• Nenhum resultado encontrado

Alguns exemplos que aparecem na literatura do processo Z + jatos usado como um padrão incluem i) Z + jatos como uma normalização de referência para a estimativa dos decaimentos invisíveis do Z após ajustar a simulação de Monte Carlo aos dados ii) Z + jatos como um instrumento para extrair correções para a energia dos jatos e/ou a eficiência na reconstrução dos jatos (e.g. balanceamento entre o Z e os jatos) e iii) Z + jatos como uma referência para a reconstrução da E/ .T

Devido às similaridades entre as topologias dos processos Z + jatos e W + jatos a amostra de Z(→µµ) + jatos pode usada para calibrar a E/ em eventos deT

W(→µν) + jatos. A E/ é decomposta em duas componentes ortogonais, denomina-T

das Uk e U, que correspondem respectivamente às componentes da E/ paralelaT

e perpendicular ao múon associado ao candidato a bóson W. Uma topologia do tipo W + jatos pode ser obtida a partir de eventos Z(→µµ) + jatos se se tratar um

dos múons do decaimento do Z como um neutrino. A amostra Z(µµ) + jatos

selecionada é usada para computar correções a Uke Ucomparando os valores da ET

/ calorimétrica com os valores obtidos da cinemática do dimúon. Cada evento da amostra padrão entra com um peso baseado no valor de mµµ, seguindo-se a técnica

de sPlot, que fornece uma subtração de fundo otimizada. A massa transversa do W é mostrada antes e depois das correções no canal de W(→µν) + ≥1 jato na FiguraA.5. Depois das correções a borda Jacobiana característica é essencialmente recuperada.

Bósons Z e jatos produzidos através de um novo mecanismo no LHC poderiam induzir um grande desvio de uma razão C constante na contagem de jatos. Este é o caso por exemplo em modelos de SUSY com produção de bósons Z reais e alta multiplicidade de jatos no estado final. Este tipo de mecanismo de produção poderia induzir um excesso de eventos com alta multiplicidade de jatos e uma discrepância entre o número de contagens observado e o esperado, obtido a partir dos números de contagens de Z +≥1 e Z +≥2 jatos. A presença de eventos de

Física Nova poderia também enviesar a previsão, uma vez que a contagem de jatos é inclusiva e os eventos de Física Nova estarão contaminando todos os canais de multiplicidade de jatos.

Para demonstrar a sensibilidade da análise na quebra da variação de Berends- Giele, nós consideramos um ponto padrão de SUSY com mSUGRA que inclui a produção de bósons Z em decaimentos de neutralinos. Para um dado número de eventos de Física nova na amostra com Z +1 jato, nós geramos um conjunto de pseudo experimentos de MC de acordo com o Modelo Padrão e as densidades de probabilidade para o fundo obtidas na seção anterior.

A amostra de SUSY contém eventos com bósons Z reais assim como falsos candidatos de léptons produzidos nas cadeias de decaimento de partículas de SUSY. O ajuste consegue distinguir entre candidatos reais e candidatos falsos a bóson Z, mas não consegue separar eventos de Física Nova e eventos de Modelo Padrão. Isto resulta em uma discrepância entre as contagens de eventos observadas a altas multiplicidades de jatos e os valores previstos usando a variação de Berends- Giele a baixas multiplicidades de jatos. O resultado é mostrado na FiguraA.6

como função do número total de eventos de Física Nova (incluindo aqueles com falsos candidatos a Z) adicionados a 100 pb−1de eventos de Modelo Padrão.

