethesameana-

lytialform.

The list of the integrals that are reguired in both

ases,z<z

andz>z

,isgiveninAppendixB.Using

these integrals, wewrite the ontributionof theaddi-

tional hard photon emission inside blind zone to the

radiativeorretionsas

d H

dq 2

=

2

2

(q 2

)

2E 2

[G

ln+P(z;L

0 )G

p +L

0 G

1 +G

0

℄: (26)

If thetaggedphoton isdetetedin theangular region

0

> >

0

; the oeientsG

i

(i =;p;1;0) are

givenby

G

=4(L

0 1)

1 z+

1+z 2

1 z l

0

; l

0

=ln

2

0

4

; (27)

G

p

= ln 2

(1 z)

2(1 z x

m )x

m 2ln

1 z

x

m

ln

4(1 z)x

m

2

4Li

2

x

m

1 z

+ 2

2l

0 ln

(1 z)(1 z x

m )

2x

m

; (28)

G

1

=x

m

2+

1+ 1

z+x

m

ln 1 z

x

m

2(1 z)

2ln

2 +3

+

+(2z+x

m )

1

z+x

m 1

l

0 +ln

2(1 z x

m )

(1+z)

1

2 ln

2

z lnzln x

m

1 z

ln (z+x

m )

1 l

0 ln

2x

m

(1 z)

+Li

2

(1 z)+

+Li

2

x

m

z

Li

2 (z+x

m )+

2

6

; (29)

G

0

=

2

3

(2 3z)+4(1 z)

1+ln

2

+

+2z

1

2 ln

2

z lnzln x

m

1 z

+ln(z+x

m )

l

0 +ln

2x

m

(1 z)

+

+Li

2

(1 z)+Li

2

x

m

z

Li

2 (z+x

m )

i

+

+(1 z)

ln 2

2(1 z x

m )x

m

(1 z) +

+ln 1 z

x

m ln

4(1 z)x

m

2

+2l

0 ln

(1 z x

m )

2

+

+2Li

2

x

m

1 z

+Li

2

(1 z)

2(1 z x

m )x

m

; (30)

wherewepasstothelimit1

0

1andtakeintoa-

ountthatonlytheregionsinFigs.3bandontribute

inthislimitingase.

Todesribe theontributioninto radiativeorre-

tionsausedbythedoublehardphotonemissionwith

thetagged photonin therange

0

> >

l ,

l

> >

0

; whih orresponds to the modied

EMCALsetup,wemustevaluatethedierene

d H

dq 2

(

m

=

0 )

d H

dq 2

(

m

=

l

): (31)

Wehave

(9)

00 00 00 00 00 00 11 11 11 11 11 11

000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111 11111

x

Exm

!

l

max min

!

l=

!

+

! l

=

E x

m

! l

=

!l

=

!

!l

=

!

E a

Exm x

E

!

l

max min

! l

=

E x

m

! l

=

! l

=

!

!l

=

!

!

l

=

!

+ b

Exm x

E

!

l

max min

! l

=

E x

m

! l

=

! l

=

!

! l

=

!

Fig.3. Theintegrationregionfortheontributionofthehardphotonemissioninsidetheblindzoneintheregionsz<z(3a),

z<z<1 2xm (3b),and1 2xm<z<1 xm(3).WeneglettheontributionofthetoppieeinFig.3a,whihis

justiedbynumerialontrol

d H

M

dq 2

=

2

2

(q 2

)

2E 2

(G

G

l

)ln+

+P(z;L

0 )(G

p G

l

p )+L

0 (G

1 G

l

1 )+G

0 G

l

; (32)

wheretheexpressionsforthefuntionsG l

i

aregivenin

Appendix C.

Inthis ase, there also exists an additional region

wheretheradiationofthehardphotonatlargeangles

an ontribute. It overs polar angles from

l up to

l

: We take only one piee of the orresponding

ontributionintoaount(theonethatisproportional

to ln)andwriteitas[24℄

d L

M

dq 2

= d

B

l

dq 2

2 4ln

1

ln

1+

l

1

l

; (33)

where d B

l

=dq 2

is dened by Eq. (5). The remaining

ontribution issmallbeauseofrestrition(2)and we

expetthat itisparameteriallyequalto =2l

0 rel-

ativetotheBornross-setion.

