• Nenhum resultado encontrado

Inverse Problems and Applications - MAI

N/A
N/A
Protected

Academic year: 2023

Share "Inverse Problems and Applications - MAI"

Copied!
12
0
0

Texto

(1)

Inverse Problems and Applications

Linköping University, Sweden, April 2nd, 2013

Analysis of a forward problem in optical tomography H. Egger, M. Schlottbom

Dept. of Mathematics

Numerical Analysis and Scientific Computing TU Darmstadt

(2)

Optical tomography: Model & basic equations (Forward problem)

(σ,k) g

M 1

Radiative Transfer Equation (RTE) v· ∇u+σu=

Z

V

k(·,·,v0)u(·,v0) dv0+f u(x,v) =g(x,v) ifn(x)·v<0

I σattenuation coefficient

I kscattering kernel

I uphoton density

I ObservationB:u7→M:=M(u) (linear)

I Forward operatorF: (σ,k)7→M(nonlinear)

1Scheel et al, First clinical evaluation of sagittal laser OT for detection of synovitis in arthritic finger joints,Ann Rheum Dis, 2005;64:239-245

(3)

Solvability of the radiative transfer equation inLpspaces Setting

Solvability inL Solvability inL1 Solvability inLp Inverse Problem

(4)

Radiative Transfer Equation and basic assumptions

v· ∇u(x,v) +σ(x,v)u(x,v) = Z

V

k(x,v,v0)u(x,v0) dv0+f(x,v) inR ×V u= 0 onΓ:={(x,v)∈∂R ×V :n(x)·v<0}

I R ⊂Rd bounded and convex,∂R ∈C0,1,V ⊂Rd.

I 0≤στ∈L(R ×V),k(x,v,v0)≥0 σp(x,v0) :=

Z

V

k(x,v,v0) dv≤σ(x,v0) σ0p(x,v) :=

Z

V

k(x,v,v0) dv0 ≤σ(x,v)

I weightω:= max{σ,τ1}>0 a.e.

Lp(ω) ={u:ω|u|p∈L1(R ×V)},L(ω) =L.

I Wp(ω) :={u∈Lp(ω) : ω1v· ∇u∈Lp(ω)}

R

x v

x+τ(x,v)v

(5)

Solvability without scattering

vu+σu=f, u|Γ= 0. (*)

Lemma:Forf/ω∈L(R ×V) there exists a uniqueu∈W(ω) solution of (*) and kukL(V)≤ kf/ω|kL(V)

Proof:Useω= max{σ,τ1}and define u(x,v) =u(x0+tv,v) :=

Z t

0

eRstσ(x0+rv,v) drf(x0+sv,v) ds. (1) Observe

I v∇u(x,v) = dtdu(x0+tv,v) =f(x,v)−σ(x,v)u(x,v).

I Rt

0eRstσ(x0+rv,v) drω(x0+sv,v) ds≤1.

Remark:kω1v∇ukL(V)≤ kf/ωkL(V)+kukL(V).

(6)

Contraction property

(v+σ)u=Ku, u|Γ= 0.

Lemma:Foru∈L(R ×V) there holds

k(v∇+σ)1KukL(V)≤ 1−e−kσp0τkL∞(R×V)

kukL(V), whereKu(x,v) :=R

Vk(x,v,v0)u(x,v0) dv0. Proof:By usingf =Kuin (1) there holds

|((v∇+σ)1Ku)(x,v)| ≤ Z t

0

eRstσ0p(x0+rv,v) drσ0p(x0+sv,v) dskukL(V)

≤ 1−e−kσp0τ|kL(R×V)

kukL(V).

(7)

Solvability of RTE inL

vu+σu=Ku+f, u|Γ= 0.

Theorem:Forf/ω∈L(R ×V) the RTE has a unique solutionu∈W(ω) with a-priori estimate

kukL(V)≤e0pτ|kL∞(R×V)kf/ωkL(V) k1

ω∇ukL(V)≤3e0pτ|kL(R×V)kf/ωkL(V)

Proof:Φ:L(R ×V)→L(R ×V)

Φ(u) := (v∇+σ)1(Ku+f) is a contraction. Banach fixed point theorem.