Um desvio simultâneo da previsão tanto nas contagens de jatos calorimétricos como de jatos de traços não poderia ser facilmente atribuído a efeitos sistemáticos. Se uma discrepância desse tipo for vista nos dados, além do que os efeitos de QCD discutidos na seção anterior poderiam induzir, seria possível usar sPlots para caracterizar o excesso de eventos, estudando os efeitos de candidatos a matéria escura estáveis e fracamente interagentes na distribuição de E/ .T

A análise da amostra padrão Z + jatos pode também fornecer uma medida do fundo irredutível Z→ (νν)+ jatos para buscas por Física Nova em estados finais

hadrônicos. Isto é mostrado na FiguraA.7onde comparamos a distribuição esperada da E/ no processo Z(T →νν) + jatos com os sPlots de eventos Z(→µµ) +

events N 10 2 10 3 10 CMS Preliminary n calo−jets ! )+ µ µ " Z( −1 =10 TeV, L=100 pb s calo−jet multiplicity (n) 1 2 3 4 n+1 jets) ! )+ µ µ N(Z( n jets) ! )+ µ µ N(Z( 4 6 8 events N 10 2 10 3 10 CMS Preliminary n calo−jets ! ee)+ " Z( −1 =10 TeV, L=100 pb s calo−jet multiplicity (n) 1 2 3 4 n+1 jets) ! N(Z(ee)+ n jets) ! N(Z(ee)+ 5 10 events N 2 10 3 10 4 10 CMS Preliminary n track−jets ! )+ µ µ " Z( −1 =10 TeV, L=100 pb s track−jet multiplicity (n) 1 2 3 4 n+1 jets) ! )+ µ µ N(Z( n jets) ! )+ µ µ N(Z( 5 6 events N 2 10 3 10 CMS Preliminary n track−jets ! ee)+ " Z( −1 =10 TeV, L=100 pb s track−jet multiplicity (n) 1 2 3 4 n+1 jets) ! N(Z(ee)+ n jets) ! N(Z(ee)+ 4 5 6 events N 10 2 10 3 10 CMS Preliminary n PF−jets ! )+ µ µ " Z( −1 =10 TeV, L=100 pb s PF−jet multiplicity (n) 1 2 3 4 n+1 jets) ! )+ µ µ N(Z( n jets) ! )+ µ µ N(Z( 4 6 8 events N 10 2 10 3 10 CMS Preliminary n PF−jets ! ee)+ " Z( −1 =10 TeV, L=100 pb s PF−jet multiplicity (n) 1 2 3 4 n+1 jets) ! N(Z(ee)+ n jets) ! N(Z(ee)+ 4 6 8

Figura A.4: Distribuições (dN/djets) e ajuste exponencial para Z(→ µµ) + ≥1 jato (esquerda) e Z(ee)+1 jato (direita) para diferentes definições de jato. O

resultado da razão constante Z + n jatos e Z + n+1 jatos para cada caso também é mostrado, com o intervalo de incerteza do ajuste.

] 2 [GeV/c T M 0 20 40 60 80 100 120 140 160 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Uncorrected Corrected

Figura A.5: Massa transversa do W na amostra W(µν)+1 jato antes e depois

da correção da E/ derivada da amostra padrão Z + jatos.T

Reconstructed SUSY Events [LM4]

0 20 40 60 80 100 120 140 4 jets≥ Z+ events N 0 100 200 300 −1 =10 TeV, L=100 pb s 4 jets ≥ measured Z+ 2 jets) ≥ 1 jets and Z+ ≥

SM candle expected (from Z+

CMS Preliminary

Reconstructed SUSY Events [LM4]

0 20 40 60 80 100 120 140

4 jets Pull≥

Z+

2 4

Figura A.6: Sinal simulado da evidência de SUSY.

MET (GeV) 100 150 200 250 300

events

N

10 2 10 3 10 4 10 1 jets data ≥ )+ µ µ → Z( 1jets ≥ )+ µ µ → 1 jets from Z( ≥ )+ ν ν → Z( 1 jets MC ≥ )+ ν ν → Z( CMS Preliminary −1 =10 TeV, L=100 pb s

Figura A.7: Distribuição da energia transversa faltante E/ , obtida a partir dosT

[1] T. R. F. P. Tomei, S. F. Novaes, M. Spiropulu, and M. Pierini, “Search for Randall-Sundrum Gravitons Decaying into a Jet plus Missing ETat CMS”,

CMS Analysis Note AN-2011/226 (2011). Restricted to CMS members. [2] CMS Collaboration, “Search for Randall-Sundrum Gravitons Decaying into

a Jet plus Missing ET at CMS”, CMS Physics Analysis Summary EXO-11-061 (2012).http://cdsweb.cern.ch/record/1426654.