5. THETOTALRADIATIVECORRECTION

The total radiative orretion to the ross-setion

oftheinitial-stateradiationproess(1)withthe +

hadroninalsateisdenedbythesumoftheontri-

butionsausedbythevirtualandrealsoftphotonemis-

sionand by theradiationofthehardollinearphoton

insidetheblindzoneoftheKLOEdetetor. Inalulat-

ing theradiativeorretion,wesupposethat P

=0,

beausetheorrespondingeet dueto thenon-head-

on ollision of beams annot be greaterthan 10 3

at

theradiativeorretionlevel. Itiseasytoseethatthe

auxiliaryinfraredut-oparametervanishesforboth

formsoftheEMCALalorimeter.If

0

>>

0 it

entersthissumintheombination

2

2

(q 2

)

2E 2

ln

4(L

s

1)+4ln 1

0

1+

0

F(z;

0 )+G

; (34)

wheretheexpressioninsidetheurlybraketsvanishes

inthelimitingasewhere1

0

1,whihwasusedin

alulatingG

: We anthereforewrite the analytial

expressionforthederivedradiativeorretionas

d RC

dq 2

= d

B

dq 2

Æ RC

; Æ RC

=

2 V

F(z;

0 )

; (35)

V =F~ (z;

0 )+

1

2

(1 z)F

T (z;

0 )+

+P(z;L

0 )G

p +L

0 G

1 +G

0

; (36)

where d B

=dq 2

is dened by Eq. (4) at P

= 0, ~

is without the terms ontainingln, and the limit

1

0

1mustbetakenforthefuntionsF(z;

0 )and

F

T (z;

0 ):

ForthemodiedEMCAL alorimeter,the expres-

sionin theurlybraketsin (34)isreplaedby

4

L

s

1+ln (1

0 )(1+

l )

(1+

0 )(1

l )

ln 1+

l

1

l L

0 +1

[F(z;

0

) F(z;

l

)℄; (37)

where theterms in thesquare brakets orrespond to

theontributionofthevirtualandsoftphotonemission

andtheremainingtermsareausedbythelarge-angle

(largerthan

l

)andsmall-angle(smallerthan

0 )hard

photonradiation.

Thetotalradiativeorretionanthenbewrittenas

(10)

1

2

a

0 0.2 0.4 0.6 0.8 1.0

z δ RC

− 0.28

− 0.26

− 0.24

− 0.22

− 0.18

− 0.16

− 0.20

1

2

b

0 0.2 0.4 0.6 0.8 1.0

z δ RC

− 0.16

− 0.18

− 0.20

− 0.22

− 0.24

− 0.26

− 0.14

Fig.4. Trendsinthez dependeneofthequantityÆ RC

denedbyEq.(35)underthevariationofthephysialparameters

0 andx

m : a

0

=10 Æ

,x

m

=0:098 (1);

0

=5 Æ

,x

m

=0:098 (2); b

0

=7:5 Æ

,x

m

=0:039 (1);

0

=7:5 Æ

,

xm=0:098 (2). Allurvesarealulatedat=0:02,1=0:002,and2=0:01

2

1

a

0 0:2 0:4 0:6 0:8 1:0

z Æ

RC

0:16

0:18

0:20

0:22

0:24

0:26 0:14

2

1

b

0 0:2 0:4 0:6 0:8 1:0

z Æ

RC

0:26 0:24 0:22 0:20 0:18 0:16 0:14 0:12

Fig.5. Inueneofthephysialparameters,1,and2onthezdependeneofÆ RC

:Theminimumenergyofthetagged

photonis50MeV(xm=0:098);a0=7:5 Æ

,=0:02,2=0:01,1=0:002(1)0.01(2);b0=7:5 Æ

,=0:03,

2=0:015,1=0:002(1) 0.015(2)

Æ RC

l

=

2

V

M

[F(z;

0

) F(z;

l )℄

; (38)

V

M

=~

M [F(z;

0

) F(z;

l )℄+

1 z

2

[F

T (z;

0 ) F

T (z;

l

)℄+P(z;L

0 ) G

p G

l

p

+

+L

0 G

1 G

l

1

+G

0 G

l

0

;

~

M

=+4~ ln

2 ln

1

l

1+

l : (39)

Toidentify trendsin thebehaviorof theradiative

orretion,westudyitsdependeneonthephysialpa-

rameters that dene event seletion rules(2), namely

andx

m

,andthedependeneontheopeningangleof

theblind zone

0

and the respetivesensitiveness

1

and

2

oftheQCALand EMCALalorimeters.

