• Nenhum resultado encontrado

A ALGUMAS PROPOSIÇÕES DOS ELEMENTOS DE EUCLIDES.

No documento TC-OsElementosdeEuclides (páginas 187-200)

PROP. XXII. DO LIV. I.

Alguns querem culpar a EUCLIDES por não ter demonstrado, que os círculos, descritos na construção dêste problema, se hão de encontrar um ao outro, reciprocamente. Mas isto fica sendo evidente depois dêle ter determinado, que, das três retas DF, FG, GH, (Fig. 1.) duas, quaisquer que sejam, tomadas juntas hão de ser maiores que a terceira. Porque qual é o principiante tão rude, que não veja que o círculo descrito com o centro F, e o intervalo DF deve encontrar a reta FH entre os pontos F, H, visto ser DF<FH; e também que o círculo descrito com o centro G, e o intervalo GH, ou GM há de encontrar a reta DG entre os pontos G, D; e finalmente que os ditos círculos se hão de cortar um a outro reciprocamente, por serem as retas DF, GH tomadas juntas maiores que a terceira FG? E esta determinação é mais simples do que a outra deduzi da desta mesma, e em lugar dela posta por THOMAZ SIMPSON, nos seus Elementos de Geometria a pág. 49, com o pretexto de suprir a falta de EUCLIDES, a quem ele condena. Determina pois SIMPSON que cada uma das três retas deve ser menor, que as outras duas tomadas juntamente, e ao mesmo tempo deve ser maior que o excesso das mesmas outras duas. Com êste princípio demonstra êle em um caso, que os círculos se hão de encontrar um ao outro; e ajunta que, em qualquer outro caso, se pode demonstrar a mesma coisa, e do mesmo modo. Mas a reta GM, que êle quer se tire da reta GF, pode ser maior que a mesma GF, como na nossa figura; no qual caso é necessária outra demonstração diferente daquela, que deu o mesmo SIMPSON.

PROP. XXIX. DO LIV. I.

Aquela proposição, que vulgarmente se chama o postulado quinto ou o axioma undécimo, e por outros o axioma duodécimo, e da qual principalmente depende esta proposição 29, não tem dado pouco que fazer aos geômetras, tanto antigos como modernos. E sem dúvida, parece que senão deve pôr entre os axiomas, visto não ser uma verdade por si evidente; por outra parte, não admite uma demonstração rigorosa. Necessita, porém, de alguma explicação para que fique mais intelegível, e isto faremos nós com a maior clareza e facilidade que nos fôr possível.

Primeiramente, cada um sem dificuldade alguma pode ver que as duas retas AB, CD (Fig. 2.), existentes no mesmo plano, e ambas perpendiculares à mesma reta AC, são paralelas. entre si, isto é, que por mais que sejam produzidas as mesmas retas. AB, CD, em parte nenhuma se poderão avizinhar uma à outra, ou se poderão apartar uma de outra; e assim parece, que não haverá pessoa alguma, que julgue de outro modo das ditas duas retas. E, com efeito, não se pode conceber que uma delas, como a reta AB, se incline para a outra CD, por pouco que seja, sem que a mesma reta AB se incline também sôbre a reta AO, para aquela mesma parte onde existe a reta CD, o que não pode suceder assim, por se supor a reta AB perpendicular à reta AC. O mesmo se deve também dizer de quaisquer outras duas retas AB, CD (Fig. 3.), as

quais fazem com a reta EAC os ângulos iguais EAB, ECD para a mesma parte da reta EAC, visto que cada uma das ditas retas AB, CD pode ser perpendicular a outra linha reta. E, com efeito, dividida pelo meio a reta AC no ponto F, e tirada a reta FG perpendicularmente. sôbre a reta AB produzida, e produzida também a dita GF até o ponto H da outra reta CD; nos triângulos AFG, CFR, pela hipótese, e, pela proposição 15 do Liv. I, será o ângulo GAE = HCF, e AFG = CFH. Mas o lado AF é igual ao lado FC. Logo, pela proposição 26. do Liv. I deve ser o ângulo AGF = CHF. Logo, sendo reto o ângulo AGF, também será reto o ângulo CHF, e por conseqüência cada uma das retas BG,' DH será perpendicular à mesma reta GH.

