• Nenhum resultado encontrado

A Figura 52 mostra o aspecto dos cavacos obtidos para as diferentes condi- ções de lubrificação no início da vida da ferramenta. A principal diferença observada foi em relação à coloração dos cavacos, porém, nenhum estudo foi realizado para explicar essa diferença. Quanto à forma, a usinagem assistida por jorro, proporcionou cavacos contínuos com forma helicoidal bem definida. Enquanto todas as outras con- dições apresentaram cavacos emaranhados. Segundo Khan et al., (2009), tanto a forma quanto a coloração dos cavacos, indicam, direto ou indiretamente, a natureza da interação cavaco-ferramenta, influenciada pelas condições de usinagem.

Figura 52 - Cavacos coletados no início do ensaio para as diferentes condições de lubrifirre- frigeração.

Também foram avaliados os graus de recalque para as diferentes condições de lubrificação. Com base nos valores medidos chegou-se ao gráfico da figura 53. Nele pode-se observar que as condições de lubrirrefrigeração MQNL híbrido, aC:H e CuO, respectivamente, proporcionaram maiores valores de Rc, quando comparadas

com as condições a seco e jorro. A condição MQL também apresentou maior grau de recalque quando comparada com a condição a seco. Essa afirmação não pode ser feita para outras comparações, visto que, para todas as outras, tem-se limites de in- tervalo de confiança compreendendo a mesma região.

Figura 53 - Intervalo de confiança (IC) para os graus de recalque (Rc), obtidos para as dife-

rentes condições de lubrirrefrigeração.

Rahman et al., (2019), também observaram o aumento do grau de recalque proporcionado por nanofluidos de Al2O3, MoS2, e TiO2, em comparação com a condi-

ção a seco no torneamento da liga Ti-6Al-4V. No caso em questão, o melhor resultado foi obtido pelo nanofluido com nanopartículas de MoS2, para velocidade de 105 m/min.

Os autores relacionaram essa melhoria às melhores propriedades lubrirrefrigerantes apresentadas por este nanofluído, que também apresentou os menores valores de temperatura na região de interface, quando comparado com as outras condições de lubrirrefrigeração estudadas.

O maior valor de grau de recalque é um indicador de que os esforços para remoção do cavaco foram menores nas condições de lubrirrefrigeração MQNL aC:H e Híbrido. Este resultado concorda com aquele obtido na análise de desgaste em que foi obtida uma maior vida útil da aresta de corte também nessas condições, o que indica que a presença das nanopartículas contribuiu para a redução do atrito e conse- quentemente, para uma melhor lubrificação nas regiões de interface. Essa contribui- ção pode ser explicada pelos mecanismos antidesgaste desenvolvidos pelas nano-

0,35 0,40 0,45 0,50 0,55 0,60 0,65 G rau de r ec al qu e, Rc .

partículas. Dentre os mecanismos antidesgaste possíveis de acontecer, o mais pro- vável é que tenha ocorrido o efeito de rolamento, devido, principalmente, à forma das nanopartículas utilizadas.

5 Conclusões

Com base nos testes realizados e resultados obtidos, pôde-se concluir que:  Os nanofluidos a base de aC:H e híbrido proporcionaram uma vida útil

da aresta de corte superior à usinagem a seco. Em relação às outras condições, do ponto de vista estatístico, não foi possível afirmar qual proporcionou o melhor desempenho.

 Para todas as condições de lubrirrefrigeração foi observada a presença dos desgastes de cratera e de flanco produzidos principalmente por abrasão e attrition.

 A condição jorro foi a que proporcionou os menores valores de rugosi- dade média após a primeira passada. As condições MQL resultaram em melhores acabamentos em comparação com a usinagem a seco. Porém, entre as condições MQL não houve diferença significativa em termos de rugosidade.

 Do início ao fim de vida das arestas testadas, para todas as condições, os valores de rugosidade média se mantiveram dentro das classes de rugosidade N6 e N7.

