• Nenhum resultado encontrado

TEOREMA O SHODIMOSTI METODA N^TONA

N/A
N/A
Protected

Academic year: 2023

Share "TEOREMA O SHODIMOSTI METODA N^TONA"

Copied!
6
0
0

Texto

(1)

Math-Net.Ru

Общероссийский математический портал

М. Н. Яковлев, Теорема о сходимости метода Ньютона, Зап. научн. сем. ПОМИ, 1998, том 248, 242–246

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement Параметры загрузки:

IP: 139.59.245.186

6 ноября 2022 г., 11:02:09

(2)

seminarov POMI Tom 248, 1998 g.

M. N. kovlev

TEOREMA O SHODIMOSTI METODA N^TONA

Pust~ P

(

x

)

operator, destvuwi iz prostranstva Banaha

X v prostranstvo Banaha Y. V izvestnyh teoremah, sm., napri- mer, 1], o shodimosti metoda N~tona rexeni operatornogo uravneni

P

(

x

) = 0

predpolagaets suwestvovanie proizvodno Frexe P0

(

x

)

opera- tora P

(

x

)

, kotora, po opredeleni, vlets pri kadomxli- nenym ograniqennym operatorom

(

P0

(

x

)

2 L

(

X Y

))

. to zasta- vlet pri rassmotrenii, naprimer, differencial~nyh uravne- ni vvodit~ metriku, v kotoro operator P

(

x

)

vlets nepre- ryvnym operatorom. Privodima nie teorema pozvolet izbe- at~ togo usloneni. Krome togo, klass operatorov, rassma- trivaemyh v nieprivedenno teoreme, soderit vse operato- ry, dl kotoryh operator P0

(

x

)

, udovletvoret lix~ lokal~no- mu uslovi Gel~dera s nekotorym pokazatelems

(0

<s6

1)

.

Rassmotrim uravnenie

Tx

+

F

(

x

) = 0

(1)

gdeF

(

x

)

{ operator iz banahova prostranstvaX v banahovo pro- stranstvoY. Predpoloim, qto operatorF

(

x

)

nepreryvno dif- ferenciruem po Frexe v nekotorom xare S

(

x0r

)

X radiusa

r. Pust~ T { additivny i odnorodny operator s oblast~

opredeleni D

(

T

)

X i oblast~ znaqeni R

(

T

)

Y. Pust~

x

0

2D

(

T

)

.

Teorema. Pust~ vypolneny uslovi.

1.

Suwestvuet lineny (opredelenny na vsem

Y

) operator

T

+

Fx0

(

x

)]

;1

dl vseh

x2S

(

x0r

)

\D

(

T

) .

2.

Dl

x

,

z2S

(

x0r

)

\D

(

T

) verno neravenstvo

T

+

Fx0

(

z

)]

;1

F

(

z

)

;F

(

x

)

;Fx0

(

x

)(

z;x

)]

6Mskx;zk1+s

0

<s6

1

: (2)

(3)

3.

Dl

x2S

(

x0r

)

\D

(

T

) verno neravenstvo

T

+

Fx0

(

x

)]

;1

Tx0

+

F

(

x0

)]

6k : (3)

4. q

=

k M<

1 .

(4)

5. r>r0

=

kP+1k =0q(1+s)k;1: (5)

Togda suwestvuet rexenie

x

uravneni

(1)

, prinadle awee

S

(

x0r0

)

\D

(

T

) k kotoromu shodits iteracionny process

x

n+1

=

xn;

T

+

Fx0

(

xn

)]

;1

Txn

+

F

(

xn

)]

n

= 0

1

:::

priqem

kx

n

;x

k6 k q

(1+s) n

;1

1

;qs(1+s)n

(

n

= 0

1

:::

)

: (6)

Dokazatel~stvo.

Poloim

;(

x

)

T

+

Fx0

(

x

)]

;1

;

n

;(

xn

)

P

(

x

)

Tx

+

F

(

x

)

PnP

(

xn

)

:

Pokaem snaqala, qto

x

n

2S

(

x0r0

)

\D

(

T

)

:

Imeem

kx

1

;x

0

k

=

k

;

0P0k6k<r0:

Dalee

;

1P1

= ;

1P1;

;

1

T

(

x1;x0

) +

Fx0

(

x0

)(

x1;x0

) +

Tx0

+

F

(

x0

)] =

= ;

1

Tx1

+

F

(

x1

)

;T

(

x1;x0

)

;Fx0

(

x0

)(

x1;x0

)

;Tx0;F

(

x0

)] =

= ;

1

F

(

x1

)

;F

(

x0

)

;Fx0

(

x0

)(

x1;x0

)]

i sledovatel~no

k

;

1P1k6Mskx1;x0k1+s:

Dal~nexie rassudeni provodim metodom polno matemati- qesko indukcii.

Pust~ ue dokazano, qto

x

n

2S

(

x0r0

)

\D

(

T

)

i qto spravedlivy ocenki

kx

n

;x

n;1 k6k q

(1+s) n;1

;1 (7)

(4)

k

;

nPnk6Mskxn;xn;1k1+s: (8) Pokaem, qto togda

kx

n+1

;x

n k6k q

(1+s) n

;1

(9)

otkuda

x

n+1

2S

(

x0r0

)

\D

(

T

)

(10) i qto

k

;

n+1Pn+1k6Mskxn+1;xnk1+s:

Destvitel~no iz (7) i (8)

kx

n+1

;x

n

k

=

k

;

nPnk6Mskxn;xn;1k1+s6k q(1+s)n;1:

Formula (9) dokazana. Dalee imeem

Tx

n

+

F

(

xn

) +

T

+

Fx0

(

xn

)](

xn+1;xn

) = 0

:

to pozvolet ocenit~ k

;

n+1Pn+1k:

;

n+1Pn+1

= ;

n+1Pn+1;

;

n+1Pn

+

T

+

Fx0

(

xn

)](

xn+1;x1

)

=

= ;

n+1F

(

xn+1

)

;F

(

xn

)

;Fx0

(

xn

)(

xn+1;xn

)

sledovatel~no

k

;

n+1Pn+1k6Mskxn+1;xnk1+s

i neravenstvo (10) take dokazano.