[3] CMS Collaboration, “Search for Randall-Sundrum Gravitons Decaying into a Jet plus Missing ETat CMS”, Phys.Lett. B (2012). In preparation.

[4] ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron Collider”, JINST 3 (2008) S08003,

doi:10.1088/1748-0221/3/08/S08003.

[5] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004,doi:10.1088/1748-0221/3/08/S08004.

[6] LHCb Collaboration, “The LHCb Detector at the LHC”, JINST 3 (2008) S08005,doi:10.1088/1748-0221/3/08/S08005.

[7] ALICE Collaboration, “The ALICE experiment at the CERN LHC”, JINST 3(2008) S08002,doi:10.1088/1748-0221/3/08/S08002.

[8] e. Evans, Lyndon and e. Bryant, Philip, “LHC Machine”, JINST 3 (2008) S08001,doi:10.1088/1748-0221/3/08/S08001.

[9] CMS Collaboration, “CMS physics: Technical design report”, CMS-TDR-008-1 (2006).

[10] D. Green, “The Physics of Particle Detectors”. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, 2005.

[11] C. Grupen and B. Schwartz, “Particle Detectors”. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, 2011.

[12] A. Vilela Pereira and M. Arneodo, “Prospects for the measurement of hard diffraction with the CMS detector at the Large Hadron Collider.

oai:cds.cern.ch:1310335”. PhD thesis, Turin U., Turin, 2010.

[13] R. Frühwirth, M. Regler, R. K. Bock et al., “Data Analysis Techniques for High-Energy Physics”. Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Cambridge University Press, 2000. [14] CMS Collaboration, “SWGuideTrackReco”.https://twiki.cern.ch/

twiki/bin/view/CMSPublic/SWGuideTrackReco.

[15] W. Adam, B. Mangano, T. Speer et al., “Track reconstruction in the CMS tracker”, CERN-CMS-NOTE-2006-041 (2005).

[16] CMS Collaboration, “SWGuideEcalRecoClustering”.

https://twiki.cern.ch/twiki/bin/view/CMSPublic/

SWGuideEcalRecoClustering.

[17] R. Frühwirth, “Track fitting with nonGaussian noise”, Comput.Phys.Commun. 100 (1997) 1–16,

doi:10.1016/S0010-4655(96)00155-5.

[18] W. Adam, R. Frühwirth, A. Strandlie et al., “Reconstruction of Electrons with the Gaussian-Sum Filter in the CMS Tracker at the LHC”,

CERN-CMS-NOTE-2005-001 (2005).

[19] R. Wigmans, “Calorimetry: Energy Measurement in Particle Physics”. International Series of Monographs in Physics. Oxford Science Publications, 2000.

[20] CMS Collaboration, “SWGuideHcalRecHits”.https://twiki.cern.

ch/twiki/bin/view/CMSPublic/SWGuideHcalRecHits.

[21] G. Bruno, P. T. Cox, S. Lacaprara et al., “Local Reconstruction in the Muon Detectors”, CERN-CMS-NOTE-2002-043 (2002).

[22] CMS Collaboration, “SWGuideMuonLocalReco”.https://twiki.cern.

ch/twiki/bin/view/CMSPublic/SWGuideMuonLocalReco.

[23] E. James, Y. Maravin, M. Mulders et al., “Muon identification in CMS”, CERN-CMS-NOTE-2006-010 (2006).

[24] CMS Collaboration, “SWGuideTrackerMuons”.https://twiki.cern.

ch/twiki/bin/view/CMSPublic/SWGuideTrackerMuons.

[25] C. Grandi, D. Stickland, L. Taylor et al., “CMS Computing Model”, CERN-CMS-NOTE-2004-031 (2004).

[26] e. Bird, I., e. Bos, K., e. Brook, N. et al., “LHC computing Grid. Technical design report”, CERN-LHCC-2005-024 (2005).

[27] “Worldwide LHC Computing Grid”.http://lcg.web.cern.ch/lcg/. [28] V. Kuznetsov, D. Evans, and S. Metson, “The CMS data aggregation

system”, Procedia Computer Science 1 (2010), no. 1, 1535–1543,

doi:10.1016/j.procs.2010.04.172.