 A presença das nanopartículas influenciou positivamente na formação dos cavacos. Os cavacos obtidos nas condições MQNL apresentaram os maiores valores de grau de recalque, sendo que, os melhores resul- tados foram obtidos pelas nanofluidos híbrido e de aC:H, o que vai de encontro aos resultados obtidos durante o estudo da vida útil da aresta de corte.

 Os nanofluidos de aC:H e híbrido, obtiveram resultados que os qualifi- cam como possíveis substitutos aos métodos convencionais de lubrifi- cação.

6 Sugestões para trabalhos futuros

 Investigar a aplicação dos nanofluidos utilizados neste trabalho em di- ferentes concentrações e com variações de vazão pela técnica MQL;  Analisar por EDS a raiz dos cavacos a fim de identificar a presença de

elementos que comprovem a penetração de nanopartículas nas regi- ões de interface;

 Utilizar um método de medição de temperatura para avaliar a ação re- frigerante dos nanolubrificantes em comparação com os outros méto- dos;

 Medir as componentes da força de usinagem durante o torneamento com nanolubrificantes.

7 Referências

ABDALLA, H.S. et al. Development of novel sustainable neat-oil metal working fluids for stainless steel and titanium alloy machining. Part 1. Formulation develop- ment. The International Journal of Advanced Manufacturing Technology, v. 34, p. 21-33, 2007.

AGGARWAL, A. et al. Optimization of multiple quality characteristics for CNC turning under cryogenic cutting environment using desirability function. Jornal of Ma-

terials Processing Technology, v. 205, p. 42–50, 2008.

ALBERTS, M.; KALAITZIDOU, K.; MELKOTE, S. An investigation of graphite nano-platelets as lubricant in grinding. International Journal of Machine Tools and

Manufacture. v. 49, p. 966-970, 2009.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 8404: Indica-

ção do estado de superfície em desenhos técnicos. Rio de Janeiro, p.2. 1984.

ASTAKHOV, V.P. Improving Sustainability of Machining Operation as a Sys- tem Endeavor. In: Davim, J.P. (Ed.) Sustainable Machining: Materials Forming, Ma-

chining and Tribology. Aveiro, Portugal: Springer, 2017. p. 1 - 29.

AUTRET, R.; LIANG, S.Y. Minimum quantity lubrication in finish hard turning.

Proceedings of International Conference on Humanoid, Nanotechnology, Infor- mation Technology, Communication and Control, Environment, and Manage- ment, Manila, Philippines, 2003, p. 1-9.

BAGHERZADEH, A.; BUDAK, E. Investigation of machinability in turning of difficult-to-cut materials using a new cryogenic cooling approach. Tribology Interna-

tional, v. 119, p. 510-520, 2018.

BARCZAK, L.M., BATAKO, A.D. Application of minimum quantity lubrication in grinding. Materials and Manufacturing Processes, v. 27, p. 406-411, 2012.

BART, J.C.J.; GUCCIARDI, E.; CAVALLARO, S. Environmental life-cycle as- sessment (LCA) of lubricants. Biolubricants: Science and technology, Cambridge, Woodhead Publishing Limited, 2013, p. 527-564.

BARTARYA, G.; CHOUDHURY, S. K. State of the art in hard turning. Interna-

tional Journal of Machine Tools and Manufacture, v. 53, n. 1, p. 1–14, 2012.

BARTZ, W.J. Ecotribology: environmentally acceptable tribological practices.

Tribology International, v. 39, n.8, p. 728-733, 2006.

BATTAGLIA, J.L. Heat Transfer in Materials Forming Processes. New York: ISTE Ltd and John Wiley & Sons, 1ª Ed.; 2008.

BELLUCO W.; CHIFFRE L.D. Performance evaluation of vegetable-based oils in drilling austenitic stainless steel. Journal of Materials Processing Technology, v. 6, p. 148:171, 2004.

