• Nenhum resultado encontrado

ACEVEDO, D.; CURRIE, D J Does climate determine broadscale patterns of species richness? a test of the causal link by natural experiment Global Ecology

MANTIQUEIRA, MATA ATLÂNTICA, M.G

H- ACEVEDO, D.; CURRIE, D J Does climate determine broadscale patterns of species richness? a test of the causal link by natural experiment Global Ecology

and Biogeography 12:461–473. 2003.

HATAKEYAMA, R. Ocupação e padrões de atividades de mamíferos de médio e grande porte em um mosaico de Mata Atlântica e plantações de eucalipto. Dissertação (Mestrado em Ecologia, Conservação e Manejo da Vida Silvestre) - Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais. 2015.

HEANEY, L. Small Mammal Diversity along Elevational Gradients in the Philippines: An Assessment of Patterns and Hypotheses. Global Ecology and Biogeography, 10(1), 15-39. Retrieved from http://www.jstor.org/stable/2665397. 2001. HUCK, M.; JUAREZ, C. P.; ROTUNDO, M. A.; DÁVALOS, V. M.; FERNANDEZ- DUQUE, E. Mammals and their activity patterns in a forest area in the Humid Chaco, northern Argentina, CheckList, 13(4): 363-378. 2017.

HUNTER, M. L.; YONZON, P. Altitudinal distribution of birds, mammals, people, forests, and parks in Nepal. Conservation Biology, 7: 420-423. http://dx.doi.org/10.1046/j.1523-1739.1993.07020420 . 1993.

HUTCHINSON, G. E. Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22:415- 422. 1957.

ICMBIO (INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA

BIODIVERSIDADE). Plano de Manejo do Parque Nacional do Itatiaia. Encante 3, 215p. 2013.

JÁCOMO, A. T. A.; SILVEIRA, L.; DINIZ-FILHO, J. A. F. Niche separation between the maned wolf (Chrysocyon brachyurus), the crab-eating fox (Dusicyon

thous) and the hoary fox (Dusicyon vetulus) in central Brazil. Journal of Zoology;

262: 99–106. .2004.

JANZEN, D. H. Sweep samples of tropical foliage insects: effects of season, vegetation types, elevation, time of day, and insularity. Ecology, 54: 687-708. http://dx.doi.org/10.2307/1935359. 1973.

JOHNSTON, K. M.; FREUND, K. A.; SCHMITZ, O. J. Projected range shifting by montane mammals under climate change: implications for Cascadia's National Parks. Ecosphere 3(11):97. http://dx.doi.org/10.1890/ES12-00077.1. 2012.

KARANTH, K. U.; NICHOLS, J. D. Monitoring tigers and their prey: a manual for researchers, managers and conservationists in Tropical Asia. Índia: Centre for Wildlife Studies. 2002.

KASPER, C. B.; MAZIM, F. D.; SOARES, J. B. G.; DE OLIVEIRA, T. G. Density estimates and conservation of Leopardus pardalis southernmost population of the Atlantic Forest. Iheringia, Sér. Zool., Porto Alegre , v. 105, n. 3, p. 367-371, Sept. Available from <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0073- 47212015000300367&lng=en&nrm=iso>. access on 23 Apr. 2018. http://dx.doi.org/10.1590/1678-476620151053367371. 2015.

KASPER, C. B.; SCHNEIDER, A.; OLIVEIRA, T. G. Home range and density of three sympatric felids in the Southern Atlantic Forest, Brazil. Braz. J. Biol., São Carlos , v. 76, n. 1, p. 228-232, Feb. Available from <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S151969842016000100228&l ng=en&nrm=iso>. Access on 23 Apr. 2018. Epub Feb 12, 2016. http://dx.doi.org/10.1590/1519-6984.19414. 2016.

KAUFMANN, J. H.; KAUFMANN, A. Observations on the behavior of tayras and grisons. Z. Sδugetierkunde, 30 : 146-155. 1965.

KAVANAU, J. L. Locomotion and activity phasing of some medium-sized mammals. Journal of Mammalogy, 52:386–403. 1971.

KEARNEY, M. Habitat, environment and niche: what are we modelling? Oikos 115, 186–191. doi:10.1111/j.2006.0030-1299.14908.x. 2006.

KEUROGHLIAN, A.; EATON, D. P. Removal of palm fruits and ecosystem engineering in palm stands by white-lipped peccaries (Tayassu pecari) and other frugivores in an isolated Atlantic Forest fragment. Biodivers. Conserv. 18, 1733– 1750. 2009.