É manifesto, em segundo lugar, que duas linhas retas, que saem do mesmo ponto, se vão apartando cada vez mais uma de outra, de maneira que a distância mínima, entre a extremidade de uma delas e a outra reta, pode finalmente vir a ser maior do que qualquer linha reta proposta. Suponhamos, por exemplo, que de duas retas, que saem do mesmo ponto, uma é de dez pés de comprimento; suponhamos também, que a distância mínima, entre a extremidade desta reta de dez pés de comprimento e a, outra, é de um pé. Se a reta de dez pés de comprido fôr produzida até vinte pés, a distância mínima entre a extremidade desta de vinte pés, e a outra reta também produzida, será de dois pés, ficando assim esta distância acrescentada do comprimento de outro pé; e dêste modo se aquelas duas retas, que saem do mesmo ponto, forem cada vez mais produzidas, a mesma distância mínima da extremidade de uma delas, a respeito da outra reta, cada vez virá sendo maior. Esta propriedade depende inteiramente da natureza da linha reta, a qual constantemente conserva a mesma direção; e rigorosamente se não pode demonstrar pelo que acima fica exposto.

Suposto tudo isto, sejam as duas retas AB, FD (Fig. 4.) as quais, com a terceira EFH, façam os ângulos internos e dá mesma parte BEF, EFD, e sejam êstes ângulos tomados juntos menores que dois retos. Digo que as retas AB, FD hão de concorrer para a parte BD, para a qual ficam os ângulos. BEF, EFD.

No ponto F existente na reta FH, para a mesma parte' desta reta, faça- se (Pr. 23.1.) o ângulo externo GFH igual ao interno BEF. Logo, pelo que temos declarado acima, as paralelas (Pr. 28.1.) EB, FG, por mais que sejam produzidas, hão de conservar sempre entre si a mesma distância. E como os ângulos HFG, GFE, tomados juntos, são iguais a dois retos (Pr. 13.1.), também os ângulos BEF, EFG, tomados juntos devem ser iguais a dois retos. Mas os ângulos BEF, EFD, pela hipótese, são menores que dois retos. Logo, será o ângulo EFG>EFD, e por conseqüência .a reta FD cairá entre as retas eqüidistantes, ou paralelas, EB, FG. Mas as retas FG, FD, que partem do mesmo ponto F, produzidas que sejam, hão de vir a ter entre si uma distância maior que o intervalo. das eqüidistantes FG, EB. Logo, a reta FD por fim deve passar para outra parte da reta EB, a respeito do ponto F, e assim deve necessariamente concorrer com a mesma reta EB..

PROP. l. DO LlV. III.

Alguns autores, principalmente dentre os modernos, disputam com grande severidade, e ao mesmo tempo com grande imperícia, contra as

demonstrações apagógicas ou indiretas; e não reparam que há algumas coisas, que se não podem demonstrar de outro modo. A proposição presente é um exemplo assaz evidente do que afirmo, visto não ser possível demonstrá-la diretamente. E, com efeito, fora da definição do círculo não há, a respeito do mesmo círculo, outro princípio algum com que se possa fazer uma demonstração, ou direta, ou indireta. Fica pois manifesto que por meio da dita definição do círculo, e das proposições antecedentemente demonstradas, se deve provar que o ponto achado pela construção é o ponto do círculo. Sendo pois necessário o uso dêste princípio, isto é, que as linhas retas tiradas do centro para a circunferência do círculo são tôdas iguais entre si; e por outra parte não sendo lícito tomar como centro do círculo o ponto achado pela cons- trução, porque isto mesmo é o que se deve demonstrar; se faz evidente ser preciso tomar algum outro ponto diferente, e considerá-lo como centro do círculo. E se dêste ponto assim tomado se segue algum absurdo, como EUCLIDES demonstra que com efeito se segue, claro está, que o ponto tomado não é o centro do círculo. E como o dito ponto foi tomado de qualquer modo, legitimamente se pode concluir que nenhum outro ponto, fora do que fica determinado pela construção, pode ser o centro do círculo. E pois evidente a necessidade da demonstração indireta, ou daquela pela qual se chega a concluir algum absurdo.

DEFINIÇÃO II. DO LIV. VI.

Esta definição II. parece que não é de EUCLIDES, mas sim de algum outro pouco perito, porque nem EUCLIDES, nem alguns dos outros geômetras, que eu saiba, fez uma só vez menção de figuras recíprocas. Foi exposta com alguma obscuridade, e por esta razão a demos com maior clareza. Porém, em lugar dela seria melhor substituir a seguinte:

DEFINIÇÃO II.

