• Nenhum resultado encontrado

(𝛼𝐻 + 𝛼𝐷+ 𝜇)2𝑘11𝑘12𝑘13𝑘14 > 0,

and

𝛼𝑀𝑇((1 − 𝛽)𝜂(𝑘13𝑘14+ 𝑙𝑇(𝑘14+ 𝜂14) + (1 − 𝑝𝑇)𝑘12𝛽𝜂(𝑘14+ 𝜂14) + 𝑘12𝑘13𝛽𝜂𝑝𝑇) 𝑁𝑇(𝛼𝐻 + 𝛼𝐷+ 𝜇)𝑘11𝑘12𝑘13𝑘14 > 1, which implies thatℜ𝑇0 > 1.

Then, we have the following lemma:

Lemma 2.3.7. The TB-Only submodel (2.10) has a unique endemic equilibrium point𝜖𝑇, whenever𝑇0 > 1.

TB-HIV/AIDS Submodel

The submodel that relates TB to HIV/AIDS is when𝑆𝐷 = 𝑆𝑇 = 𝐸𝐷 = 𝐸𝑇 = 𝐼𝐷1 = 𝐼𝐷2 = 𝐼𝑇1 = 𝐼𝑇2 = 𝐼𝑇3 = 𝑅𝑇 = 𝐼𝐷3 = 𝑅𝐷 = 0and is given by

𝑑𝑆𝐻

𝑑𝑡 = 𝑀𝐻 − (𝛼𝐻 𝐷+ 𝜇 + 𝜇𝐻 + 𝜔𝐻𝜆𝐻)𝑆𝐻, 𝑑𝐸𝐻

𝑑𝑡 = 𝜔𝐻𝜆𝐻(𝑆𝐻 + 𝛽1𝑅𝐻) − (𝜖𝐻𝜂 + 𝜇 + 𝜇𝐻 + 𝛼𝐻 𝐷)𝐸𝐻, 𝑑𝐼𝐻1

𝑑𝑡 = (1 − 𝛽)𝜖𝐻 𝜂𝐸𝐻 − (𝑙𝐻 + 𝜇 + 𝜇𝐻 + 𝑑𝑇 𝐻 + 𝜂12+ 𝑡𝐻 𝐷𝛼𝐻 𝐷)𝐼𝐻1, 𝑑𝐼𝐻2

𝑑𝑡 = (1 − 𝑝𝐻)𝛽𝜖𝐻 𝜂𝐸𝐻 + 𝑙𝐻𝐼𝐻1 − (𝑚𝐻 + 𝜇 + 𝜇𝐻 + 𝑡𝐻 𝑑𝑇 𝐻 + 𝜂15+ 𝑡𝐻 𝐷𝛼𝐻 𝐷)𝐼𝐻2, 𝑑𝐼𝐻3

𝑑𝑡 = 𝑝𝐻𝛽𝜖𝐻𝜂𝐸𝐻 + 𝜂15𝐼𝐻2 − (𝜂12+ 𝜇 + 𝜇𝐻 + 𝑡𝐻𝑑𝑇 𝐻 + 𝑡𝐻 𝐷𝛼𝐻 𝐷)𝐼𝐻3, 𝑑𝑅𝐻

𝑑𝑡 = 𝑚𝐻𝐼𝐻2 + 𝜂12𝐼𝐻1 + 𝜂12𝐼𝐻3− (𝜇 + 𝜇𝐻 + 𝛽1𝜔𝐻𝜆𝐻 + 𝛼𝐻 𝐷)𝑅𝐻, (2.48) with non-negative initial conditions and

𝜆𝐻 = 𝛼𝜖𝐻(𝐼𝐻1 + 𝐼𝐻2+ 𝐼𝐻3) 𝑁𝐻

, where𝑁𝐻 = 𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻1 + 𝐼𝐻2 + 𝐼𝐻3 + 𝑅𝐻.