KITCHEN, A. M.; GESE, E. M.; SCHAUSTER, E. R. Changes in coyote activity patterns due to reduced exposure to human persecution. Canadian Journal of Zoology 78:853–857. 2000.

KONECNY, M. J. Movement patterns and food habits of four sympatric carnivore species in Belize, Central America. Pp. 243-264, in Advances in Neo-tropical mammalogy (K. H. Redford and J. E Eisen-berg, eds.). Sandhill Crane Press, Gainesville, Flor-ida, 614 pp. 1989.

KÖPPEN, W. Das geographische System der Klimate. Handbuch der Klimatologie, v.1, Part C (W. Köppen & R. Geiger, eds.). Gerbrüder Bornträger, Berlin, p. C1-C44. 1936.

KÖRNER, C. The use of ‘altitude’ in ecological research. Trends in Ecology & Evolution. 22:569–574. https://doi.org/10.1016/j.tree.2007.09.006. 2007.

KRONFELD-SCHOR N.; DAYAN T. Partitioning of time as an ecological resource. Annu Rev Ecol Syst 34:153–181. 2003.

LE SAOUT, et al. Protected areas and effective biodiversity conservation. Science, 342, pp. 803-805. 2013.

LIEBERMAN, D. et al. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J. Ecol., 84, 137–152. 1996.

LOMOLINO, M. V. Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography, 10: 3-13. http://dx.doi.org/10.1046/j.1466-822x.2001.00229. 2001.

LÓPEZ-GONZÁLEZ, C. A.; ACEVES LARA, D. R.. Noteworthy record of the Tayra (Carnivora: Mustelidae: Eira barbara) in the Sierra Gorda biosphere reserve, Querétaro, México. Western North American Naturalist, 67: 150-151. 2007. LYRA-JORGE, M. C.; CIOCHETI, G.; PIVELLO, V. R. Carnivore mammals in a fragmented landscape in northeast of São Paulo State, Brazil. Biodiversity and Conservation, Dordrecht, v. 17, n. 7, p. 1573-1580. 2008.

MARTINS, M. A. et al. Bat species richness (Mammalia, Chiroptera) along an elevational gradient in the Atlantic Forest of Southeastern Brazil. Acta Chiropterologica 17:401–409. 2015.

MASSARA, R. L. et al. Ocelot Population Status in Protected Brazilian Atlantic Forest. PLoS ONE 10(11): e0141333. doi:10.1371/journal. pone.0141333. 2015.

MCCAIN, C. M. The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. Journal of Biogeography 31:19–31. 2004. MCCAIN, C. M. Elevational gradients in diversity of small mammals. Ecology 86:366–372. 2005.

MCCAIN, C. M. Global analysis of bird elevational diversity. Glob. Ecol. Biogeogr. 18, 346–360. doi:10.1111/j.1466-8238.2008.00443.x. 2009.

MCCLENNEN, N. et al. The effect of suburban and agricultural development on the activity patterns of coyotes (Canis latrans). American Midland Naturalist 146: 27–36. http://doi.org/bg2293. 2001.

MICHALSKI, F. et al. Notes on home range and habitat use of three small carnivore species in a disturbed vegetation mosaic of southeastern Brazil. Mammalia, vol. 70, no. 1-2, pp. 52-57. http://dx.doi.org/10.1515/MAMM.2006.004. 2006.

MICHALSKI, F.; NORRIS, D. Activity pattern of Cuniculus paca (Rodentia: Cuniculidae) in relation to lunar illumination and other abiotic variables in the southern Brazilian Amazon. Zoologia, 28(6):701-708. 2011.

MICHALSKI, F.; PERES, C. A. Disturbance-mediated mammal persistence and abundance-area relationships in Amazonian forest fragments. Conserv. Biol. 21:1626-40. 2007.

MOKARRAM, M.; SATHYAMOORTHY, D. Modeling the relationship between elevation, aspect and spatial distribution of vegetation in the Darab Mountain, Iran using remote sensing data. Model. Earth Syst. Environ., 1: 30. 2015.

MOREIRA J. C. et al. Small mammals from Serra do Brigadeiro State Park, Minas Gerais, southeastern Brazil: species composition and elevational distribution. Arquivos do Museu Nacional, Rio de Janeiro 67(1-2):103–118. 2009.

MYERS, N. et al. Biodiversity hotspots for conservation priorities. Nature 403: 853- 858. 2000.