BONFÁ, M.M. et al. Evaluation of tool life and workpiece surface roughness in turning of AISI D6 hardened steel using PCBN tools and minimum quantity of lubricant (MQL) applied at different directions. The International Journal of Advanced Manu-

facturing Technology. v. 103, p. 971-984, 2019.

COPPINI, N, L. Usinagem Enxuta: Gestão do Processo. São Paulo: Artiber, 1 ed., 2015.

CHOI, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles,

ASME Fed, v. 231, p. 99–105, 1995.

CHOI, Y. Influence of tool flankwear on performance of finish hard-machined surfaces in rolling contact. International Journal of Fatigue. v. 32, p. 390–397, 2010. DARMINESH, S.P. et al. Recent development on biodegradable nanolubri- cant: A review. International Communications in Heat and Mass Transfer, v. 86, p. 159-165, 2017.

DAS, A.; PATEL, S.K.; DAS, S.R. Performance comparison of vegetable oil based nanofluids towards machinability improvement in hard turning of HSLA steel using minimum quantity lubrication. Mechanics & Industry. v. 20, p. 506-526, 2019.

DEBNATH, S., REDDY, M.M., YI, Q.S. Environmental friendly cutting fluids and cooling techniques in machining: a review. Journal of Cleaner Production, v. 83, 33-47, 2014.

DEVENDIRAN, D. K., & AMIRTHAM, V. A. A review on preparation, charac- terization, properties and applications of nanofluids. Renewable and Sustainable

Energy Reviews, v. 60, p. 21-40, 2016.

DINIZ, A. E.; MARCONDES, F. C.; COPPINI, N. L. Tecnologia da Usinagem

dos Materiais. São Paulo: Artiber , 8 ed., 2013.

DINIZ, A. E; MARCONDES, F.C; COPPINI, N.L. Tecnologia da usinagem

dos Materiais. São Paulo: MM Editora, 1. ed., 1999.

DÖRR, J., SAHM, A. The Minimum Quantity Lubricant evaluated by the users.

Machines and metals magazine, v. 418, p. 20- 39, 2000.

DUC, T.M; LONG, T.T; CHIEN, T.Q. Performance Evaluation of MQL Param- eters Using Al2O3 and MoS2 Nanofluids in Hard Turning 90CrSi Steel. Lubricants. v. 7, p. 1-17, 2019.

ELBAH, M. et al. Comparative assessment of machining environments (dry, wet and MQL) in hard turning of AISI 4140 steel with CC6050 tools. The International

Journal of Advanced Manufacturing Technology, v. 105, p. 2581-2597, 2019.

EPA. Sustainable Manufacturing. Disponível em: <https://www.epa.gov/sus- tainability/sustainablemanufacturing#:~:text=Sustainable%20manufactu-

ring%20is%20the%20creation,employee%2C%20community%20and%20pro- duct%20safety.>. Acesso em: 15 de jun. de 2019.

GHADIMI, A. SAIDUR, R., METSELAAR, H.S.C. A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat

and Mass Transfer, v. 54, p. 4051– 4068, 2011.

GONÇALVES, A.B. Síntese de nanofios de Óxido de cobre (CuO) e fabri-

cação de nanodispositivos. Dissertação de mestrado – Universidade Federal de Mi-

nas Gerais, 2008.

GRZESIK et al. Energy consumption characterization in precision hard ma- chining using CBN cutting tools. International Journal of Advanced Manufacturing

HADAD, M., SADEGHI, B. Minimum quantity lubrication-MQL turning of AISI4140 steel alloy. Journal of Cleaner Production, v. 54, p. 332-343, 2013.

Inbra indústrias químicas ltda. Disponível em: < https://www.inbra.com.br/>. Acesso em: 19 de julho de 2019.

JIA, D.; LI, C.; ZHANG, D.; ZHANG, Y.; ZHANG, X. Experimental verification of nanoparticle jet minimum quantity lubrication effectiveness in grinding. Journal of

Nanoparticle Research. v.16, p.2758-7, 2014.