Duas grandezas se dizem reciprocamente proporcionais a respeito de outras duas, quando uma das primeiras é para uma das segundas, como a outra destas segundas é para a outra das primeiras.

PROPOSIÇÕES XXVIII. E XXIX. DO LIV. VI.

Estes dois problemas, para o primeiro dos quais é necessária a proposição 27, são de quantos há nos “Elementos” os mais gerais, e mais úteis, e de que freqüentemente usam os geômetras antigos na solução de outros problemas. Pelo que o P. ANDRÉ TACQUET, e o P. CLÁUDIO DECHALLES, com bem pouco acêrto, os não quiseram pôr nos “Elementos” que publicaram, com o pretexto de que êstes problemas eram quase de nenhum uso ou utilidade. Porém, os geômetras geralmente fazem um grande uso dos diferentes casos dêstes problemas, isto é, quando a uma linha reta dada se deve aplicar um retângulo igual a um quadrado proposto, e coma falta, ou excesso de um quadrado; e quando a uma linha reta também dada se deve aplicar um retângulo igual a outro retângulo, e com a falta, ou excesso

de um quadrado. Nós, a benefício dos que principiam, poremos aqui as construções dos ditos casos na forma seguinte:

I

Aplicar a uma linha reta dada um retângulo igual a um quadrado proposto, e com o defeito de outro quadrado; contanto, porém, que o quadrado proposto não seja maior que o retângulo, que fica descrito sôbre a metade da reta dada (Fig. 5.).

Seja dada a linha reta AB, e o quadrado, ao qual se quer igual o retângulo, que deve ser aplicado à reta AB, seja aquêle que se pode descrever sôbre a reta C, e não maior do que o retângulo que fica formado sôbre a metade da reta AB.

Divida-se a reta AB pelo meio no ponto D. Se o quadrado de AD fôr igual ao quadrado da reta C, ficará feito o que se pede. Mas não sendo o quadrado de AD igual ao quadrado de C, pelo que temos suposto, será AD>C. Tire-se DE perpendicular a AB, e ponha-se DE = C. Produza-se também a reta ED até o ponto F, de maneira que seja EF = AD ou DB; e com o centro E e o intervalo EF se descreva um círculo, que encontre a reta AB no ponto G. Faça- se sôbre GB o quadrado GBKH, e se considere completado o retângulo AGHL. Digo que o retângulo AH é o que se pede. Tire-se a reta EG. Como a reta AB está dividida pelo meio no ponto D, e em partes desiguais no ponto G; o retângulo compreendido pelas retas AG, GB, juntamente com o quadrado de DG, será igual (Pr. 5.2.) ao quadrado de DB, isto é, será igual ao quadrado de EF ou de EG, que é o mesmo que dizer igual (Pr. 47.1.) aos quadrados de ED e de DG. Tire-se de uma e outra parte o mesmo quadrado de DG. Ficará o retângulo das retas AG, GB igual ao quadrado de ED, isto é, igual ao quadrado da reta C. Mas o retângulo das retas AG, GB é o mesmo retângulo AH, por ser GH = GB. Logo, o retângulo AH é igual ao quadrado proposto da reta C, e por conseqüência temos aplicado à reta AB o retângulo AR, igual ao quadrado da reta C, e com a falta do quadrado GK, que é o que se devia fazer.

II

Aplicar a uma linha reta dada um retângulo igual a um quadrado proposto, e com o excesso de outro quadrado (Fig.6.).

Seja AB a linha reta dada, e o quadrado proposto seja aquêle, que se pode formar sôbre a reta C.