Considering biological constraints, the system (2.48) will be studied in the following region:

𝐷2= {

(𝑆𝐻, 𝐸𝐻, 𝐼𝐻1, 𝐼𝐻2, 𝐼𝐻3, 𝑅𝐻) ∈ ℝ6+∶ 𝑁𝐻(𝑡) ≤ 𝑀𝐻 𝜇

} .

It can be easily shown that the solution(𝑆𝐻(𝑡), 𝐸𝐻, 𝐼𝐻1(𝑡), 𝐼𝐻2(𝑡), 𝐼𝐻3(𝑡), 𝑅𝐻(𝑡))of the sys-tem are bounded and positively invariant.

The disease-free equilibrium point, 𝜖0𝐻, is given by 𝜖0𝐻 =

(𝑆0𝐻, 0, 0, 0, 0, 0

), where

2.3 | BASIC REPRODUCTION NUMBER STUDY

𝑆0𝐻 = 𝑀𝐻

𝛼𝐻 𝐷+ 𝜇 + 𝜇𝐻.

The matrices for the new infection terms,𝐹𝐻 and the other terms,𝑉𝐻 are given respec-tively, by: reproduction number is given by

𝐻0 = 𝜌(𝐹𝐻𝑉𝐻−1) = 𝛼𝜖𝐻𝜔𝐻𝑀𝐻𝜖𝐻𝜂((1 − 𝛽)(𝑘23𝑘24+ 𝑙𝐻(𝑘24+ 𝜂15)) + (1 − 𝑝𝐻)𝛽𝑘22(𝑘24+ 𝜂15) + 𝛽𝑝𝐻𝑘22𝑘23) 𝑁𝐻(𝛼𝐻 𝐷+ 𝜇 + 𝜇𝐻)𝑘21𝑘22𝑘23𝑘24 .

(2.49)

We define (𝐻1) and (𝐻2) as in the submodel (2.10) and using the same idea from the demonstration, we get the following results:

Lemma 2.3.8. The disease-free equilibrium𝜖0𝐻 is asymptotically stable when𝐻0 < 1and is unstable whenever𝐻0 > 1. globally asymptotically stable equilibrium of submodel (TB-HIV/AIDS) if𝐻0 < 1and the assumption(𝐻1)and(𝐻2)are satisfied.

We make a procedure analogous to the model (2.10) for 𝑙𝐻 and𝜂15 (MDR-TB and XDR-TB parameters for TB-HIV/AIDS submodel) and we obtain the limits:

𝑙lim𝐻→0 means zero resistance, i.e. elimination of resistance to tuberculosis treatment in this subpopulation. If the limit (2.50) is greater than unity, then when𝑙𝐻, 𝜂15 → 0, it has a negative impact on TB transmission control. That is, when

𝛼𝜔𝐻𝜖𝐻𝜖𝐻𝜂𝑀𝐻

𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇) > 𝑘21𝑘220𝑘230𝑘24

(1 − 𝛽)𝑘230𝑘24+ (1 − 𝑝𝐻)𝛽𝑘220𝑘24+ 𝛽𝑝𝐻𝑘022𝑘230 , (2.51)

Now, we study the case when𝑙𝐻 → 1and𝜂15→ 0. We get the limit

𝑙lim𝐻→1 𝜂15→0

𝐻0 = 𝛼𝜔𝐻𝜖𝐻𝜖𝐻𝑀𝐻𝜂((1 − 𝛽)(𝑘230𝑘24+ 𝑘24) + (1 − 𝑝𝐻)𝛽𝑘221𝑘24+ 𝛽𝑝𝐻𝑘221𝑘230)

𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘21𝑘221𝑘230𝑘24 , (2.52) where𝑘221 is𝑘22for𝑙𝐻 = 1. Then if the limit (2.52) is greater than unity, then when𝑙𝐻 → 1 and𝜂15 → 0it has a negative impact on TB transmission control. That is, whereas