NASCIMENTO, V. L. et al. Período de atividade de alguns vertebrados do Pantanal, estimado por fotografia remota. IV Simpósio sobre Recursos Naturais e Sócio-econômicos do Pantanal. Corumbá/MS. 2014.

NORRIS, D.; MICHALSK, F.; PERE, C. A. Habitat patch size modulates terrestrial mammal activity patterns in Amazonian forest fragments. Journal of Mammalogy, 91:551-560. 2010.

NOVILLO, A.; OJEDA, R. A. Diversity and distribution of small mammals in the South American dry Andes. Austral Ecology 37:758–766. 2012.

OLIVEIRA-FILHO, A. T.; FONTES, M. A. L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica, Hoboken, v. 32, n. 4b, p. 793-810. 2000.

ORDIZ, A. et al. Do bears know they are being hunted? BIOL. CONSERV. 152, 21– 28. 2012.

PACIFICI, M. et al. Generation length for mammals. Nature Conservation 5: 87–94. doi: 10.3897/natureconservation.5.5734 Resource ID: Dryad key: 10.5061/dryad.gd0m3. 2013.

PALMER, R. R.; KOPROWSKI, J. L. Feeding behavior and activity patterns of Amazon red squirels. Mammalia 78: 303–313. 2014.

PALMEIRA F. B. L. et al. Cattle depredation by puma (Puma concolor) and jaguar (Panthera onca) in central-western Brazil. Biological Conservation, 141(1): 118-125. 2008.

PATTERSON, B. D.; PACHECO, V.; SOLARI, S. Distributions of bats along an elevational gradient in the Andes of southeastern Peru. Journal of Zoology 240: 637–658. https://doi.org/10.1111/j.1469-7998.1996.tb05313.x. 1996.

PAVIOLO, A. et al. Protection affects the abundance and activity patterns of pumas in the Atlantic Forest. Journal of Mammalogy, 90: 926-934. 2009.

PINHO, F. F. de; FERREIRA, G. B.; PAGLIA, A. P. Influence of vegetation physiognomy, elevation and fire frequency on medium and large mammals in two protected areas of the Espinhaço Range. Zoologia (Curitiba), Curitiba, v. 34, e11921.

Available from <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1984- 46702017000100300&lng=en&nrm=iso>. access on 23 Apr. 2018. Epub May 08, 2017. http://dx.doi.org/10.3897/zoologia.34.e11921. 2017.

PRESLEY, S. J. Mammalian Species: Eira barbara. American Society of Mammalogists, Lawrence, 636p. 2000.

R CORE TEAM. A Language and Environment for Statistical Computing. Version 3.3.1[software]. 21 de jun [cited 2016 de ago] R Foundation for Statistical Computing, Vienna. Available from: https://www.r-project.org/. 2016.

RAHBEK, C. The elevational gradient of species richness: a uniform pattern? Ecography 18: 200–205. https://doi.org/10.1111/j.1600-0587.1995.tb00341.x. 1995. RAHBEK, C. The relationship among area, elevation, and regional species richness in neotropical birds. The American Nat¬uralist 149: 875–902. https://doi.org/10.1086/286028. 1997.

RAHBEK, C. The role of spatial scale and the perception of large-scale species- richness patterns. Ecology Letters 8: 224–239. https://doi.org/10.1111/j.1461- 0248.2004.00701.x. 2005.

RIBEIRO, M. C. et al. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142:1141-1153. 2009.

RIBEIRO, M. C. et al. The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In: Zachos FE, Habel JC (eds) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Heidelberg, pp 405–434. doi: 10.1007/978-3-642-20992-5_21. 2011.

RIPPLE W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484. doi: 10.1126/science.1241484. 2014.

RICHTER, M. Tropical mountain forests - distribution and general features. In S.R. Gradstein; J. Homeier; D. Gansert. The Tropical Mountain Forest - Patterns and Processes in a Biodiversity Hotspot. p. 7-24.Centre for Biodiversity and Ecology, Göttingen, Germany. 2008.

ROCHA-MENDES F. et al. Non-volant mammals from Núcleo Santa Virgínia, Serra do Mar State Park, São Paulo, Brazil. Biota Neotropica. 15(1): e20140008. http://dx.doi.org/10.1590/1676-06032014000814. 2015.

ROSA, C. A.; SOUZA, A. C. Large and medium-sized mammals of Nova Baden State Park, Minas Gerais, Brazil. Check List, 13(3), 2141. DOI: 10.15560/13.3.2141. 2017.