(8)

Solvability inL1: A duality argument(L1(R ×V))0=L(R ×V)

K0:L(R ×V)→L(R ×V), K0u(x,v0) :=

Z

V

k(x,v,v0)u(x,v) dv Lemma:Forw ∈L(R ×V) there holds

k(−v· ∇+σ)1K0wkL(V)≤ 1−e−kσpτ|kL(R×V)

kwkL(V) Corollary:[cf Bal, Jollivet 2008] Foru∈L1(R ×V) there holds

kK(v∇+σ)1ukL1(V)≤ 1−e−kσpτkL(R×V)

kukL1(V)

Corollary:Φ:L1(R ×V)→L1(R ×V),Φ(w) :=K(v∇+σ)1w+fis a contraction.

Theorem:u:= (v· ∇+σ)1w ∈W1(ω), withw =Φ(w), solves RTE v· ∇u+σu=Ku+f, u = 0.

(9)

Solvability of RTE inLp,1p≤ ∞

vu+σu=Ku+f, u|Γ= 0.

Theorem:For any ωf ∈Lp(ω) the RTE has a unique solutionu∈Wp(ω) and kukLp(ω) ≤Ckf/ωkLp(ω)

k1

ωv· ∇ukLp(ω) ≤311pCkf/ωkLp(ω)

withC:= exp(1ppτkL(V)+ (1−1p)kσp0τkL(V)) andω={σ,τ1}.

Proof:Interpolation.

Remark:

I In general, constants are sharp.

I Ifσ >0, constants can be improved.

(10)

Conclusions

I GeneralLp-solvability theory for RTE

I Parameters are allowed to vanish

I explicit constants

I Fixed point iteration≡source iteration converges even ifσp =σin allLp

I Positive data implies positive solutions

I Lp-theory can be used to investigate continuity and differentiability of the parameter-solution map (σ,k)7→F(σ,k) (Hölder inequality)

(11)

Optical tomography: Reconstruction (Inverse Problem)

1. Given:Measurements (g,M) = (g,F(σ,k)).

2. Aim:Determineσ,k :F(σ,k) =M.

I Uniqueness/ Identifiability: [Choulli & Stefanov]

I Stability estimates: [Bal & Jollivet]

I noisy data→ill-posedness→regularization

Example: Lipschitz-continuityu=u(σ,k), ˜u=u( ˜σ,k):U:=u−u˜satisfies:

v· ∇U+σU=KU+ ( ˜σ−σ) ˜u.

A-priori estimates

kF(σ,k)−F( ˜σ,k)k2 ≤CkUk2≤Ck( ˜σ−σ) ˜uk2

I L2regularization:k( ˜σ−σ) ˜uk2 ≤ kσ˜−σk2kuk˜

I H1regularization:k( ˜σ−σ) ˜uk2≤Ckσ˜ −σkH1kuk˜ 6/5

(12)

References

I V. Agoshkov.Boundary Value Problems for Transport Equations. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, 1998.

I S. R. Arridge. Optical tomography in medical imaging.Inverse Problems, 15(2):R41–R93, 1999.

I G. Bal and A. Jollivet. Stability estimates in stationary inverse transport.Inverse Probl. Imaging, 2(4):427–454, 2008.

I K. M. Case and P. F. Zweifel. Existence and uniqueness theorems for the neutron transport equation.Journal of Mathematical Physics, 4(11):1376–1385, 1963.

I M. Choulli and P. Stefanov. An inverse boundary value problem for the stationary transport equation.Osaka J. Math., 36(1):87–104, 1998.

I R. Dautray and J. L. Lions.Mathematical Analysis and Numerical Methods for Science and Technology, Evolution Problems II, volume 6. Springer, Berlin, 1993.

I H. Egger and M. Schlottbom. A mixed variational framework for the radiative transfer equation.M3AS, 03(22), 2012.

I H. Egger and M. Schlottbom. On unique solvability for stationary radiative transfer with vanishing absorption. submitted, 2012.

I H. Egger and M. Schlottbom. Solvability of the stationary radiative transfer equation inLpspaces. in preparation, 2013.

I P. Stefanov and G. Uhlmann. An inverse source problem in optical molecular imaging.Anal. PDE, 1:115–126, 2008.

I V. S. Vladimirov. Mathematical Problems in the one-velocity Theory of Particle Transport.Atomic Energy of Canada Ltd. AECL-1661, translated from Transactions of the V.A. Steklov Mathematical Institute (61), 1961

Referências

Documentos relacionados

καὶ τὰ ἐργαστήρια αὐτῶν καὶ τὰ ἐργαλεῖα, μικρᾶς ἐπὶ τῶν ἐργαλείων ὑπεξαιρέσεως τηρουμένης· ὅσα γὰρ τέμνει καὶ διχάζει, ταῦτα πάντα στάσιν καὶ διχόνοιαν