Teper~ ustanovim fundamental~nost~ posledovatel~nosti

fx

n

g. Iz neravenstva treugol~nika i ocenok (9) imeem

kx

n+p

;x

n k6k

n+p;1

X

k =n q

(1+s) k

;1

: (11)

Otsda

x

n

!x

2S

(

x0r0

)

:

Imeem

x

n+1

=;

nFx0

(

xn

)

xn; F

(

xn

)

=;

nFx0

(

xn

)

xn; F

(

xn

)

; Fx0

(

x

)

x

+

F

(

x

)

+

;

n;

;(

x

)

Fx0

(

x

)

x;F

(

x

)

+ ;(

x

)

Fx0

(

x

)

x;F

(

x

)

: (12)

(5)

Dalee

k

;

nk6k

;

n;

;(

x

)

k

+

k

;(

x

)

k6

6k

;

nkkF0

(

xn

)

;F0

(

x

)

kk

;(

x

)

k

+

k

;(

x

)

k:

Otsda, v silu nepreryvno differenciruemosti operatora

F

(

x

)

v xare S

(

x0r

)

, pri dostatoqno bol~xihn

k

;

nk6k

;(

x

)

k=

1

;k

;(

x

)

kkF0

(

xn

)

;F0

(

x

)

k<

2

k

;(

x

)

k

k

;(

x

)

;

;

nk6k

;

nkkF0

(

x

)

;F0

(

xn

)

kk

;(

x

)

k6

6

2

k

;(

x

)

k2kF0

(

xn

)

;F0

(

x

)

k:

Otsda

k

;(

x

)

;

;

nk!

0

pri n!1:

Takim obrazom prava qast~ sootnoxeni (12) stremits pri

n!1 k vyraeni

;(

x

)

F0

(

x

)

x;F

(

x

)

:

Otsda, v qastnosti, sleduet, qto x2D

(

T

)

i

T

+

Fx0

(

x

)

x

=

Tx

+

Fx0

(

x

)

x

=

Fx0

(

x

)

x;F

(

x

)

t.e.

Tx

+

F

(

x

) = 0

:

Perehod k predelu pri p!1 v ocenke (11), poluqim

kx

n

;x

k6k 1

X

k =n q

(1+s) k

;1

6 k q

(1+s) n

;1

1

;qs(1+s)n

poskol~ku

(1 +

s

)

k;

1

>k s pri s>;

1

.

Sledstvie. Pust~ vypolneny uslovi.

1.

Suwestvuet lineny (opredelenny na vsem

Y

) ope- rator

T

+

Fx0

(

x

)]

;1

dl vseh

x2S

(

x0r

)

\D

(

T

) .

2.

Dl

z

,

v

,

w2S

(

x0r

)

\D

(

T

) verno neravenstvo

k

T

+

Fx0

(

z

)]

;1

Fx0

(

v

)

;Fx0

(

w

)]

k6Lkv;w ks

(0

<s6

1)

: (13)

(6)

3.

Dl

x2S

(

x0r

)

\D

(

T

) verno neravenstvo

k

T

+

Fx0

(

x

)]

;1

Tx0

+

F

(

x0

)]

k6k :

4. q

=

k;1+sL 1=s<

1 .

5.

Verno neravenstvo

(5)

Togda verny vse zaklqeni teoremy.

Dokazatel~stvo.

Imeem v silu neravenstva (13)

k

T

+

Fx0

(

z

)]

;1

F

(

z

)

;F

(

x

)

;Fx0

(

x

)(

z;x

)]

k

=

1

Z

0

T

+

Fx0

(

z

)

;1Fx0

(

x

+

t

(

z;x

))

;Fx0

(

x

)

(

z;x

)

dt 6

1 +

Lskz;xk1+s:

Potomu mono poloit~

M

s

= 1 +

Ls:

Ostaets primenit~ teoremu.

Zameqanie.

Esli pri lbyh x 2 X imeet mesto Tx

= 0

, t.e.

T

0

i suwestvuet vtora proizvodna F00

(

x

)

, ograniqenna v xareS

(

x0r

)

, qto vleqet vypolnenie neravenstva (13) ss

= 1

, to my poluqaem teoremu, dokazannu I. P. Mysovskih 2].

Literatura

1.V. A. Trenogin,Funkcional~ny analiz. M. (1993).

2.I. P. Mysovskih,O shodimosti metoda L. V. Kantoroviqa dl rexeni nelinenyh funkcional~nyh uravneni i ego priloeni. | Vestn. LGU

11(1953), 25{48.

Yakovlev M. N. A convergence theorem for the Newton method.

The convergence of the Newton method is established dor equations of the form

Tx

+

F

(

x

) = 0, where

T

is an unbounded operator, and the Frechet derivative

F0

(

u

) of the operator

F

(

u

) satises Holder's condition.

Postupilo 3 nobr 1997 g.

S.-Peterburgskoe otdelenie Matematiqeskogo instituta im. V. A. Steklova RAN

Referências

Documentos relacionados

Parameter of effective compressibility due to residual fluid, dissolved gas and formation for the proposed MBE, dimensionless Rock compressibility, psi-1 Average fracture