𝛼𝜔𝐻𝜖𝐻𝜖𝐻𝑀𝐻

𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇) > 𝑘21𝑘221𝑘230𝑘24

(1 − 𝛽)(𝑘230𝑘24+ 𝑘24) + (1 − 𝑝𝐻)𝛽𝑘221𝑘24+ 𝛽𝑝𝐻𝑘221𝑘230 . (2.53) In the case when𝑙𝐻 → 0and𝜂15 → 1. We have

𝑙𝐻lim→0 𝜂15→1

𝐻0 = 𝛼𝜔𝐻𝜖𝐻𝜖𝐻𝑀𝐻𝜂((1 − 𝛽)𝑘24𝑘231 + (1 − 𝑝𝐻)𝛽𝑘220(𝑘24+ 1) + 𝑘220𝑘231𝛽𝑝𝐻) 𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘21𝑘220𝑘231𝑘24 > 0.

(2.54) where𝑘231 is𝑘23 for𝜂15 = 1and𝑘231 = 𝑘230 + 1. If the limit (2.54) is greater than unity, then 𝑙𝐻 → 0and𝜂15 → 1means a negative impact on TB transmission control. That is, if we have

𝛼𝜔𝐻𝜖𝐻𝜖𝐻𝑀𝐻

𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇) > 𝑘21𝑘220𝑘231𝑘24

(1 − 𝛽)𝑘24𝑘231 + (1 − 𝑝𝐻)𝛽𝑘220(𝑘24+ 1) + 𝑘220𝑘231𝛽𝑝𝐻. (2.55) For𝑙𝐻 → 1and𝜂15 → 1:

𝑙lim𝐻→1 𝜂15→1

𝐻0 = 𝛼𝑀𝐻𝜔𝐻𝜖𝐻𝜖𝐻𝜂((1 − 𝛽)(𝑘24𝑘231 + (𝑘24+ 1)) + (1 − 𝑝𝐻)𝛽𝑘221(𝑘24+ 1) + 𝑘221𝑘231𝛽𝑝𝐻) 𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘21𝑘221𝑘231𝑘24 .

(2.56) If the limit (2.56) is greater than unity, then when𝑙𝐻 → 1and𝜂15 → 1has a negative impact on TB transmission control, if

𝛼𝜔𝐻𝜖𝐻𝜖𝐻𝑀𝐻

𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇) > 𝑘21𝑘221𝑘231𝑘24

(1 − 𝛽)(𝑘24𝑘123+ (𝑘24+ 1)) + (1 − 𝑝𝐻)𝛽𝑘221(𝑘24+ 1) + 𝑘221𝑘231𝛽𝑝𝐻. (2.57) We consider

Δ𝐻 = 𝛼𝜔𝐻𝜖𝐻𝜖𝐻𝑀𝐻

𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇), (2.58)

Δ𝐻1 = 𝑘21𝑘220𝑘230𝑘24

(1 − 𝛽)𝑘230𝑘24+ (1 − 𝑝𝐻)𝛽𝑘220𝑘24+ 𝛽𝑝𝐻𝑘022𝑘230 , (2.59) Δ𝐻2 = 𝑘21𝑘221𝑘230𝑘24

(1 − 𝛽)(𝑘230𝑘24+ 𝑘24) + (1 − 𝑝𝐻)𝛽𝑘221𝑘24+ 𝛽𝑝𝐻𝑘221𝑘230 , (2.60)

2.3 | BASIC REPRODUCTION NUMBER STUDY

Δ𝐻3 = 𝑘21𝑘022𝑘231𝑘24

(1 − 𝛽)𝑘24𝑘231 + (1 − 𝑝𝐻)𝛽𝑘220(𝑘24+ 1) + 𝑘220𝑘231𝛽𝑝𝐻, (2.61) Δ𝐻4 = 𝑘21𝑘221𝑘123𝑘24