[29] L. Tuura, T. Barrass, B. D et al., “PhEDEx high-throughput data transfer management system”, in Computing in High Energy and Nuclear Physics. Mumbai, India, 2006.

[30] D. Spiga, M. Cinquilli, L. Servoli et al., “The CMS Remote Analysis Builder (CRAB)”, Lect.Notes Comput.Sci. 4873 (2007) 580–586,

doi:10.1007/978-3-540-77220-0_52.

[31] M. Dobbs and J. B. Hansen, “The HepMC C++ Monte Carlo event record for High Energy Physics”, Comput.Phys.Commun. 134 (2001) 41–46,

doi:10.1016/S0010-4655(00)00189-2.

[32] GEANT4 Collaboration, “GEANT4: A Simulation toolkit”, Nucl. Instrum. Meth. A506 (2003) 250–303,doi:10.1016/S0168-9002(03)01368-8. [33] F. Beaudette, “FAMOS, a FAst MOnte-Carlo Simulation for CMS”, 2005.

INSPIRE-707266.

[34] CMS Collaboration, “CMS. The TriDAS project. Technical design report, vol. 1: The trigger systems”, CERN-LHCC-2000-038 (2000).

[35] CMS Collaboration, “CMS: The TriDAS project. Technical design report, Vol. 2: Data acquisition and high-level trigger”, CERN-LHCC-2002-026 (2002). [36] A. Pich, “The Standard Model of Electroweak Interactions”, in

CERN-Fermilab Hadron Collider Physics Summer School. CERN, Geneva, Switzerland, 2011. arXiv:1201.0537.

[37] P. Langacker, “Introduction to the Standard Model and Electroweak Physics”, in The Dawn of the LHC Era: TASI 2008, T. Han, ed. World Scientific, 2010. arXiv:0901.0241.

[38] S. F. Novaes, “Standard Model: An Introduction”, in Particles and Fields: Proceedings of the X J. A. Swieca Summer School, J. C. A. Barata, M. Begali, and R. Rosenfeld, eds. World Scientific, 2000. arXiv:hep-ph/0001283. [39] Particle Data Group Collaboration, “Review of Particle Physics”, J. Phys.

G37(2010) 075021,doi:10.1088/0954-3899/37/7A/075021. [40] UA1 Collaboration, “Experimental Observation of Isolated Large

Transverse Energy Electrons with Associated Missing Energy at s**(1/2) = 540-GeV”, Phys.Lett. B122 (1983) 103–116.

[41] UA1 Collaboration, “Experimental Observation of Lepton Pairs of Invariant Mass Around 95-GeV/c**2 at the CERN SPS Collider”, Phys.Lett. B126 (1983) 398–410,doi:10.1016/0370-2693(83)90188-0.

[42] UA2 Collaboration, “Observation of Single Isolated Electrons of High Transverse Momentum in Events with Missing Transverse Energy at the CERN anti-p p Collider”, Phys.Lett. B122 (1983) 476–485,

doi:10.1016/0370-2693(83)91605-2.

[43] UA2 Collaboration, “Evidence for Z0 —>; e+ e- at the CERN anti-p p Collider”, Phys.Lett. B129 (1983) 130–140,

doi:10.1016/0370-2693(83)90744-X.

[44] S. Bethke, “Experimental tests of asymptotic freedom”, Prog.Part.Nucl.Phys. 58(2007) 351–386,doi:10.1016/j.ppnp.2006.06.001,

arXiv:hep-ex/0606035.

[45] S. Kluth, “Tests of Quantum Chromo Dynamics at e+ e- Colliders”, Rept.Prog.Phys. 69 (2006) 1771–1846,

doi:10.1088/0034-4885/69/6/R04, arXiv:hep-ex/0603011.

[46] P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA Recommended Values of the Fundamental Physical Constants: 2006”, Rev.Mod.Phys. 80 (2008) 633–730,doi:10.1103//RevModPhys.80.633, arXiv:0801.0028.