KALITA, P. et al. Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. Journal of Manufactur-

ing Processes. v.14, p.160-166, 2012a.

KALITA, P.; MALSHE, A.P.; RAJURKAR, K.P. Study of tribo-chemical lubri- cant film formation during application of nanolubricants in minimum quantity lubrica- tion (MQL) grinding. CIRP Annals. Manufacturing Technology. v.61, p.327-330, 2012b.

KANG, M.C. et al. Effect of the minimum quantity lubrication in high speed end milling of AISI D2 cold- worked die steel (62 HRC) by coated carbide tools. Surface

and Coatings Technology, v. 202, p. 5621-5624, 2008.

KHAIRUL, M.A. et al. Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluid. International Journal of Heat and Mass Trans-

fer, v. 98, p. 778– 787, 2016.

KHAN, M.; MITHU, M.; DHAR, N.R. Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. Journal of Mate-

rials Processing Technology, v. 209, p. 5573–5583, 2009.

KHANDEKAR, S. et al. Nano-cutting fluid for enhancement of metal cutting performance. Materials and Manufacturing Processes. v.27, p. 963-967, 2012.

KLEINOVÁ, A. et al. Substituted esters of stearic acid as potential lubricants.

Biomass & Bioenergy. v. 32, p.366-371, 2007.

KRISHNA, P.V.; SRIKANT, R.R.; RAO, D.N. Experimental investigation on the per- formance of nanoboric acid suspensions in SAE-40 and coconut oil during turning

of AISI 1040 steel. International Journal of Machine Tools and Manufacture. v. 50, p. 911-916, 2010.

LAWAL, S.A.; CHOUDHURY, I.A.; NUKMAN, Y. Evaluation of vegetable and mineral oil-in-water emulsion cutting fluids in turning AISI 4340 steel with coated car- bide tools. Journal of Cleaner Production, v. 66, p. 610-618, 2014.

LEADEBAL JR, W.V. et al. Effects of cryogenic cooling on the surface integrity in hard turning of AISI D6 steel. Journal of the Brazilian Society of Mechanical

Sciences and Engineering. v. 40, p. 1-14, 2018.

LEADEBAL JR, W.V. et al. Effects of cryogenic cooling on the surface integrity in hard turning of AISI D6 steel. Journal of the Brazilian Society of Mechanical, v. 40, p. 1-14, 2018.

LEADEBAL JR, W.V. et al. Tool wear and chip analysis after the hard turning of AISI D6 steel assisted by LN2. Machining Science and Technology. v. 23, pp.886-905, 2019.

LEADEBAL JR, W.V. Influência da refrigeração criogênica na vida da fer-

ramenta de PCBN e na integridade superficial do aço ferramenta D6. Disserta-

ção de Mestrado - Universidade Federal do Rio Grande do Norte, 2017.

LEE S., CHOI, S.U.S., LI, S. EASTMAN, J.A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, v. 121, p. 280–9, 1999.

LEE, P.H. et al. An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). International Journal of Precision

Engineering and Manufacturing. v.13, p. 331-338, 2012.

LEE, P.H. et al. Environmentally-friendly nano-fluid minimum quantity lubrica- tion (MQL) meso-scale grinding process using nano-diamond particles. In: Interna-

tional Conference on Manufacturing Automation (ICMA). Hong Kong, v.13-15, p.

LEE, S.W., PARK, S.D., BANG I.C. Critical heat flux for CuO nanofluid fabri- cated by pulsed laser ablation differentiating deposition characteristics. International

Journal of Heat and Mass Transfer, v. 55, p. 6908-6915, 2012.

LEE,K. et al. Understanding the Role of Nanoparticles in Nano-oil Lubrication.

Tribology Letters, v. 35, p. 127-131, 2009.