(1 − 𝛽)(𝑘24𝑘231 + (𝑘24+ 1)) + (1 − 𝑝𝐻)𝛽𝑘221(𝑘24+ 1) + 𝑘221𝑘231𝛽𝑝𝐻. (2.62) Then, we have the following results:

Lemma 2.3.10. 1. The impact when𝑙𝐻 → 0and 𝜂15 → 0 is positive in reducing TB transmission in this subpopulation only ifΔ𝐻 < Δ𝐻1, no impact ifΔ𝐻 = Δ𝐻1 and a negative impact ifΔ𝐻 > Δ𝐻1.

2. The impact when𝑙𝑇 → 1and 𝜂15 → 0 is positive in reducing TB transmission in this subpopulation only ifΔ𝐻 < Δ𝐻2, no impact ifΔ𝐻 = Δ𝐻2 and a negative impact if Δ𝐻 > Δ𝐻2.

3. The impact when 𝑙𝐻 → 0and 𝜂15 → 1is positive in reducing TB transmission in this subpopulation only ifΔ𝐻 < Δ𝐻3, no impact ifΔ𝐻 = Δ𝐻3 and a negative impact if Δ𝐻 > Δ𝐻3.

4. The impact when 𝑙𝐻 → 1and 𝜂15 → 1is positive in reducing TB transmission in this subpopulation only ifΔ𝐻 < Δ𝐻4, no impact ifΔ𝐻 = Δ𝐻4 and a negative impact if Δ𝐻 > Δ𝐻4.

We apply the same procedure as for the previous submodel to study the relationships for𝑙𝐻 and𝜂12. We have:

𝑙lim𝐻→0 𝜂12→1

𝐻0 = 𝛼𝜔𝐻𝜖𝐻𝜖𝐻 𝑀𝐻𝜂((1 − 𝛽)𝑘23𝑘24+ (1 − 𝑝𝐻)𝛽𝑘2201(𝑘24+ 𝜂15) + 𝑝𝐻𝛽𝑘2201𝑘23)

𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘21𝑘2201𝑘23𝑘24 , (2.63) where𝑘2201 represents𝑘22 when𝑙𝐻 → 0and𝜂12 → 1.

𝑙lim𝐻→1 𝜂12→0

𝐻0 = 𝛼𝜔𝐻𝜖𝐻𝜖𝐻 𝑀𝐻𝜂((1 − 𝛽)(𝑘23𝑘24+ (𝑘24+ 𝜂15)) + (1 − 𝑝𝐻)𝛽𝑘2210(𝑘24+ 𝜂15) + 𝑝𝐻𝛽𝑘2210𝑘23) 𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘21𝑘2210𝑘23𝑘24 ,

(2.64) where𝑘2210 represents𝑘22 when𝑙𝐻 → 1and𝜂12 → 0.

𝑙lim𝐻→1 𝜂12→1

𝐻0 = 𝛼𝜔𝐻𝜖𝐻𝜖𝐻 𝑀𝐻𝜂((1 − 𝛽)(𝑘23𝑘24+ (𝑘24+ 𝜂15)) + (1 − 𝑝𝐻)𝛽𝑘2211(𝑘24+ 𝜂15) + 𝑝𝐻𝛽𝑘2211𝑘23) 𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘21𝑘2211𝑘23𝑘24 ,

(2.65) where𝑘2211 represents𝑘22 when𝑙𝐻 → 1and𝜂12 → 1.