Divida-se a reta AB em duas partes iguais no ponto D e tire-se EB perpendicularmente sôbre a reta AB, de maneira que seja BE = C; e, tirada a reta DE, com o centro D e o semidiâmetro DE se descreva um círculo, que encontre a reta AB no ponto G. Descreva-se finalmente sôbre BG o quadrado BGHK, e complete-se o retângulo AGHL. Será êste retângulo o que se pede. Como a reta AB está dividida em partes iguais no ponto D, e em direitura dela está posta a reta BG; o retângulo compreendido pelas retas AG, GB, juntamente com o quadrado de DB, será igual (Pr. 6.2.) ao quadrado de DG, ou de DE, isto é, será igual aos quadrados de EB e de BD. Logo, tirando o quadrado comum da reta DB, o retângulo das retas AG, GB, que resta, será

igual ao quadrado de BE, isto é, será igual ao quadrado da reta C. Mas o retângulo das retas AG, GB, é o mesmo retângulo AH, porque temos. GH = GB. Logo, o retângulo é igual ao quadrado da reta C; e assim temos aplicado à reta AB o retângulo AH, igual ao quadrado proposto da reta a, é com o excesso do quadrado GK, que é o que se devia fazer.

III

Aplicar a uma linha reta dada um retângulo igual a outro retângulo dado, e com a falta de um quadrado, contanto que o retângulo proposto não seja maior que o quadrado, que pode ser descrito sôbre a metade da reta dada (Fig. 7.).

Seja dada a reta AB e mais o retângulo, que pode ser compreendido pelas retas C, D, e suponha-se não ser êste retângulo maior do que o quadrado, que se pode descrever sôbre a metade da reta AB. Deve-se aplicar à reta AB um retângulo igual ao retângulo das retas a, D, e com a falta de um quadrado.

Levantem-se dos pontos A, B as retas AE, BF perpendicularmente sôbre AB e para a mesma parte, de maneira que seja AE = C, e BE = D. Tire-se a reta EF, dividida a qual pelo meio no ponto G, com o centro G, e o intervalo GE se descreva um círculo, que encontre segunda vez a reta AE no ponto H. Tire-se RF, e a esta paralela GK, e também GL paralela à reta AE.

Como o ângulo EHF, existente no semicírculo ERF, é igual ao ângulo reto EAB, serão paralelas as retas AB, HF. Mas as retas AH, BF são também paralelas. Logo, será AH = BF, e o retângulo compreendido pelas retas EA, AH será igual ao retângulo compreendido pelas retas EA, BF, isto é, será igual ao retângulo das retas propostas C, D. E como temos EG = GF, e são paralelas entre si as retas AE, LG, BF, será AL = LB. Mas o retângulo das retas C, D, pela suposição não é maior que o quadrado da reta AL, que é a metade da reta proposta AB. Logo, também o retângulo compreendido pelas retas EA, AH, não é maior do que o quadrado da reta AL, isto é, da reta KG. Ajunte-se- lhes o mesmo quadrado de KE. O retângulo das retas EA, AH, juntamente com o quadrado KE, não será maior que os quadrados de KG e de KE. Mas visto serem iguais (Pr. 3.3.) entre si as duas EK, KH, o retângulo das retas EA, AH, juntamente com o quadrado de KE, é igual (Pr. 6.2.) ao quadrado de AK. Logo, o quadrado de AK não será maior que os dois quadrados de EK e de KG, isto é, não será maior que o quadrado de EG, e por conseqüência a reta AK, ou GL não pode, ser maior que a reta GE. Demonstrado tudo isto assim, se fôr GE = GL, o círculo EHF tocará a reta AB no ponto L, e será o quadrado de AL igual (Pr. 36.3.) ao retângulo das retas EA, AR, isto é, das retas dadas C, D; e dêste modo ficará feito o que se queria. Mas se não forem iguais as retas EG, GL, será EG>GL, e por conseqüência o círculo EHF cortará a reta AB. Corte-a pois nos pontos M, N. Faça-se sôbre NB o quadrado NBOP, e complete-se o retângulo ANPQ. Como temos ML = LN (Pr. 3.5.), e já se tem provado ser AL = LB,será também AM = NB. Logo, o retângulo compreendido pelas retas AN, NB deve ser igual ao retângulo das retas NA, AM, isto é, ao retângulo (Cor.

36.3.) das retas EA, AR, ou das retas dadas C, D. Mas o retângulo

Logo, o retângulo AP é igual ao retângulo compreendido pelas retas C, D. Logo, à linha reta dada AB temos aplicado o retângulo AP igual ao retângulo das retas propostas C, D, e com a falta do quadrado BP, que é o que se devia fazer.

IV

Aplicar a uma linha reta dada um retângulo igual a outro retângulo. proposto, e com o excesso de uma quadrado (Fig. 8.).