LIEW et al. An overview of current status of cutting fluids and cooling tech- niques of turning hard steel. International Journal of Heat and Mass Transfer, v.114, p. 380 – 394, 2017.

LISBOA, F.C., MORAES, J.J.B., HIRASHITA, M.A., 2013. Fluidos de corte: uma abordagem geral e novas tendências. 33º ENCONTRO NACIONAL DE ENGE-

NHARIA DE PRODUCAO. Salvador: Abepro, p. 1 – 16, 2013.

LOHAR, D.V., NANAVATY, C.R. Performance evaluation of minimum quantity lubrication (MQL) using CBN during hard turning of AISI 4340 and its comparison with dry and wet turning. Bonfring International Journal of Industrial Engineering and

Management Science. v. 3, p. 102-106, 2013.

LUNA, F.M.T. et al. Assessment of biodegradability and oxidation stability of mineral, vegetable and synthetic oil samples. Industrial Crops and Products, v.33, p. 579-583, 2011.

MACHADO, A.R. et al. Teoria da usinagem dos materiais. 1. ed. Blucher: São Paulo, 2009. 371 p.

MACHADO, A.R.; DINIZ, A.E. Tool wear analysis in the machining of hardened steels. The international Journal of Advanced Manufacturing Technology. v. 92, p. 4095– 4109, 2017.

MAO, C. et al. Experimental investigation of surface quality for minimum quan- tity oilewater lubrication grinding. International Journal of Advanced Manufacturing

Technology. v. 59, p. 93-100, 2012b.

MAO, C. et al. Investigation on the effect of nanofluid parameters on MQL grinding. Mater. Manuf. Process. v. 28, p. 436-442, 2013b

MAO, C. et al. The influence of spraying parameters on grinding performance for nanofluid minimum quantity lubri- cation. International Journal of Advanced Ma-

nufacturing Technology. 64, 1791-1799, 2013ª

MELLO, V.S. Otimização do processo de síntese de nanolubrificantes

aditivados com CuO para ação antidesgaste. Tese de Doutorado – Universidade

Federal do Rio Grande do Norte, 2017.

MULYADI, I.H. Improving the Performance of Minimum Quantity Lubrica-

tion in High Speed Milling and Environmental Performance Analysis. Tese de

Doutorado – Universidade de Manchester, 2013.

MUSAVI, S.H.; DAVOODI, B.; NIKNAM, S.A. Environmental-friendly turning of A286 superalloy. Journal of Manufacturing Processes. v. 32, p. 734-743, 2018.

NAM, J.S.; LEE, P.H.; LEE, S.W. Experimental characterization of micro-drill- ing process using nanofluid minimum quantity lubrication. International Jour- nal of Machine Tools and Manufacture. v. 51, p. 649-652. 2011.

NAYAK, M.; SEGHAL, R. Effect of tool materials properties and cutting condi- tions on machinability of AISI D6 steel during hard turning. Arabian Journal for Sci-

ence and Engineering. v. 40, p. 1151-1164, 2015.

NIOSH. Metalworking Fluids. Disponível em: <https://www.cdc.gov/niosh/to-

pics/metalworking/default.html>. Acesso em: 25 de ago. de 2020.

OJOLO S.J. et al. Experimental determination of the effect of some straight biological oils on cutting force during cylindrical turning. Revista Matéria, v. 13, p. 650– 63, 2008.

OSAMA, M. et al. Recent developments and performance review of metal working fluid. Tribology International, v. 114, p. 389-401, 2017.

PARK, K.H.; EWALD, B.; KWON, P.Y. Effect of nano-enhanced lubricant in mini- mum quantity lubrication balling milling. Journal of Tribology. v. 133, p. 1-8, 2011.

PETTERSSON A. Environmentally adapted lubricants – properties and

PRABHU, S., VINAYAGAM, B.K. Nano surface generation of grinding process using carbon nano tubes. Sadhana. v. 35, p. 747-760, 2010.