𝑙lim𝐻→0 𝜂12→0

𝐻0 = 𝛼𝜔𝐻𝜖𝐻𝜖𝐻 𝑀𝐻𝜂((1 − 𝛽)𝑘23𝑘24+ (1 − 𝑝𝐻)𝛽𝑘2200(𝑘24+ 𝜂15) + 𝑝𝐻𝛽𝑘2200𝑘23)

𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘21𝑘2200𝑘23𝑘24 , (2.66)

where𝑘2200represents𝑘22when𝑙𝐻 → 0and𝜂12 → 0. Let us define the following expressions:

Δ𝐻5 = 𝑘21𝑘2200𝑘23𝑘24

(1 − 𝛽)𝑘23𝑘24+ (1 − 𝑝𝐻)𝛽𝑘2200(𝑘24+ 𝜂15) + 𝑝𝐻𝛽𝑘2200𝑘23, (2.67) Δ𝐻6 = 𝑘21𝑘2201𝑘23𝑘24

(1 − 𝛽)𝑘23𝑘24+ (1 − 𝑝𝐻)𝛽𝑘2201(𝑘24+ 𝜂15) + 𝑝𝐻𝛽𝑘2201𝑘23

, (2.68)

Δ𝐻7 = 𝑘21𝑘2210𝑘23𝑘24

(1 − 𝛽)(𝑘23𝑘24+ (𝑘24+ 𝜂15)) + (1 − 𝑝𝐻)𝛽𝑘2210(𝑘24+ 𝜂15) + 𝑝𝐻𝛽𝑘1022𝑘23, (2.69) Δ𝐻8 = 𝑘21𝑘2211𝑘23𝑘24

(1 − 𝛽)(𝑘23𝑘24+ (𝑘24+ 𝜂15)) + (1 − 𝑝𝐻)𝛽𝑘2211(𝑘24+ 𝜂15) + 𝑝𝐻𝛽𝑘1122𝑘23. (2.70) We obtain the following results:

Lemma 2.3.11. 1. The impact when 𝑙𝐻 → 0 and 𝜂12 → 0 is positive in reducing TB transmission in TB-HIV/AIDS subpopulation only ifΔ𝐻 < Δ𝐻5, no impact ifΔ𝐻 = Δ𝐻5 and a negative impact ifΔ𝐻 > Δ𝐻5.

2. The impact when 𝑙𝐻 → 0 and𝜂12 → 1 is positive in reducing TB transmission in TB-HIV/AIDS subpopulation only ifΔ𝐻 < Δ𝐻6, no impact ifΔ𝐻 = Δ𝐻6 and a negative impact ifΔ𝐻 > Δ𝐻6.

3. The impact when 𝑙𝐻 → 1 and𝜂12 → 0 is positive in reducing TB transmission in TB-HIV/AIDS subpopulation only ifΔ𝐻 < Δ𝐻7, no impact ifΔ𝐻 = Δ𝐻7 and a negative impact ifΔ𝐻 > Δ𝐻7.

4. The impact when 𝑙𝐻 → 1 and𝜂12 → 1 is positive in reducing TB transmission in TB-HIV/AIDS subpopulation only ifΔ𝐻 < Δ𝐻8, no impact ifΔ𝐻 = Δ𝐻8 and a negative impact ifΔ𝐻 > Δ𝐻8.

Now, we study the relationships between the parameters associated with XDR-TB (𝜂15) and recovery after MDR-TB (𝑚𝐻).

𝜂lim15→0 𝑚𝐻→1

𝐻0 = 𝛼𝑀𝐻𝜔𝐻𝜖𝐻𝜖𝐻𝜂((1 − 𝛽)(𝑘2301𝑘24+ 𝑙𝐻𝑘24) + (1 − 𝑝𝐻)𝛽𝑘22𝑘24+ 𝑝𝐻𝛽𝑘22𝑘2301) 𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘21𝑘22𝑘2301𝑘24 ,

(2.71) where𝑘2301represents𝑘23when𝜂15 → 0and𝑚𝐻 → 1.

