• Nenhum resultado encontrado

Quantum data-bus

N/A
N/A
Protected

Academic year: 2023

Share "Quantum data-bus"

Copied!
22
0
0

Texto

(1)

Optimal dynamics for quantum information transfer and effective entangling gate through

homogeneous quantum wires

Leonardo Banchi

Università degli studi di Firenze, Florence, Italy

with

T. J. G. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi, and

A. Bayat, S. Bose

Lviv - April 7, 2011

(2)

Overview

Goal−→information transmission between distant parts Spin chain data-bus

Tool−→Optimal dynamics

induce a coherent (ballistic) dynamics in a dispersive chain

Results:

High quality state transmission

High quality generation of long-distance entanglement

(3)

Quantum data-bus

Spin chain data-bus

S. Bose, PRL, 2003

S. Bose, Contemporary Physics, 2007

Register A Register B

(4)

Quantum data-bus

|ψ i

Spin chain data-bus

S. Bose, PRL, 2003

S. Bose, Contemporary Physics, 2007

Register A Register B

(5)

Quantum data-bus

Spin chain data-bus

S. Bose, PRL, 2003

S. Bose, Contemporary Physics, 2007

Register A Register B

(6)

State transmission

A Γ B

Out of equilibrium initial state:|Ψini=|ψAi |ψΓi |ψBi

State of B at timet: ρB(t) =Tr

e−itHAΓBini hΨin|eitHAΓB

Measure of the transmission quality: minimum fidelity F(t) =min

AiAB(t)|ψAi

(7)

State transmission

A Γ B

Out of equilibrium initial state:|Ψini=|ψAi |ψΓi |ψBi State of B at timet:

ρB(t) =Tr

e−itHAΓBini hΨin|eitHAΓB

Measure of the transmission quality: minimum fidelity F(t) =min

AiAB(t)|ψAi

(8)

State transmission

A Γ B

Out of equilibrium initial state:|Ψini=|ψAi |ψΓi |ψBi State of B at timet:

ρB(t) =Tr

e−itHAΓBini hΨin|eitHAΓB

Measure of the transmission quality: minimum fidelity F(t) =min

AiAB(t)|ψAi

(9)

Optimal dynamics

Requirement: quadratic Hamiltonian in terms oflocalcreation and annihilation operators

HAΓB =X

ij

Mijaiaj+Nijaiaj +h.c.

Normal modes and dispersion relationωk

HAΓB=X

k

ωkdkdk

Density of excitations in the initial state

ρ(k) =hΨin|dkdkini

Optimal dynamics

Induce a coherent (ballistic) dynamics in a dispersive chain

=⇒ Makeρ(k)mostly peaked around the linear zone ofωk through a minimalengineering of the interactions

(10)

Optimal dynamics

Requirement: quadratic Hamiltonian in terms oflocalcreation and annihilation operators

HAΓB =X

ij

Mijaiaj+Nijaiaj +h.c.

Normal modes and dispersion relationωk

HAΓB=X

k

ωkdkdk

Density of excitations in the initial state

ρ(k) =hΨin|dkdkini

Optimal dynamics

Induce a coherent (ballistic) dynamics in a dispersive chain

=⇒ Makeρ(k)mostly peaked around the linear zone of ωk through a minimalengineering of the interactions

(11)

Consequences of the optimal dynamics

Optimal dynamics

Induce a coherent (ballistic) dynamics in a dispersive chain

=⇒ Makeρ(k)mostly peaked around the linear zone of ωk through a minimalengineering of the interactions

All relevant excitations (with highρ(k)) have constant group velocityvk =∂kωk

High quality “wave-packet” transmission F(t)'1

Ballistic transport with arrival timet 'vN

(12)

Optimal dynamics with the XY model

A Γ B

XX model

HΓ=J

N−1

X

n=1

σxnσxn+1ynσyn+1

H=J0 σ0xσ1x0yσy1 HΓB =J0 σNxσN+1xyNσyN+1

Optimal dynamics by settingJ0to a properly tuned value

Banchi, Apollaro, Cuccoli, Vaia, Verrucchi, PRA, 2010

(13)

Optimal dynamics with the XX model

Dispersion relation (J ≡1)

ωk=cosk Density of excitations

ρ(k)≈ 1

2+cot2k ∆ = J02 2−J20 peaked around the inflection pointk=π/2with width∆ Normal modes (n=1, . . . ,N+2)

kn = πn+ϕkn

N+3 ϕk =2k−2 cot−1

2−J20 J20 cotk

Banchi, Apollaro, Cuccoli, Vaia, Verrucchi, in preparation

(14)

Optimal dynamics with the XX model

Group velocity of the “wave-packet” close to the inflection point

vk =∂kωk 'const.×

1+ 2

NJ06 −1 2

k2+O(k4)

Optimal values ofJ0opt.: Jopt.0 '1.05N16

Non-weak coupling regime and ballistic transport

N 25 51 101 251 501 1001 2501 5001

J0opt. 0.63 0.56 0.49 0.42 0.37 0.33 0.28 0.25 t 32.5 60.2 112 266 520 1025 2533 5041

(15)

Movie

(16)

Coherent transport: N = 50

ini=|↑i|ΩΓi|↑i

Wave packet propagation displayed by the magnetizationSz(x,t)

J0 =J0opt.'0.56J J0=J

(17)

State transmission quality

F(t)

N

It works with very long channels!

F(t) =min

AiAB(t)|ψAi

(18)

State transmission quality

F(t)

N

It works with very long channels!

F(t) =min

AiAB(t)|ψAi

(19)

Entangling quantum gates between distant qubits

|↑iA|↑iB −→e↑↑|↑iA|↑iB

|↑iA|↓iB −→e↑↓|↓iA|↑iB

|↓iA|↑iB −→e↓↑|↑iA|↓iB

|↓iA|↓iB −→e↓↓|↓iA|↓iB

Optimal dynamics effectively generates an entangling quantum gate Fixing

ini= (|↑i+|↓i)A⊗ |ψiΓ⊗(|↑i+|↓i)B AandBget maximally entangled att

Banchi, Bayat, Verrucchi, Bose, PRL in print

(20)

Interacting models and works in progress...

H=

N

X

n=0

Jn

σnxσn+1xnyσn+1y + ∆σnzσzn+1

whereJN =J0andJn=J forn6=0,N

Mean field approach for∆'0: mapping to a quadratic free-fermionic Hamiltonian

Numerical optimization: findingJ0opt

Complex scattering for strong∆

Scattering can favour transmission

Optimize the initial state of the chain as well

Bayat, Banchi, Bose, Verrucchi, in preparation

(21)

Interacting models and works in progress...

H=

N

X

n=0

Jn

σnxσn+1xnyσn+1y + ∆σnzσzn+1

whereJN =J0andJn=J forn6=0,N

Mean field approach for∆'0: mapping to a quadratic free-fermionic Hamiltonian

Numerical optimization: findingJ0opt Complex scattering for strong∆

Scattering can favour transmission

Optimize the initial state of the chain as well

Bayat, Banchi, Bose, Verrucchi, in preparation

(22)

Conclusions

General idea for quadratic Hamiltonians

High quality information transmission between distant parts Experimental feasibility (unmodulated interactions)

Cold atoms

Banchi, Bayat, Verrucchi, Bose, PRL in print Other possible applications in solid state

Referências

Documentos relacionados

Ici encore des sujets qui ont soulevé de nombreux débats, parfois houleux, voire provoqué des résistances acharnées : l’imagerie stéréotypée de la femme noire que Betye Saar démonte