PRABHU, S.; VINAYAGAM, B.K.. AFM investigation in grinding process with nanofluids using Taguchi analysis. International Journal of Advanced Manufactur-

ing Technology. v.60, 149-160. 2012

PRASAD, M.M.S., SRIKANT, R.R., 2013. Performance evaluation of nano graphite in- clusion in cutting fluids with MQL technique in turning of AISI 1040 steel.

International Journal of Research in Engineering and Technology. v. 2, p. 381-

393.

PUSAVEC, F., KRAJNIK, P., KOPAC, J. Transitioning to sustainable produc- tion e Part I: application on machining technologies. Journal of Cleaner Production. v. 18, 174-184, 2010.

RAHIM, E.A. et al. Experimental Investigation of Minimum Quantity Lubrica- tion (MQL) as a Sustainable Cooling Technique. Procedia CIRP. v. 26, p. 351-354, 2015.

RAHMAN, S.S. et al. Tuning nanofluids for improved lubrication performance in turning biomedical grade titanium alloy. Journal of Cleaner Production. v. 206. p. 180-196, 2019.

RAHMATI, B., SARHAN, A.A.D., SAYUTI, M. Morphology of surface gener- ated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining. Journal of Cleaner Production. v. 66, p.685-691, 2013.

RAHMATI, B.; SARHAN, A.A.D.; SAYUTI, M. Investigating the optimum mo- lybde- num disulfide (MoS2) nanolubrication parameters in CNC milling of AL6061-T6 alloy. The International Journal of Advanced Manufacturing Technology. v.70, p.1143-1155, 2014.

RAO, S.N., SATYANARAYANA, B. Experimental estimation of tool wear and cutting temperatures in MQL using cutting fluids with CNT inclusion. International Jour- nal of Engineering, Science and Technology. v. 3, p. 928-931, 2011.

ROBERTSON, J. Diomond-like amorphous carbon. Materials Science and

Engineering. v.37,p. 129-181, 2002.

RODRIGUEZ, G.C. Produção e Caracterização de Filmes finos de Car-

bono Amorfo Hidrogenado depositados em plasmas de metano dliuídos por ga- ses nobres. Tese de Doutorado - Pontifícia Universidade Católica do Rio de Janeiro,

2003.

ROMI. Tornos CNC, Linha CENTUR. Disponível em <https://www.romi.com/wpcontent/uploads/2016/02/ds_romi_centur_le-

ves_po_an_baixa-min-1.pdf> Acesso em: 09 de maio de 2019.

SADEGHI, M.H. et al. Minimal quantity lubrication-MQL in grinding of Ti-6Al- 4V titanium alloy. International Journal of Advanced Manufacturing Technology, v. 44, p. 487-500, 2009.

SANDVIK COROMANT. Detalhes de produtos. Disponível em: < https://www.sandvik.coromant.com/pt-pt/products/pages/productde-

tails.aspx?c=csdnn%202525m%2012-4>. Acesso em: 09 de maio de 2019.

SANDVIK COROMANT. Detalhes de produtos. Disponível em:< https://www.sandvik.coromant.com/en-us/products/pages/productde-

tails.aspx?c=SNGN120412S02520M%207925>. Acesso em: 09 de maio de 2019. SANDVIK COROMANT. Torneamento de peças duras com CBN. Disponível em: < https://www.sandvik.coromant.com/sitecollectiondocuments/downloads/glo- bal/catalogues/pt-pt/c-2940-137.pdf>. Acesso em: 09 de maio de 2019.

SARHAN, A.A.D.; SAYUTI, M.; HAMIDI, M. Reduction of power and lubricant oil consumption in milling process using a new SiO2 nano lubrication system. Interna-

tioanl Journal of Advanced Manufacturing Technology. v. 63, p. 505-512, 2012.

SAYUTI, M. et al. Investigation on the morphology of the machined surface in end milling of aerospace AL6061-T6 for novel uses of SiO2 nanolubrication system.