TheresultsforÆ RC

givenbyEq.(35)areshownin

Figs.4and5.Aswasexpeted,theradiativeorretion

islargeandnegativebeausethepositiveontribution

aused by the real photon radiation annot ompen-

sate the negativeone-loop orretion. This eet in-

tensies beause the rst inequality in (2) dereases

thephasespaeoftheadditionalinvisiblerealphoton.

Theabsolutevalueofradiativeorretiondependsonz

andhangesfrom14%nearthe +

pairprodution

thresholdto25%atthemaximumpossiblesquareddi-

pioninvariantmass. In themoreinterestingregionof

the resonane(0:5<z <0:7), it amountsto about

(11)

2 1

a

0 0:2 0:4 0:6 0:8 1:0

z 0:14

0:16

0:18

0:20

0:22

0:24

0:26

0:28 Æ

RC

l

2 1

b

0 0:2 0:4 0:6 0:8 1:0

z 0:12

0:14

0:16

0:18

0:20

0:22

0:24

0:26

0:28 Æ

RC

l

Fig.6. The z dependeneof Æ RC

l

dened by Eq. (38) at dierentvalues of

0 and x

m

: a

l

= 40 Æ

, x

m

= 0:098,

0

=10 Æ

(1),5 Æ

(2);b

0

=7:5 Æ

,

l

=40 Æ

,x

m

=0:039,(1),0.098(2)

1420%.

Themain peuliarities in thebehaviour of thera-

diativeorretionarerelatedtothehangeofthepos-

itiveontribution aused bythe radiation of anaddi-

tional invisible hard photon. If the limiting angle

0

dereases, theabsolutevalueinreasesbeausethein-

visiblephotonangularphasespaeisthenompressed.

Conversely, thederease of theminimal energyof the

tagged photon leads to an expansion of the energy

phasespae oftheinvisiblephotonat axed valueof

(seeFig.3),andtherefore,toadereaseoftheabso-

lute value. A similar eet ours asthe parameter

grows. Butthetotalenergyofboththetagged and

the invisible photonsthen inreases,and the absolute

valuedereasesasin thepreviousase.

The hange of the parameters

1

and

2 aets

the energy phase spae of an additional real invisible

softphotoninsidetheKLOEalorimeters. Ifthesepa-

rametersareinreased, theorrespondingphasespae

expandsandtheabsolutevaluedereases.

Thetotalrst-orderradiativeorretionÆ RC

l

forthe

modiedEMCAL setup is shown in Fig. 6. Near the

threshold,itissomewhatsmallerthanÆ RC

intheabso-

lutevalue,butitgrowsmorerapidlywiththeinrease

ofz:

Ouralulationsarerestritedbyonsidering only

therst-orderorretiontotheBornross-setion. But

alarge valueoftheabsolute valuerequires evaluating

the eets of higher-order QED orretions to larify

the questionof whether ourapproximationsuesto

provide the one per ent auray even in the region

of theresonane. We hopeto alulate theseeets

elsewhere.

6. CONCLUSIONS

The radiativereturn method with tagged photons

oersa uniqueopportunity for ameasurementof the

totalhadroniross-setion(e +

e !hadrons)overa

widerangeofenergies. Thedereaseoftheeventnum-

ber iseasily ompensated by ahigh luminosity ofthe

neweletronpositronolliders. Of apartiular inter-

estaretheexperimentaleortsatlowandintermediate

energiesbeausethey aremandatory forthefuture of

theeletroweakpreisionphysis.

Suess of the preision studies of the hadroni

ross-setion through the measurement of radiative

eventsrelies onthe mathinglevelofreliabilityofthe

theoretial expetation. The prinipal problem is the

analysisofradiativeorretionsto theinitial-statera-

diative ross-setion at realisti onditions as regards

theevent seletion. Inthe presentwork, we havede-

velopedtheapproahproposed inRef. [24℄forahigh-

preisionanalytial alulation of the e +

e !

