• Nenhum resultado encontrado

Ari P Seitsonen

N/A
N/A
Protected

Academic year: 2023

Share "Ari P Seitsonen"

Copied!
38
0
0

Texto

(1)

using density functional theory-based molecular dynamics: Liquid water

Ari P Seitsonen

Département de chimie, École normale supérieure, Paris

Statistical Physics: Modern Trends and Applications

July 3 rd -6 th , 2019, Lviv

(2)

UZH Jürg Hutter SU Paris

Romain Jonchiere Guillaume Ferlat A Marco Saitta ENS

Volker Haigis

Rodolphe Vuilleumier

London I-Chun Lin IBM Research Rüschlikon Ivano Tavernelli EPFL

Ursula Röthlisberger

National Academy of Sciences of Ukraine, Lviv Taras Bryk

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 2 / 38

(3)
(4)

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 4 / 38

(5)

Water — computer simulations

Water is everywhere

Benchmark liquid — solvent

Despite huge effort, no overall satisfying description

Explicit electronic structure: Attempt for complete description, including dissociation, polarisability, . . .

“Ab initio”, “first principles” molecular dynamics — and Monte

Carlo

(6)

Method — Car-Parrinello molecular dynamics

Extended Lagrangean: Electronic degrees of freedom introduced as fictitious variables

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 6 / 38

(7)

Method — Car-Parrinello molecular dynamics

Extended Lagrangian: Electronic degrees of freedom introduced

as fictitious variables

(8)

Method — Born-Oppenheimer molecular dynamics

a I = F I /m I like in “classical” molecular dynamics (MD) How to obtain m?

Simple self-consistent electronic structure optimisation before calculating forces on the ions, propagation of time

Drift due to inaccuracy in forces due to incompleteness of self-consistency, basis set

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 8 / 38

(9)

Method — Monte Carlo

Useful for example when atomic forces are not available or too tedious to evaluate

Several applications on liquid water and ice (CP2K code)

(10)

Method — electronic structure method

Almost exclusively: Density functional theory (DFT)

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 10 / 38

(11)

Method — density functional theory

Formally exact (within Born-Oppenheimer approximation, non-relativistic, . . . )

Usual formalism: Kohn-Sham single-particle orbitals, non-interacting electrons

Many-body interactions (difficulties) are collected into the exchange-correlation term:

Analytic form of correlation unknown

Preferable scaling over wave function-based methods

Typical size: 10 2 − 10 3 atoms, up to 1 ns

(12)

Liquid water — early simulations

Laasonen, Sprik, Parrinello, Car; JCP 1993: “Ab Initio” liquid water

GGA-exchange; 0.5+1.5 ps; deuterated

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 12 / 38

(13)

Liquid water — 1990’s and early 2000’s

Slow progress in length of simulations Observation of effect of effective mass Elevated temperature (empirism)

Applications to solvated electron, hydronium, hydroxyl, Grotthus mechanism, . . .

But still over-structuring, slow diffusion, . . .

(14)

DFTb-MD on liquid water — exchange-correlation

Todorova, Seitsonen, Hutter, Kuo and Mundy, J Phys Chem B 2006

Hybrid functional-exchange; 5+5 ps

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 14 / 38

(15)

DFTb-MD on liquid water — exchange-correlation

Todorova, Seitsonen, Hutter, Kuo and Mundy, J Phys Chem B 2006

Hybrid functional-exchange; 5+5 ps

functional D (Å 2 /ps) functional D (Å 2 /ps)

LDA 0.013 B3LYP 0.30

BLYP 0.048 X3LYP 0.17

XLYP 0.028 PBE0 0.28

PBE 0.047 HF 0.47

rPBE 0.180

TPSS 0.032

(16)

van der Waals interactions

van der Waals interactions important in several cases

I

Rare gases

I

Non-polar molecular systems with closed-shell consituents

I

Biology

I

. . .

Even in bulk Au the van der Waals interactions significant!