SAFFORD, H. D. Brazilian Páramos I. An Introduction to the Brazilian Physical Environment and Vegetation of the Campos de Altitude. Journal of Biogeography, 26(4), 693-712. DOI: 10.1046/j.1365-2699.1999.00313.x. 1999.

SAFFORD, H. D. Brazilian páramos IV. Phytogeography of the campos de altitude. Journal of Biogeography 34:1701-1722. 2007.

SÁNCHEZ-CORDERO, V. Diversity along elevational gradients: bat and rodent faunas from Oaxaca, Mexico. Global Ecology and Biogeography, 10, 63–76. 2001. SANCHEZ, M. et al. Changes in tree community composition and structure of Atlantic rain forest on a slope of the Serra do Mar range, Southeastern Brazil, from near sea level to 1000 m of altitude. Flora 208:184–196. doi:10.1016/j.flora.2013.03.002. 2013.

SCHIPPER, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225-230. 2008.

SCHOENER, T. W. Recurce partitioning in ecological comunities. Ecology 185: 27- 39. 1974.

SRBEK-ARAUJO, A. C.; CHIARELLO, A. G. Influence of camera-trap sampling design on mammal species capture rates and community structures in

southeastern Brazil. Biota Neotrop. 13(2):

http://www.biotaneotropica.org.br/v13n2/en/abstract?article+bn02013022013. 2013. STEIN, A.; GERSTNER, K.; KREFT, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 2014.

STEVENS, G. C. The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. The American Naturalist 140: 893–911. https://doi.org/10.1086/285447. 1992.

SUNARTO, S. et al. Tigers Need Cover: Multi-Scale Occupancy Study of the Big Cat in Sumatran Forest and Plantation Landscapes. PLoS ONE 7(1): e30859. doi:10.1371/journal.pone.0030859. 2012.

SVENNING, J.; KERR, J.; RAHBEK, C. Predicting future shifts in species diversity. Ecography 32, 3–4. 2009.

TERBORGH J. Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba, Peru. Ecology, 52: 23-40. http://dx.doi.org/10.2307/1934735. 1971. TERBORGH, J. Bird species diversity on an Andean elevation gradient. Ecology, 58: 1007-1019. http://dx.doi.org/ 10.2307/1936921. 1977.

TERBORGH, J., L. et al. Ecological meltdown in predator-free forest fragments. Science 294: 1923-1926. 2001.

TEWS, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J Biogeogr 31: 79-92. 2004.

TORRES, R.; JAYATB, J. P.; PACHECO, S. Modelling potential impacts of climate change on the bioclimatic envelope andconservation of the Maned Wolf

(Chrysocyon brachyurus). Mammal. Biol.,

http://dx.doi.org/10.1016/j.mambio.2012.04.008. 2012.

VALENZUELA, D.; CEBALLOS, G. Habitat selection, home range, and activity of the white-nosed coatis (Nasua narica) in a Mexican tropical dry forest. Journal of Mammalogy, vol. 81, no. 3, p. 810-819. 2000.

VELEZ-LIENDO, X.; STRUBBE, D.; MATTHYSEN, E. Effects of variable selection on modelling habitat and potential distribution of the Andean bear in Bolivia. Ursus 24: 127–138. 2013.

VELOSO, H. P.; RANGEL FILHO, A. L. R.; LIMA, J. C. A. Classificação da vegetação brasileira adaptada a um sistema universal. Rio de Janeiro: IBGE, Departamento de Recursos Naturais e Estudos Ambientais, 124 p. 1991.

VYNNE, C.; BOOTH, R. K.; WASSER, S. K. Physiological implications of landscape use by free-ranging maned wolves (Chrysocyon brachyurus) in Brazil. 2014.

WECKEL, M.; GIULIANO, W.; SILVER, R. Jaguar (Panthera onca) feeding ecology: distribuition of predator and prey through time and space. Journal of Zoology 270: 25-30. 2006.

WILLIAMS, S. E.; MARSH, H.; WINTER, J. Spatial scale, species diversity, and habitat structure: Small mammals in Australian tropical rain forest. Ecology 83:1317–1329. 2002.

WILLIAMS, S. E.; MIDDLETON, J. Climatic seasonality, resource bottlenecks,andabundanceof rainforest birds: implications forglobal climate change. Diversity and Distributions 14:69–77. 2008.

ZUUR, A. F. et al. Mixed Effects Models and Extensions in Ecology with R. Springer: New York. 2009.

Documentos relacionados