[47] ALEPH, DELPHI, L3, OPAL, and SLD Collaborations, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group Collaboration, “Precision electroweak measurements on the Z resonance”, Phys.Rept. 427 (2006) 257–454,

doi:10.1016/j.physrep.2005.12.006,

arXiv:hep-ex/0509008.

[48] CMS Collaboration, “Combined results of searches for the standard model Higgs boson in pp collisions at sqrt(s) = 7 TeV”, arXiv:1202.1488. [49] The LEP Electroweak Working Group, “LEP EWWG Home Page”.

http://lepewwg.web.cern.ch/LEPEWWG/.

[50] M. Gonzalez-Garcia and Y. Nir, “Neutrino masses and mixing: Evidence and implications”, Rev.Mod.Phys. 75 (2003) 345–402,

doi:10.1103/RevModPhys.75.345, arXiv:hep-ph/0202058.

[51] S. Weinberg, “Cosmology”. Oxford University Press, 2008.

[52] N. Jarosik, C. L. Bennett, J. Dunkley et al., “Seven-Year Wilkinson

Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results”, Astrophys.J.Suppl. 192 (2011) 14,

doi:10.1088/0067-0049/192/2/14, arXiv:1001.4744.

[53] R. S. Chivukula, “Lectures on Technicolor and Compositeness”, in TASI 2000, Flavor Physics for the Millennium, J. L. Rosner, ed. World Scientific, 2000.

arXiv:hep-ph/0011264.

[54] S. P. Martin, “A Supersymmetry Primer”, in Perspectives on Supersymmetry, G. L. Kane, ed. World Scientific, 1998. arXiv:hep-ph/9709356.

[55] J. L. Hewett and M. Spiropulu, “Particle Physics Probes Of Extra Spacetime Dimensions”, Ann.Rev.Nucl.Part.Sci. 52 (2002) 397–424,

doi:10.1146/annurev.nucl.52.050102.090706,

arXiv:hep-ph/0205106.

[56] R. Rattazzi, “Cargese Lectures on Extra Dimensions”, in Particle Physics and Cosmology: the Interface, D. Kazakov and G. Smadja, eds. Springed, 2005.

[57] M. Shifman, “LARGE EXTRA DIMENSIONS: Becoming acquainted with an alternative paradigm”, Int.J.Mod.Phys. A25 (2010) 199–225,

doi:10.1142/S0217751X10048548, arXiv:0907.3074.

[58] F. Quevedo, S. Krippendorf, and O. Schlotterer, “Cambridge Lectures on Supersymmetry and Extra Dimensions”, in Mathematical Tripos at the University of Cambridge. Cambridge, UK, 2010. arXiv:1011.1491. [59] T. Kaluza, “On the Problem of Unity in Physics”,

Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1921 (1921) 966–972.

[60] O. Klein, “Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English)”, Z.Phys. 37 (1926) 895–906,

doi:10.1007/BF01397481,10.1007/BF01397481.

[61] E. G. Adelberger, J. H. Gundlach, B. R. Heckel et al., “Torsion balance experiments: A low-energy frontier of particle physics”,

Prog.Part.Nucl.Phys. 62 (2009) 102–134,

doi:10.1016/j.ppnp.2008.08.002.

[62] V. A. Rubakov and M. E. Shaposhnikov, “Do We Live Inside a Domain Wall?”, Phys.Lett. B125 (1983) 136–138,

doi:10.1016/0370-2693(83)91253-4.

[63] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, “Bounds on universal extra dimensions”, Phys.Rev. D64 (2001) 035002,

doi:10.1103/PhysRevD.64.035002, arXiv:hep-ph/0012100.

[64] D0 Collaboration, “Search for universal extra dimensions in p ¯p collisions”, Phys.Rev.Lett. 108 (2012) 131802, arXiv:1112.4092.

[65] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, “The Hierarchy problem and new dimensions at a millimeter”, Phys.Lett. B429 (1998) 263–272,doi:10.1016/S0370-2693(98)00466-3,

arXiv:hep-ph/9803315.