Seja AB a linha reta dada, e seja. o retângulo proposto aquêle, que é compreendido pelas retas C, D. Deve-se aplicar à reta AB um retângulo igual ao retângulo das retas C, D, e com o excesso de um quadrado.

Dos extremos A, B da reta dada sejam lançadas para partes contrárias as retas AE, BF, perpendiculares à mesma reta AB, de maneira que seja AE = C, e BF = D. Tire-se EF, e dividida esta pelo meio no ponto G, com. o centro G, e o semidiâmetro GE se descreva um círculo, o qual encontre outra vez a reta AE produzida no ponto H. Tire-se também a reta HF, e depois a reta GL paralela a AE, Produza-se a reta AB para uma e outra parte, até que encontre a circunferência do círculo nos pontos M, N. Descreva-se sôbre a parte BN o quadrado NBOP, e complete-se o retângulo ANPQ. Será êste retângulo o que se pede. Como o ângulo EHF, existente no semicírculo EHF, é igual ao ângulo reto EAB, serão paralelas entre si as retas AB, HF. Logo, são iguais as retas AH, BF, e por conseqüência o retângulo compreendido pelas retas EA, AH é igual ao retângulo compreendido pelas retas EA, BP, isto é, pelas retas C, D. Sendo pois ML = LN, e AL = LB, será também MA = BN, e assim será o retângulo das retas AN, NB igual ao retângulo das retas MA, AN, isto é, das retas EA, AR (Pr. 35.3.), ou das retas C, D. Logo, o retângulo compreendido pelas retas AN, NB, isto é, o retângulo AP é igual ao retângulo compreendido pelas retas dadas C, D. Logo, tem-se aplicado à reta proposta AB o retângulo AP, igual ao retângulo compreendido pelas retas C, D, e com o excesso do quadrado BP, que é o que se devia fazer.

WILLEBRORDO SNELLIO, segundo me parece, foi o primeiro que indicou as construções do terceiro e quarto problema no seu Apolônio Bótavo, e depois dêle o célebre HALLEIO no Escólio da proposição do livro 8. das

Seções Cônicas de Apolônio, por êle restituído.

O problema III. pode-se propor dêste modo. Dividir a reta dada AB (Fig. 7.) em um ponto N, de maneira que o retângulo compreendido pelos segmentos dela AN, NB seja igual a um espaço dado. Ou, o que é o mesmo, dada a soma AB dos dois lados, que compreendem um retângulo, e dada a grandeza do mesmo retângulo, achar os ditos lados.

O problema IV. pode-se também propor assim. Achar na linha reta dada AB (Fig. 8.), e produzida, o ponto N, de maneira que o retângulo compreendido pelas retas AN, NB seja igual a um espaço dado. Ou também, o que vem a ser o mesmo, dada a reta AB, como se fôsse a diferença dos dois lados, que compreendem um retângulo, e dada a grandeza do mesmo retângulo, determinar os lados dêste mesmo retângulo.

A proposição 26. do livro 6. não vem enunciada com tôda aquela generalidade que podia ter. Porque não somente dois paralelogramos semelhantes e semelhantemente postos, e que têm um ângulo comum, existem ao redor da mesma diagonal; mas também dois paralelogramos semelhantes e semelhantemente postos, tôdas as vêzes que um ângulo de um dêles é verticalmente oposto a outro ângulo do outro, têm as diagonais em direitura uma de outra. Parece pois que a demonstração dêste segundo caso devia ser diferente, direta, porém, e deduzida da proposição 32., a qual se pode demonstrar com maior brevidade, e do modo seguinte: .

PROP. XXXII. DO LIV. VI.

Se dois triângulos, nos quais dois lados de um são proporcionais a dois lados do outro, se dispuserem entre si de maneira que, tocando-se com dois ângulos, os lados homólogos sejam respectivamente paralelos; os outros lados dos mesmos triângulos estarão em direitura um com outro (Fig. 9).

Sejam os dois triângulos GAP, HFO, e sejam os lados AG, GF do primeiro proporcionais aos lados FH, HC do segundo, isto é, seja AG:GF::FH:HC. Suponhamos também serem paralelas tanto as retas GA, HF, como as retas GF, HO. Digo que o lado AF está em direitura do lado FC.

Tire-se a reta CK paralela (Pr. 31.1.) a FH, e que encontre a outra GF

No documento TC-OsElementosdeEuclides (páginas 187-200)

Documentos relacionados