𝜂lim15→1 𝑚𝐻→0

𝐻0 = 𝛼𝑀𝐻𝜔𝐻𝜖𝐻𝜖𝐻𝜂((1 − 𝛽)(𝑘2310𝑘24+ 𝑙𝐻(𝑘24+ 1)) + (1 − 𝑝𝐻)𝛽𝑘22(𝑘24+ 1) + 𝑝𝐻𝛽𝑘22𝑘2310) 𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘21𝑘22𝑘2310𝑘24 ,

(2.72) where𝑘2310represents𝑘23when𝜂15 → 1and𝑚𝐻 → 0.

𝜂lim15→1 𝑚𝐻→1

𝐻0 = 𝛼𝑀𝐻𝜔𝐻𝜖𝐻𝜖𝐻𝜂((1 − 𝛽)(𝑘2311𝑘24+ 𝑙𝐻(𝑘24+ 1)) + (1 − 𝑝𝐻)𝛽𝑘22(𝑘24+ 1) + 𝑝𝐻𝛽𝑘22𝑘2311) 𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘11𝑘22𝑘2311𝑘24 ,

(2.73)

2.3 | BASIC REPRODUCTION NUMBER STUDY

where𝑘2311 represents𝑘23 when𝜂15 → 1and𝑚𝐻 → 1.

𝜂lim15→0 𝑚𝐻→0

𝐻0 = 𝛼𝑀𝐻𝜔𝐻𝜖𝐻𝜖𝐻𝜂((1 − 𝛽)(𝑘2300𝑘24+ 𝑙𝐻𝑘24) + (1 − 𝑝𝐻)𝛽𝑘22𝑘24+ 𝑝𝐻𝛽𝑘22𝑘2300) 𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘11𝑘22𝑘2300𝑘24

, (2.74) where𝑘2300 represents𝑘23 when𝜂15 → 0and𝑚𝐻 → 0.

We define

Δ𝐻9 = 𝑘21𝑘22𝑘2300𝑘24

(1 − 𝛽)(𝑘2311𝑘24+ 𝑙𝐻𝑘24) + (1 − 𝑝𝐻)𝛽𝑘22𝑘24+ 𝑝𝐻𝛽𝑘22𝑘2300, (2.75) Δ𝐻10 = 𝑘21𝑘22𝑘2301𝑘24

(1 − 𝛽)(𝑘2301𝑘24+ 𝑙𝐻𝑘24) + (1 − 𝑝𝐻)𝛽𝑘22𝑘24+ 𝑝𝐻𝛽𝑘22𝑘2301, (2.76) Δ𝐻11 = 𝑘21𝑘22𝑘2310𝑘24

(1 − 𝛽)(𝑘2310𝑘24+ 𝑙𝐻(𝑘24+ 1)) + (1 − 𝑝𝐻)𝛽𝑘22(𝑘24+ 1) + 𝑝𝐻𝛽𝑘22𝑘2310, (2.77) Δ𝐻12 = 𝑘21𝑘22𝑘2311𝑘24

(1 − 𝛽)(𝑘2311𝑘24+ 𝑙𝐻(𝑘24+ 1)) + (1 − 𝑝𝐻)𝛽𝑘22(𝑘24+ 1) + 𝑝𝐻𝛽𝑘22𝑘2311. (2.78) Then, we have the following result:

Lemma 2.3.12. 1. The impact when𝜂15 → 0and𝑚𝐻 → 0is positive in reducing TB transmission in TB-HIV/AIDS subpopulation only ifΔ𝐻 < Δ𝐻9, no impact ifΔ𝐻 = Δ𝐻9 and a negative impact ifΔ𝐻 > Δ𝐻9.

2. The impact when 𝜂15 → 0and𝑚𝐻 → 1is positive in reducing TB transmission in TB-HIV/AIDS subpopulation only ifΔ𝐻 < Δ𝐻10, no impact ifΔ𝐻 = Δ𝐻10 and a negative impact ifΔ𝐻 > Δ𝐻10.

3. The impact when 𝜂15 → 1and𝑚𝐻 → 0is positive in reducing TB transmission in TB-HIV/AIDS subpopulation only ifΔ𝐻 < Δ𝐻11, no impact ifΔ𝐻 = Δ𝐻11 and a negative impact ifΔ𝐻 > Δ𝐻11.