[Pyykkö, 2004]

(Semi-)local approximations like LDA, GGA cannot reproduce it

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 16 / 38

(17)

van der Waals interactions

Arise from instantaneous fluctations in electron densities Fluctuation-dissipation theory:

E

c

= − 1 2π

1

Z

α=0

Z

ω=0

Z

r

[αχ

0

(r

1

, r

3

, ω) W (r

3

, r

4

, ω) χ

0

(r

4

, r

2

, ω)

2

χ

0

(r

1

, r

3

, ω) W (r

3

, r

4

, ω) χ

0

(r

4

, r

5

, ω) W (r

5

, r

6

, ω) χ

0

(r

6

, r

2

, ω) + O(α

3

) + . . . Y

i

d r

i

After some approximations:

E disp asymp = − 3 π

1 R 6

Z

α A αβ α B γδ d ω

(18)

vdW — semi-empirical treatments

Most popular now:

I

Grimme 2006 “DFT+D2”

I

Grimme et alia 2010 “DFT+D3”

I

Tkatchenko-Scheffler General properties:

I

Usually do not depend on electron densities, only on atomic coordinates

I

Usually pair-wise

I

Energy of electronic system no longer minimimised in equilibrium structure

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 18 / 38

(19)

vdW — “real” functionals

Langreth-Lundqvist et alia, “vdW-DF” or “vdW-LL”

Truly non-local: E c nl [n] = R

r

R

r

0

n(r)φ(r, r 0 )n(r 0 ) d r d r 0

Usually accompanied with revPBE-GGA functional (reproduces

“best” Hartree-Fock-exchange) One edition:

Lee, Murray, Kong, Lundqvist & Langreth; PRB 2010

Yet results depend strongly on choice of exchange term

(20)

Liquid water — vdW

Lin, Seitsonen, Coutinho-Neto, Tavernelli & Röthlisberger; JPCB, 2009

(Received: February 13, 2008)

Softening of structure when vdW-treatment included

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 20 / 38

(21)

Liquid water — vdW

Lin, Seitsonen, Coutinho-Neto, Tavernelli & Röthlisberger; JPCB, 2009

Faster diffusion

(22)

Liquid water — vdW

Lin, Seitsonen, Coutinho-Neto, Tavernelli & Röthlisberger; JPCB, 2009

Reduced directionality

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 22 / 38

(23)

Liquid water — vdW

Schmidt, VandeVondele, Kuo, Sebastiani, Siepmann, Hutter & Mundy; JPCB, 2009

Density greatly improved upon employing DFT+D2

(24)

Liquid water — vdW

Jonchiere, Seitsonen, Ferlat, Saitta & Vuilleumier; JCP, 2011

Removing R −6 tail leads to same effect as GGA dropping vdW

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 24 / 38

(25)

Liquid water — vdW

Ari P Seitsonen & Taras Bryk; PRB, 2016

BLYP+D3: Melting temperature of water: T m BLYP+D3 ≈ 325 K

T = 400 K T = 375 K T = 350 K T = 325 K T = 300 K T = 275 K T = 250 K

(26)

Liquid water — vdW

Ari P Seitsonen & Taras Bryk; PRB, 2016

BLYP+D3: Melting temperature of water: T m BLYP+D3 ≈ 325 K Earlier simulations (Xantheas et alia): T m BLYP ≈ 400 K, T m BLYP+D2 ≈ 360 K

Nuclear quantum effects: ∆T m q−TIP4P/F ≈ 10 K

0 20 40 60 80 100

t [ps]

−2.5

−2.0

−1.5

−1.0

−0.5 0.0

EKS+7040 [Ha]

T = 400 K T = 375 K T = 350 K T = 325 K T = 300 K T = 275 K T = 250 K

250 300 350 400

T [K]

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5 0.0 0.5

T = 400 K T = 375 K T = 350 K T = 325 K T = 300 K T = 275 K T = 250 K

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 26 / 38

(27)

Liquid water — vdW

Taras Bryk & Ari P Seitsonen; CMP, 2016

BLYP+D3: Collective excitations in H 2 O, D 2 O

Stretched exponential in BLYP-D 2 O at 50 K, exponential decay in BLYP+D3-D 2 O

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 2 4 6 8 10

Ftt(k,t)

t / τ k = 0.399 A°-1 k = 1.129 A°-1 k = 1.382 A°-1 BLYP

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0 2 4 6 8 10

Ftt(k,t)

t / τ k = 0.399 A°-1 k = 1.129 A°-1 k = 1.382 A°-1 BLYP+D3

(b)