[66] L. Randall and R. Sundrum, “Large Mass Hierarchy from a Small Extra Dimension”, Phys.Rev.Lett. 83 (1999) 3370–3373,

[67] L. Randall and R. Sundrum, “An Alternative to Compactification”, Phys.Rev.Lett. 83 (1999) 4690–4693,

doi:10.1103/PhysRevLett.83.4690, arXiv:hep-th/9906064.

[68] Supernova Cosmology Project Collaboration, “Improved Cosmological Constraints from New, Old and Combined Supernova Datasets”, Astrophys.J. 686 (2008) 749–778,doi:10.1086/589937,

arXiv:0804.4142.

[69] H. Davoudiasl, J. L. Hewett, and T. G. Rizzo, “Phenomenology of the Randall-Sundrum Gauge Hierarchy Model”, Phys. Rev. Lett. 84 (2000) 2080,

doi:10.1103/PhysRevLett.84.2080, arXiv:hep-ph/9909255.

[70] T. Han, J. D. Lykken, and R.-J. Zhang, “On Kaluza-Klein states from large extra dimensions”, Phys. Rev. D59 (1999) 105006,

doi:10.1103/PhysRevD.59.105006, arXiv:hep-ph/9811350.

[71] T. Sjostrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual”, JHEP 0605 (2006) 026,

doi:10.1088/1126-6708/2006/05/026,

arXiv:hep-ph/0603175.

[72] M. Bahr, S. Gieseke, M. A. Gigg et al., “Herwig++ Physics and Manual”, Eur. Phys. J. C58 (2008) 639–707,

doi:10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883.

[73] D0 Collaboration, “Search for Randall-Sundrum gravitons in dilepton and diphoton final states”, Phys. Rev. Lett. 95 (2005) 091801,

doi:10.1103/PhysRevLett.95.091801,

arXiv:hep-ex/0505018.

[74] CDF Collaboration, “Search for new high mass particles decaying to lepton pairs in p ¯p collisions at√s =1.96 TeV”, Phys. Rev. Lett. 95 (2005) 252001,

doi:10.1103/PhysRevLett.95.252001,

arXiv:hep-ex/0507104.

[75] CDF Collaboration, “Search for Randall-Sundrum gravitons in the diphoton channel at CDF”, Phys. Rev. D83 (2011) 011102,

[76] D0 Collaboration, “Search for Randall-Sundrum gravitons in the dielectron and diphoton final states with 5.4 fb−1of data from p ¯p collisions ats

=1.96 TeV”, Phys. Rev. Lett. 104 (2010) 241802,

doi:10.1103/PhysRevLett.104.241802, arXiv:1004.1826.

[77] ATLAS Collaboration, “Search for dilepton resonances in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector”, Phys.Rev.Lett. 107 (2011) 272002,

arXiv:1108.1582.

[78] CMS Collaboration, “Search for signatures of extra dimensions in the diphoton mass spectrum at the Large Hadron Collider”, CMS Physics Analysis Summary EXO-11-038 (2011).

[79] CDF Collaboration, “Search for New Heavy Particles Decaying to Z0Z0 →eeee in p - ¯p Collisions at√s = 1.96-TeV”, Phys.Rev. D78 (2008) 012008,doi:10.1103/PhysRevD.78.012008, arXiv:0801.1129. [80] H. Davoudiasl, J. L. Hewett, and T. G. Rizzo, “Experimental probes of

localized gravity: on and off the wall”, Phys. Rev. D63 (2001) 075004,

doi:10.1103/PhysRevD.63.075004, arXiv:hep-ph/0006041.

[81] CDF Collaboration, “Search for Large Extra Dimensions in the Production of Jets and Missing Transverse Energy in p anti-p Collisions at s**(1/2) = 1.96 TeV”, Phys.Rev.Lett. 97 (2006) 171802,

doi:10.1103/PhysRevLett.97.171802,

arXiv:hep-ex/0605101.

[82] CDF Collaboration, “Search for large extra dimensions in final states containing one photon or jet and large missing transverse energy produced in p ¯p collisions at√s = 1.96-TeV”, Phys.Rev.Lett. 101 (2008) 181602,

doi:10.1103/PhysRevLett.101.181602, arXiv:0807.3132.