+

hannel ontribution to the hadroni ross-setion.

Thishannel dominatesintherange below1GeV be-

ause of the radiativereturn on the resonane and

theorrespondingontribution anbe measuredwith

a high-preision at the DANE aelerator with the

multiple-purposeKLOEdetetor[26℄.

Ouralulations inlude theanalysis ofthe eets

relatedtonon-head-onollisionofbeamsandtherst-

orderradiativeorretion. Wehavedemonstratedthat

attheBornlevel,thenon-head-oneetsdonotexeed

several per mille. To derive the radiative orretion,

wenegletedthiseetsandalsoappliedthequasi-real

(12)

eletronmethod [28℄to desribeeventswithtwohard

photons,onetaggedbytheKLOEalorimetersandthe

otherinvisibleinsidetheblindzone. Thisapproahhas

allowedus to analytially disentanglerealisti restri-

tionsrelatedtotheeventseletionrulesandtheKLOE

detetor geometry. Therst-orderQEDradiativeor-

retionobtainedinthiswayisnegativeandlargeinthe

absolute value. Weinvestigatedthemaintrendsin its

behaviour at the variationof the physial parameters

thatdeneexperimentalrestritionsoneventseletion;

weonludethat thehigher-orderorretionsmustbe

evaluatedinordertoensuretheoneperentauray

requiredforthetheoretialpreditions.

APPENDIXA

Here,wegivetheexatresultof theanalytialan-

gular integrationof the quantityT (seeEq. (8)) with

respettothetaggedphotonpolaranglesatarbitrary

valuesofthelimitingangle

m

andthesquareddi-pion

invariantmass,

m

Z

m

Td=2F

T (z;

m

); (A.1)

(1 z)F

T (z;

m )= 2

1+z 2

1 z lnzln

2

1

m

2 +T

1 (z;

m )ln

1

m

2 +T

0 (z;

m );

where

T

0 (z;

m )=

4

3(1 z) ln

3

z+2

m

z 5

2 +

(1 z)[ 4zlnz+((1 2

m )(1 z

2

)+8z)ln(1 z)℄

[1+

m

+(1

m

)z℄[1

m

+(1+

m )z℄

+

+

3 6z+z 2

1 z lnz

+2[2

m (1 z)℄

1+ln 1+

m

2

ln

1

(1

m

)(1 z)

2

+

+Li

2

(1+

m

)(1 z)

2z

2[2+

m

(1 z)℄

ln

1

(1+

m

)(1 z)

2

ln 1 z

z +Li

2

(1

m

)(1 z)

2z

+

+4(1 z)

m Li

2

1 z

z

+ 4(1+z

2

)

1 z ln

1 z

z

Li

2

(1

m

)(1 z)

2z

Li

2

(1+

m

)(1 z)

2z

+

+ 8

1 z

2lnzLi

2

1

m

2

+ln 1 z

z

Li

2

(1

m

)(1 z)

2

Li

2

(1+

m

)(1 z)

2

z 2

Li

3

(1

m

)(1 z)

2z

Li

3

(1+

m

)(1 z)

2z

Li

3

1

m

(1+

m )z

+Li

3

(1

m )z

1+

m

Li

3

(1

m

)(1 z)

2

+Li

3

(1+

m

)(1 z)

2

+

+ 5+z

2

4

lnzln 2

1+

m

2

+ 2

1 z ln

1+

m

2

2z 2

ln 2

z (3 z)(1 z)lnz+

1+2z z 2

2

+2(1+z 2

)

lnzln(1 z) Li

2

(1+

m

)(1 z)

2z

+

+4Li

2

(1

m

)(1 z)

2

+2(1 z 2

)Li

2

1 z

z

+(1 z) 2

(1+

m )

3+

m

+(1

m )z

1+

m

+(1

m )z

; (A.2)

(13)

T

1 (z;

m )=

2

1 z

2z 2

ln 2

z+(3 z)(1 z)

lnz

1+2z z 2

2

2(1+z 2

)

lnzln(1 z) Li

2

(1

m

)(1 z)

2z

4Li

2

(1+

m

)(1 z)

2

2(1 z 2

)Li

2

1 z

z

(1 z)[2+

m

(1 z)℄ln

1

(1+

m

)(1 z)

2

(1 z) 2

(1

m )

3

m

+(1+

m )z

1

m

+(1+

m )z

: (A.3)

WehereusethestandardnotationfortheSpenefun-

tions

Li

2 (x)=

1

Z

0 dt

t

ln(1 xt); Li

3 (x)=

1

Z

0 dt

t

lntln(1 xt):

If weassume that

m

=

0 , 1

0

1, the resultin

Eq.(12)isreovered.