Journal of Cleaner Production. v. 66, p. 655-663. 2013-b.

SAYUTI, M., et al. Cutting force reduction and surface quality improvement in machining of aerospace dural- umin AL-2017-T4 using carbon onion nanolubrication

system. The International Journal of Advanced Manufacturing Technology. v. 65, p.1493-1500. 2013a.

SAYUTI, M.; SARHAN, A.A.D.; SALEM, F. 2014. Novel uses of SiO2 nano- lubrication system in hard turning process of hardened steel AISI 4140 for less tool wear, surface roughness and oil consumption. Journal of Cleaner Production. v.67, p. 265-276.

SETTI, D.; GHOSH, S.; RAO, P.V. Application of nano cutting fluid under min- imum quantity lubrication (MQL) technique to improve grinding of Tie6Ale4V alloy.

World Academy of Science, Engineering and Technology. v. 70, p.512-516, 2012

SHABGARD, M., SEYEDZAVVAR, M., MOUHAMMADPOURFARD, M. Ex- perimental investigation into lubrication properties and mechanism of vegetable-based CuO nanofluid in MQL grinding. The International Journal of Advanced Manufac-

turing Technology. v. 92, p. 3807–3823, 2017.

SHARMA, A.K. et al. Effects of Minimum Quantity Lubrication (MQL) in ma- chining processes using conventional and nanofluid based cutting fluids: A compre- hensive review. Journal of Cleaner Production. v. 127, p. 1-18, 2008.

SHARMA, A.K. et al. Novel uses of alumina-MoS2hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel. Journal of Manufacturing Processes, v. 30, p. 467–482, 2017.

SHARMA, A.K. et al. Novel uses of alumina-MoS2hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel. Journal of Manufacturing Processes, v. 30, p. 467–482, 2017.

SHEN, B. et al. Performance of novel MoS2 nanoparticles based grinding flu- ids in minimum quantity lubrication grinding. Transactions of the North American

Manufacturing Research Institute of SME. v. 36, p. 357-364. 2008a.

SHEN, B.; SHIH, A.J.; TUNG, S.C. Application of nanofluids in minimum quan- tity lubrication grinding. Tribology Transactions. v. 51, p. 730-737, 2008b.

SIDIK, N.A.C. et al. Recent progress on the application of nanofluids in mini- mum quantity lubrication machining: A review. International Journal of Heat and

Mass Transfer. v. 108, p. 79–89, 2017.

SINGH et al. Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning. Journal of Cleaner Production journal. v. 162, p. 830-845, 2017. SOARES, C.R. Produção e caracterização de nanopartículas de carbono

amorfo hidrogenado em plasmas empoeirados a catodo oco. Dissertação de Mes-

trado - Universidade Federal Fluminense, 2015.

SONED – Indústria e comércio LTDA. Especificações de produtos. Disponível em: <http://www.soned.com.br/novo/images/stories/catalogos/lubetool/lubetool.pdf>. Acesso em: 09 de maio de 2019.

SRIKANT, R.R.; RAMANA, V.S.N.V. Performance evaluation of vegetable emulsifier based green cutting fluid in turning of American Iron and Steel Institute (AISI) 1040 steel e an initiative towards sustainable manufacturing. Journal of Cleaner Pro-

duction, v.108, p. 104-109, 2015.

TALIB, N.; RAHIM, E. A. The Effect of Tribology Behavior on Machining Per- formances When Using Bio-based Lubricant as a Sustainable Metalworking Fluid. Pro-

cedia CIRP, v. 40, p. 504–508, 2016.

TAZEHKANDI, A. H., SHABGARD, M., PILEHVARIAN, F. On the feasibility of a reduction in cutting fluid consumption via spray of biodegradable vegetable oil with compressed air in machining Inconel 706, Journal of Cleaner Production. v. 104,p. 422–435, 2015.

TIWARI, H. et al. A Brief Review on Different Lubricants Used in MQL Process

Documentos relacionados