[83] CMS Collaboration, “Search for Dijet Resonances in 7 TeV pp Collisions at CMS”, Phys.Rev.Lett. 105 (2010) 211801,

doi:10.1103/PhysRevLett.105.211801, arXiv:1010.0203.

[84] CMS Collaboration, “Search for Quark Compositeness with the Dijet Centrality Ratio in pp Collisions at sqrt(s)=7 TeV”, Phys.Rev.Lett. 105 (2010) 262001,doi:10.1103/PhysRevLett.105.262001,

[85] CMS Collaboration, “Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS”, Phys.Lett. B704 (2011) 123–142,

doi:10.1016/j.physletb.2011.09.015, arXiv:1107.4771.

[86] J. M. Butterworth, A. R. Davison, M. Rubin et al., “Jet substructure as a new Higgs search channel at the LHC”, Phys.Rev.Lett. 100 (2008) 242001,

doi:10.1103/PhysRevLett.100.242001, arXiv:0802.2470.

[87] S. D. Ellis, C. K. Vermilion, and J. R. Walsh, “Techniques for improved heavy particle searches with jet substructure”, Phys.Rev. D80 (2009) 051501,

doi:10.1103/PhysRevD.80.051501, arXiv:0903.5081.

[88] B. C. Allanach, K. Odagiri, M. J. Palmer et al., “Exploring small extra dimensions at the large hadron collider”, JHEP 0212 (2002) 039,

arXiv:hep-ph/0211205.

[89] CMS Collaboration, “Measurement of the Underlying Event Activity at the LHC with√s =7 TeV and Comparison with√s =0.9 TeV”, JHEP 1109

(2011) 109,doi:10.1007/JHEP09(2011)109, arXiv:1107.0330. [90] M. Herquet and F. Maltoni, “MadGraph/MadEvent : A multipurpose event

generator”, Nucl.Phys.Proc.Suppl. 179-180 (2008) 211–217,

doi:10.1016/j.nuclphysbps.2008.07.026.

[91] CMS Collaboration, “Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and MET”, CMS Physics Analysis Summary PFT-09-001(2009).

[92] CMS Collaboration, “Commissioning of the Particle-flow Event

Reconstruction with the first LHC collisions recorded in the CMS detector”, CMS Physics Analysis Summary PFT-10-001 (2010).

[93] CMS Collaboration, “Commissioning of the Particle-Flow Reconstruction in Minimum-Bias and Jet Events from pp Collisions at√s =7 TeV”, CMS

Physics Analysis Summary PFT-10-002 (2010).

[94] CMS Collaboration, “Physics Analysis Toolkit (PAT)”, https://twiki.cern.ch/twiki/bin/view/CMS/SWGuidePAT (2011).

[95] CMS Collaboration, “Electron reconstruction and identification at√s =7

[96] CMS Collaboration, “Performance of muon identification in pp collisions at

s = 7 TeV”, CMS Physics Analysis Summary MUO-10-002 (2010).

[97] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-ktjet clustering

algorithm”, JHEP 0804 (2008) 063,

doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[98] S. Catani, Y. L. Dokshitzer, M. H. Seymour et al., “Longitudinally invariant K(t) clustering algorithms for hadron hadron collisions”, Nucl. Phys. B406 (1993) 187–224,doi:10.1016/0550-3213(93)90166-M.

[99] S. D. Ellis and D. E. Soper, “Successive combination jet algorithm for hadron collisions”, Phys.Rev. D48 (1993) 3160–3166,

doi:10.1103/PhysRevD.48.3160, arXiv:hep-ph/9305266.

[100] Y. L. Dokshitzer, G. D. Leder, S. Moretti et al., “Better jet clustering algorithms”, JHEP 9708 (1997) 001, arXiv:hep-ph/9707323.

[101] CMS Collaboration, “Jet energy calibration with photon + jet events”, CMS Physics Analysis Summary JME-09-004 (2009).

[102] CMS Collaboration, “Determination of the jet energy scale using Z →e+e

+ jet pT balance and a procedure for combining data driven corrections”,

CMS Physics Analysis Summary JME-09-005 (2009).