APPENDIXB

Intheasewherez>z

,theintegrationregionfor

the double hard photonemission is shown in Figs.3b

and and the orresponding dierential ross-setion

is dened by Eq. (19). The list of the neessary in-

tegrals is dened by expansion (20) of the quantity

M(z;L

0

;!

1

;)andisgivenby

I

1

= Z

d!

1 d

E

z

=y

2 ln

y(1

m )

x

m ln

1 z

x

m

;

y=1 z x

m

;

(B.1)

I

2

= Z

d!

1 d

(E !

1 )

z

=

2

6 +

1

2 ln

2

z+

+ln(z+x

m )ln

(1

m )x

m

(1 z)

+lnzln 1 z

x

m +

+Li

2

x

m

z

+Li

2

(1 z) Li

2 (z+x

m

); (B.2)

I

3

= Z

E d!

1 d

(E !

1 )

2

z

= x

m

z(z+x

m )

ln 1 z

x

m

1+z

z

ln(z+x

m )

y

z+x

m ln

(1

m )y

; (B.3) I

4

= Z

( 2!

1 )d!

1 d

[!

1

( !

1

) E

z

z

=

=

2

6 1

2 ln

2 1+

m

2

ln

1

m

1+

m ln

x

m y

2(1 z) 2

1

2 ln

2 2x

m y

(1 z) Li

2

1

m

2

Li

2

(1 z)

2x

m y

; (B.4)

I

5

= Z

(1 z)E d!

1 d

[!

1

( !

1

) E

z

z

=

=

2

2 4y

1 z 2Li

2

x

m

1 z

2(1+

m )

1

m

ln 1+

m

2 ln

2

1

m x

m

1 z

+

+ln

1+

m

1

m +

x

m

1 z

+

+ln

1

m

1+

m ln

2 2

x

m

y(1 z) 1

2 ln

2 2y

3

2 ln

2 1 z

x

m +ln

1 x

x

m ln

y

2x 2

m +

+Li

2

y(1

m )

2(1 z)

Li

2

y(1

m )

(1+

m

)(1 z)

+

+Li

2

x

m (1

m )

(1+

m )(1 z)

Li

2

x

m (1

m )

2(1 z)

; (B.5)

I

6

= Z

d!

1 d

! 2

1

=

(1 z)

2

2(1

m

ln) (1+

m )ln

1+

m

(1

m )

lny+ x

m

1 z

: (B.6)

Inalulatingtheseintegrals,wenegletedtermsof

theorderx 2

m

and(1

m )x

m

omparedtounity;these

termsareofthesameorder astheparameter:

Intheaseswhere

z<1 4

1

m

;

wemustintegrateovertheregionshowninFig.3a. As

mentionedabove, theontribution of the toppiee of

thisregion,where

Ex

m

>!

1

>! +

;

is small (about 12%) ompared to the bottom

oneand anbe negleted. This approximationis suf-

ienttoprovidetheoneperentaurayofradiative

(14)

orretion. Weuse thenotationJ

i

, similarly to I

i ,to

labelseparateintegralsoverthisregion,

J

1

=I

1 +L

K 2(K

+

K );

K

= 1

2 1

s

1

4

(1

m

)(1 z)

!