(28)

Liquid water — vdW

Taras Bryk & Ari P Seitsonen; CMP, 2016

BLYP+D3: Collective excitations in H 2 O, D 2 O

0 20 40 60 80 100 120 140 160

0 200 400 600 800

0 1 2 3 4

Frequency ω / ps-1 Frequency ω / cm-1

k / A°-1 L BLYP T

(a)

0 20 40 60 80 100 120 140 160

0 200 400 600 800

0 1 2 3 4

Frequency ω / ps-1 Frequency ω / cm-1

k / A°-1 BLYP+D3 (b)

H 2 O

0 20 40 60 80 100 120 140 160

0 200 400 600 800

0 1 2 3 4

Frequency ω / ps-1 Frequency ω / cm-1

k / A°-1

LO and TO gap ∼ 24 ps, or 127 cm

−1

Apparent high-frequency speed of sound 3223 m/s; expr ≈ 3100 m/s

(XRS), ≈ 3200 m/s

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 28 / 38

(29)

Liquid water — ab initio

Mauro Del Ben, Mandes Schönherr, Jürg Hutter & Joost VandeVondele; JPCL, 2013

Going up to MP2; Monte Carlo-NpT

(30)

Liquid water — more ab initio

Mauro Del Ben, Mandes Schönherr, Jürg Hutter & Joost VandeVondele; JCP, 2015

MP2, RPA

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 30 / 38

(31)

Liquid water — more ab initio

Mauro Del Ben, Mandes Schönherr, Jürg Hutter & Joost VandeVondele; JCP, 2015

More quantities: Nuclear quantum effects (DFT/hybrid

functionals), volume of ice

(32)

Liquid water — nuclear quantum effects

Nuclear quantum effects do matter

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 32 / 38

(33)

Liquid water — nuclear quantum effects

Path integral molecular dynamics Equilibrium properties

Several (32-64) replicas, or beads: Increase of computing cost Ad hoc approach for dynamics: Ring polymer MD

M Ceriotti & D E Manolopoulos; PRL, 2012

Thermostatting:

Path integral generalised Langevin equation thermostat (PIGLET) GLE: coloured noise, frequency-dependent temperature

Reduces number of beads

T E Markland & D E Manolopoulos; JCP, 2008

Ring-polymer contraction

(34)

Liquid water — nuclear quantum effects

V Kapil, J VandeVondele & M Ceriotti; JCP, 2016

RPC-example

Division bonded versus non-bonded in q-TIP4P/F-H 2 O

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 34 / 38

(35)

Liquid water — nuclear quantum effects

V Kapil, J VandeVondele & M Ceriotti; JCP, 2016

RPC-example: Zundel cation

(36)

Water — quo vadis?

Improved ab initio molecular dynamics by minimally biasing with experimental data; JCP, 2017

Added potential:

V (r i ) =

3

X

k=0

α ˆ f k

N

X

j6=i

r ij k

1 − u(r 0 − r ij )

Biased AIMD simulations of water and an excess proton in wa- ter are shown to give significantly improved properties both for observables which were biased to match experimental data and for unbiased observables. This approach also yields new physical insight into inaccuracies in the underlying den- sity functional theory as utilized in the unbiased AIMD.

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 36 / 38

(37)

Water — quo vadis?

Bingqing Cheng, Edgar A Engel, Jörg Behler, Christoph Dellago & Michele Ceriotti; PNAS, 2019

Neural Networks / Machine Learning

(38)

Electronic structure-based MD — summary

“Predictable” over-all accuracy

Reactions, dynamics, free-energy surfaces, . . . Liquid water via DFTb-MD still a challenge Ab initio huge effort, but appearing

Ari P Seitsonen (ENS) H2O via electronic structure / review StatPhys-2019 July 3rd-6th, 2019 38 / 38

Referências

Documentos relacionados

Não se pode entender a liberdade de imprensa como sendo capaz de renegociar a relação entre esse meio muito frágil mesmo com o formidável progresso tecnológico, é a mesma coisa