4. The impact when 𝜂15 → 1and𝑚𝐻 → 1is positive in reducing TB transmission in TB-HIV/AIDS subpopulation only ifΔ𝐻 < Δ𝐻12, no impact ifΔ𝐻 = Δ𝐻12 and a negative impact ifΔ𝐻 > Δ𝐻12.

We studied the relationships between resistance (𝑙𝐷, 𝜂16) and recovered (𝜂12, 𝑚𝐻) pa-rameters. We have:

𝑙lim𝐻→1 𝜂15→1 𝜂12→0 𝑚𝐻→0

𝐻0 = 𝛼𝑀𝐻𝜔𝐻𝜖𝐻𝜖𝐻𝜂((1 − 𝛽)(𝑘2310𝑘24+ (𝑘24+ 1)) + (1 − 𝑝𝐻)𝛽𝑘2210(𝑘24+ 1) + 𝑝𝐻𝛽𝑘2210𝑘2310) 𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘21𝑘2210𝑘2310𝑘24 ,

(2.79)

𝑙lim𝐻→0 𝜂15→0 𝜂12→1 𝑚𝐻→1

𝐻0 = 𝛼𝑀𝐻𝜔𝐻𝜖𝐻𝜖𝐻𝜂((1 − 𝛽)𝑘2301𝑘24+ (1 − 𝑝𝐻)𝛽𝑘2201𝑘24+ 𝑝𝐻𝛽𝑘2201𝑘2301)

𝑁𝐻(𝛼𝐻 𝐷+ 𝜇𝐻 + 𝜇)𝑘21𝑘2201𝑘2301𝑘24 . (2.80)

We define

Δ𝐻13 = 𝑘21𝑘2210𝑘2310𝑘24

(1 − 𝛽)(𝑘2310𝑘24+ (𝑘24+ 1)) + (1 − 𝑝𝐻)𝛽𝑘2210(𝑘24+ 1) + 𝑝𝐻𝛽𝑘2210𝑘2310, (2.81) Δ𝐻14 = 𝑘21𝑘2201𝑘2301𝑘24

(1 − 𝛽)𝑘2301𝑘24+ (1 − 𝑝𝐻)𝛽𝑘2201𝑘24+ 𝑝𝐻𝛽𝑘2201𝑘2301. (2.82) We obtain the following results:

Lemma 2.3.13. 1. The impact of the resistance parameters when they tend to unity (𝑙𝐻, 𝜂15→ 1) with respect to the recovery parameters when they tend to zero (𝜂12, 𝑚𝐻 → 0) is positive in reducing tuberculosis transmission in TB-HIV/AIDS subpopulation only ifΔ𝐻 < Δ𝐻13, no impact ifΔ𝐻 = Δ𝐻13 and a negative impact ifΔ𝐻 > Δ𝐻13.

2. The impact of the recovery parameters recovery parameters when they tend to unity (𝜂12, 𝑚𝐻 → 1) with respect to the recovery parameters when they tend to zero (𝑙𝐻, 𝜂15 → 0) is positive in reducing tuberculosis transmission in TB-HIV/AIDS subpopulation only ifΔ𝐻 < Δ𝐻14, no impact ifΔ𝐻 = Δ𝐻14 and a negative impact ifΔ𝐻 > Δ𝐻14.

Endemic Equilibrium Point

To find the endemic equilibrium point, the subsystem (2.48) is transformed into the following system of equations:

Proceeding analogously to the TB-Only submodel (2.10), we obtain the following

2.3 | BASIC REPRODUCTION NUMBER STUDY

result:

Theorem 2.3.14. The TB-HIV/AIDS submodel (2.48) has a unique endemic equilibrium point 𝜖𝐻, whenever𝐻0 > 1.