;

L

K

=ln K

+

K

;

(B.7)

J

2

=I

2 lnzL

K +Li

2

((1 z)K ) Li

2

((1 z)K

+ )

Li

2

(1 z)K

z

+Li

2

(1 z)K

+

z

; (B.8)

J

3

=I

3 +

1 z

z L

K

1+z

z ln

z+(1 z)K

+

z+(1 z)K

; (B.9)

J

4

=I

4 +ln

1

m

2

ln 1

m

2 1

2 ln

1

m

1+

m

; (B.10)

J

5

=2ln

1

m

1+

m ln+

2

6 +2Li

2

(K ) 4K +

+ 1

2 ln

2

1

m

1+

m

2ln(1 z)ln

1

m

1+

m

1

2 ln

2

(1

m )

2(1+

m

)(1 z)

1

2 ln

(1+

m )

2

4(1

m

)(1 z) L

K

+lnK lnK

+ +

+ 2(1+

m )

1

m ln

2(1+

m

+(1

m )K )

(1+

m )(1+

m

+(1

m )K

+ )

+

+Li

2

(1

m )K

+

1+

m

Li

2

(1

m )K

1+

m

+Li

2

(1

m )K

2

Li

2

(1

m )K

+

2

; (B.11)

J

6

=I

6 +

(1 z)(1

m )

2

ln

(1 z)(1

m )

x

m

1 z

2lnK

+ 2(K

+ K )

: (B.12)

APPENDIXC

InthisAppendix,wegivetheanalytialformofthe

funtionsG l

i

forarbitraryvaluesofthelimitingtagged

photonangle

l

: Theonlyonditionon

l

usedin Ap-

pendix Bisthat

(1

l )x

m 1:

Thisrestrits

l

bythevaluesabout45 Æ

: Withtheex-

eptionofG l

,thefuntionsG l

i

aredierentforz>z

andz<z

:Intherstase,wehave

G l

(z>z

)=4(L

0 1)

l

(1 z)+ 1+z

2

1 z ln

1

l

1+

l

ln; (C.1)

G l

p (z>z

)= 2ln

1

l

1+

l ln

(1 z)y

2x

m ln

2 x

m

2(1 z)y 2ln

1 z

x

m ln

(1 z)x

m

y 2

+ 2

8y

1 z

4(1+

l )

1

l ln

(1+

l )[(1

l

)(1 z)+x

m (1

l )℄

2[2(1 z) x

m (1

l )℄

4Li

2

x

m

1 z)

+2Li

2

(1

l )y

2(1 z)

2Li

2

(1

l )x

m

2(1 z)

+2Li

2

(1

l )x

m

(1+

l

)(1 z)

2Li

2

(1

l )y

(1+

l

)(1 z)

; (C.2)

G l

1 (z>z

)=x

m

2(2

l )+

1+z+x

m

z+x

m ln

1 z

x

m

+2(1 z)

(1

l

)lny (1+

l )ln

1+

l

3

+

+

y(2z+x

m )

z+x

m ln

(1

l )y

+(1+z)

ln 1 z

x

m ln

z+x

m

z

+ln (z+x

m )

1 ln

1

l

+

+Li

2

z 1

z

Li

2

x

m

z

+Li

2 (z+x

m )

2

6

; (C.3)

(15)

G l

0 (z>z

)=

2

3

(3z 2) 2x

m

(3

l ) 2z

ln 1 z

x

m ln

z+x

m

z

ln(z+x

m )ln

1

l

Li

2

z 1

z

+Li

2

x

m

z

+Li

2 (z+x

m )

+(1 z)

8+ 1

2 ln

2 1+

l

2 ln

2

1

l

1+

l +

+ln 2

(1

l )

2(1+

l )y

+4yln

1

l

1+

l +2ln

1 z

x

m ln

1 z

y

2(1

l

)lny+Li

2

1

l

2

+2Li

2

x

m

1 z

+

+Li

2

(1 z)

2yx

m

+Li

2

(1

l )x

m

2(1 z)

Li

2

(1

l )y

2(1 z)

Li

2

(1

l )x

m

(1+

l

)(1 z)

+

+Li

2

(1

l )y

(1+

l

)(1 z)

+2 1+

l

1

l

ln (1+

l )[(1

l

)(1 z)+x

m (1

l )℄

2[2(1 z) x

m (1

l )℄

ln 1+

l

: (C.4)

Intheasewherez<z

, theorrespondingfuntions G l

i

aregivenby

G l

p (z<z

)=

2

3

8K ln

2

2(1 z) 2ln

1

l

1+

l ln

(1 z)

2

+2lnK

+ lnK

ln

(1+

l )