[103] CMS Collaboration, “Jet energy corrections determination at 7 TeV”, CMS Physics Analysis Summary JME-10-010 (2010).

[104] CMS Collaboration, “Missing transverse energy performance in

minimum-bias and jet rvents from proton-proton collisions at√s = 7 TeV”, CMS Physics Analysis Summary JME-10-004 (2010).

[105] G. P. Salam and G. Soyez, “A Practical Seedless Infrared-Safe Cone jet algorithm”, JHEP 0705 (2007) 086,

doi:10.1088/1126-6708/2007/05/086, arXiv:0704.0292.

[106] R. K. Ellis, W. J. Stirling, and B. R. Webber, “QCD and Collider Physics”, volume 8, ch. 9, pp. 319–321. Cambridge University Press, 2003.

[107] LHC Programme Coordination, “LHC Luminosity Plots for the 2011 Proton Run”.http://lpc.web.cern.ch/lpc/lumiplots.htm, 2011.

[108] CMS Collaboration, “CMS Luminosity - Public Results”.https://twiki.

cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults, 2011.

[109] CMS Collaboration, “Performance of the CMS Level-1 Trigger during Commissioning with Cosmic Ray Muons”, JINST 5 (2010) T03002,

doi:10.1088/1748-0221/5/03/T03002, arXiv:0911.5422.

[110] CMS Collaboration, “Commissioning of the CMS High-Level Trigger with Cosmic Rays”, JINST 5 (2010) T03005,

doi:10.1088/1748-0221/5/03/T03005, arXiv:0911.4889.

[111] L. Agostino, G. Bauer, B. Beccati et al., “Commissioning of the CMS High Level Trigger”, JINST 4 (2009) P10005,

doi:10.1088/1748-0221/4/10/P10005, arXiv:0908.1065.

[112] W. Waltenberger, “Adaptive vertex reconstruction”, CERN-CMS-NOTE-2008-033 (2008).

[113] CMS Collaboration, “Tracking and Primary Vertex Results in First 7 TeV Collisions”, CMS Physics Analysis Summary TRK-10-005 (2010).

[114] CMS Collaboration, “Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter”, JINST 5 (2010) T03014,

doi:10.1088/1748-0221/5/03/T03014, arXiv:0911.4881.

[115] CMS Collaboration, “Missing transverse energy performance of the CMS detector”, JINST 6 (2011) P09001,

doi:10.1088/1748-0221/6/09/P09001, arXiv:1106.5048.

[116] N. Saoulidou, “Particle Flow Jet Identification Criteria”, CMS AN AN-2010/003(2010).

[117] CMS Collaboration, “Search for New Physics with a Monojet and Missing Transverse Energy in pp Collisions at√s = 7 TeV with 1.1 fb−1”, CMS

Physics Analysis Summary EXO-11-059 (2010).

[118] J. Pumplin, D. R. Stump, J. Huston et al., “New generation of parton distributions with uncertainties from global QCD analysis”, JHEP 0207 (2002) 012, arXiv:hep-ph/0201195.

[119] A. D. Martin, W. J. Stirling, R. S. Thorne et al., “Parton distributions for the LHC”, Eur.Phys.J. C63 (2009) 189–285,

doi:10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002.

[120] A. D. Martin, W. J. Stirling, R. S. Thorne et al., “Uncertainties on alpha(S) in global PDF analyses and implications for predicted hadronic cross sections”, Eur.Phys.J. C64 (2009) 653–680,

doi:10.1140/epjc/s10052-009-1164-2, arXiv:0905.3531.

[121] NNPDF Collaboration, “A Determination of parton distributions with faithful uncertainty estimation”, Nucl.Phys. B809 (2009) 1–63,

doi:10.1016/j.nuclphysb.2008.09.037, arXiv:0808.1231.

[122] R. D. Ball, L. D. Debbio, S. Forte et al., “A first unbiased global NLO determination of parton distributions and their uncertainties”, Nucl.Phys. B838(2010) 136–206,doi:10.1016/j.nuclphysb.2010.05.008,

arXiv:1002.4407.

[123] CMS Collaboration, “RooStatsCl95: cross section in a counting experiment”.

Documentos relacionados