2

4(1

l

)(1 z) L

K +

4(1+

l )

1

l ln

2[1+

l

+(1

l )K ℄

(1+

l )[1+

l

+(1

l )K

+

℄ +2Li

2

(1

l )K

2

4Li

2

(K ) 2Li

2

(1

l )K

+

2

+2Li

2

(1

l )K

+

1+

l

2Li

2

(1

l )K

1+

l

; (C.5)

G l

1 (z<z

)=2x

m (3 2

l )+

2 y

1 y

x

m ln

1 z

x

m +yln

y(1

l )

+

+2(1 z)

(3 2

l )(K

+

K ) 3 (2

l )L

K

+(1

l

)lny+(1+

l )ln

1+

l

+

+(1+z)

2

6 +

1+ln

(1 z)

(1

l )x

m

ln(z+x

m )+lnz

L

k ln

1 z

x

m

+ln

z+(1 z)K

+

z+(1 z)K +

+Li

2

z 1

z

+Li

2 (z+x

m ) Li

2

x

m

z

+

+Li

2

(z 1)K

z

Li

2

(z 1)K

z

+Li

2

((1 z)K

+ ) Li

2

((1 z)K )

; (C.6)

G l

0 (z<z

)= 4x

m (1

l

)+(1 z)

6

2

3

2(3 2

l )(K

+

K )+ 1

2 ln

2 (1 z)

2

yx

m

2(1

l

)lny 2(1+

l )ln

1+

l

+ln

2

1

l

2

2ln

1

l

1+

l ln

1

l

2yx

m +ln

2

2(1 z)(1+

l )

(1

l )

+

+

2(1

l )+

1

2 ln

(1+

l )

2

4(1

l

)(1 z)

L

K lnK

+

lnK ln (1 z)

2

yx

m ln

2(1+

l

)(1 z)

(1

l )

2Li

2

(K ) Li

2

(1

l )K

2

+Li

2

(1

l )K

+

2

+Li

2

(1

l )K

(1+

l )

Li

2

(1

l )K

+

1+

l

+

+Li

2

1

l

2

+Li

2

(1 z)

2yx

m

+ 2(1+

l )

1

l ln

(1+

l )[1+

l

+(1

l )K

+

2[1+

l

+(1

l )K ℄

+

+2z

2

6 +ln

(1

l )x

m

(1 z)

ln(z+x

m ) lnz

L

K ln

1 z

x

m

+

+Li

2

x

m

z

Li

2

z 1

z

Li

2 (z+x

m )+Li

2

((1 z)K ) Li

2

((1 z)K

+ )+

+Li

2

(z 1)K

+

z

Li

2

(z 1)K

+

z

: (C.7)

(16)

REFERENCES

1. R. M. Carey et al., (g-2) Collaboration, Phys. Rev.

Lett. 82,1632 (1999);H. M. Brownetal., (g-2)Col-

laboration, Phys. Rev. D 62, 0901101 (2000); Phys.

Rev.Lett.86,2227(2000);B.LeeRobertsetal.,(g-2)

Collaboration,E-printarhiveshep-ex/0111046.

2. A. H. H®ker, E-print arhives hep-ph/0111243;

J.F.deTroónizandF.J.Yndurain,E-printarhives

hep-ph/0111258.

3. V.M. HuglesandT.Kinoshita, Rev.Mod.Phys.71,

133(1999).

4. S. Peris, M. Perrottet and E. de Rafael, Phys.Lett.

B 355, 523 (1995); A. Czarneski, B. Krause, and

W. J. Mariano, Phys. Rev. D 52, R2619 (1995);

E. A. Kuraev, T. V. Kuhto, and A. Shiller, Yad.

Fiz. 51, 1631 (1990); E. A. Kuraev, T. V. Kuhto,

Z. K.Silagadze, and A. Shiller, Preprint, INP 90-66,

Novosibirsk(1990).

5. M. Kneht and A. Nyeler, E-print arhives

hep-ph/0111058;M.Kneht,A.Nyeler,M.Perrottet,

andE.deRafael,E-printarhiveshep-ph/0111059.

6. J.Bijnens,E.Pallante,andJ.Prades,Phys.Rev.Lett.

75,3784 (1995),Nul.Phys.B474,379(1996).

7. M. Hayakawa, T.Kinoshita, and A. I. Sanda, Phys.

Rev. Lett. 75, 790 (1995), Phys. Rev. D 54, 3137

(1996); M. Hayakawa and T. Kinoshita, Phys. Rev.

D57,465(1998).

8. J.Bijnens,E.Pallante,andJ.Prades,PreprintLUTP

01-37,E-printarhiveshep-ph/0112255.

9. M. Hayakawa and T. Kinoshita, Preprint

KEK-TH-993,E-printarhiveshep-ph/0112102.

10. N. Cabibbo and R. Gatto, Phys. Rev. 124, 1577

(1961); M. Gourdinand E. de Rafael, Nul.Phys.B

10,667(1967).

11. A. Charneki and W. J. Mariano, E-print arhives

hep-ph/0102122; W.J.MarhianoandB.L.Roberts,

E-print arhives hep-ph/0105056; K. Melnikov,

SLUC-PUB-8844, E-print arhives hep-ph/0105267;

F. J. Yndurain, E-print arhives hep-ph/0103212;

F.Jegerlehner,E-printarhiveshep-ph/0001386.

12. M. Davier and H. H®ker, Phys. Lett. B 419, 419

(1998),435,427(1998).

13. S.Narison,Phys.Lett.B513,53(2001);V.Cirigliano,

G. Eker, and H. Neufeld, Phys. Lett. B 513, 361

(2001).

14. J. F. Troóniz and F. J. Yndurain, E-print arhives

hep-ph/0106025; J. Prades, E-print arhives hep-

ph/0108192.

15. R. R. Akhmetshin et al., E-print arhives

hep-ex/9904027; Nul. Phys. A 675, 424 (2000);

Phys.Lett.B475,190(2000).

16. D. Kong, E-print arhiveshep-ph/9903521: J. Z. Bai

et al., BES Collaboration, Phys. Rev. Lett. 84, 594

(2000);E-printarhiveshep-ph/0102003.

17. F. Jegerlehner, E-print arhives hep-ph/0104304,

E-printarhiveshep-ph/0105283.

18. A.B.Arbuzovetal.,JHEP12(1998)009;M.Konhat-

nijandN.P.Merenkov,JETPLett.69,811(1999).

19. S.Binner, J. H. K¶hn,andK. Melnikov, Phys.Lett.

B 459,279(1999); K.Melnikov etal., Phys.Lett.B

477,114(2000); H.Czy¹andJ.H.K¶hn,Eur.Phys.

J.C18,497(2001).

20. S.Spagnolo,Eur.Phys.J.C6,637(1999);G.Cataldi

etal.,KLOEMEMO195,August13,1999.

21. A. Hoefer, J. Gluza, F. Jegerlehner, E-print arhives

hep-ph/0107154.

22. G. Rodrigo et al., Eur. Phys. J. C 22, 81 (2001),

E-printarhiveshep-ph/0106132;G.Rodrigo, E-print

arhives hep-ph/0111151; G. Rodrigo et al., E-print

arhiveshep-ph/0112184.

23. G. Cataldi etal., Physis and Detetors at DANE,

569(1999).

24. V.A.Khozeetal.,Eur.Phys.J.C18,481(2001).

25. N. P. Merenkov and O.N. Shekhovtsova, Pis'maZh.

Exs. Teor. Fiz. 74, 69 (2001); V. A. Khoze et al.,

E-print arhives hep-ph/0202021 (submitted to Eur.

Phys.J.C).

26. M. Adinol et al., KLOE Collaboration, E-print

arhiveshep-ex/0006036;A.Aloisioetal.,KLOECol-

laboration,E-printarhiveshep-ex/0107023;A.Denig

(on behalf of KLOECollaboration), E-print arhives

hep-ex/0106100.

27. E. P. Solodov (BABAR Collaboration), E-print

arhiveshep-ex/0107027.

28. V.N.Baier,V.S.Fadin,andV.A.Khoze,Nul.Phys.

B65,381(1973).

29. E. A.Kuraev,N. P.Merenkov, andV.S.Fadin,Sov.

J.Nul.Phys.45,486(1987).

Referências

Documentos relacionados