• Nenhum resultado encontrado

P ARTE B: D ETERMINAÇÃO DO C ALOR E SPECÍFICO DE UM S ÓLIDO

No documento QuimFisicaE (Manual Completo).pdf (páginas 30-34)

1. Esvazie e lave o calorímetro.

2. Repita o procedimento anterior, utilizando uma amostra de chumbo metálico.

T

RATAMENTO DE

D

ADOS

1. Utilize as equações (1) a (4) e os valores de temperaturas obtidos na parte A para calcular a capacidade calorífica do sistema calorimétrico. 2. Utilizando a equação (4), os dados da segunda parte e o resultado

anterior, determine o calor específico do chumbo.

3. Compare seus resultados com os da literatura. Calcule o erro relativo e o absoluto e discuta sobre as diferenças.

Q

UESTÕES PARA O

R

ELATÓRIO

1. Os valores obtidos são satisfatórios?

2. Quais as possíveis fontes de erro ou limitações neste experimento? Para cada uma, tente dizer que efeito elas terão no resultado esperado dos experimentos.

B

IBLIOGRAFIA

1. ATKINS, P.W.; Físico-Química, 7ª Ed., RJ, Ed. LTC, 2004.

PRÁTICA N° 5:

DETERMINAÇÃO DO CALOR DE NEUTRALIZAÇÃO, DISSOLUÇÃO E DILUIÇÃO

O

BJETIVO

Determinar o calor de neutralização (em uma reação ácido-base) e dissolução (na solubilização de um soluto em água).

I

NTRODUÇÃO

Calor pode ser definido como uma quantidade que se transfere de um corpo a outro como consequência exclusiva de uma diferença de temperatura entre ambos. A experiência mostra que a quantidade de calor recebida por um sistema, sob pressão constante, é proporcional ao acréscimo de temperatura produzido, ou seja:

q = C ×(Tf−Ti) , (1)

onde Ti e Tf são as temperaturas final e inicial do sistema, respectivamente, e C é

uma constante de proporcionalidade, denominada capacidade calorífica média, a qual depende da natureza, do estado físico e do tamanho do sistema. Se dividirmos a capacidade calorífica pela massa do sistema, obtém-se a capacidade calorífica específica, ou simplesmente calor específico, do sistema, c:

c = C

m ⇔ C = mc . (2)

De acordo com a primeira lei da termodinâmica, quando dois sistemas interagem e trocam energia, um deles ganha e o outro perde a mesma quantidade de energia. Desta forma, se os sistemas estiverem em temperaturas diferentes, a quantidade de energia trocada pode ser representada da seguinte forma:

q1 = −q2 ⇔ q1 + q2 = 0 , (3)

onde q1 é a quantidade de energia perdida pelo corpo 1 e q2 a quantidade de

energia ganha pelo corpo 2. Se substituirmos q1 e q2, teremos:

C1×(Tf−T1) = −C2×(Tf−T2) , (4) onde C1 e C2 são as capacidades caloríficas dos sistemas 1 e 2, T1 e T2 as

temperaturas iniciais dos sistemas 1 e 2 e Tf a temperatura final (de equilíbrio).

A quantidade de calor trocada entre um sistema e o meio externo é medida por meio de um calorímetro, que é um reservatório de calor de capacidade calorífica conhecida, cujas variações de temperatura fornecem as quantidades de calor recebidas de um sistema ou transferidas para este.

Calor de neutralização é o calor liberado quando um mol de um ácido reage com um mol de uma base, ambos em soluções diluídas. Ex.:

H(aq)+ + Cl (aq) - + Na (aq) + + OH (aq) - → Na (aq) + + Cl ( aq) - + H 2O( ℓ) . (5) Observa-se experimentalmente que reações entre soluções diluídas de ácidos fortes e bases fortes são sempre acompanhadas do mesmo efeito térmico, e este, por sua vez, é totalmente devido à formação da água. Porém, se um ácido fraco for neutralizado por uma base forte, ou vice-versa, o efeito térmico será completamente diferente. Isto ocorre devido a vários processos simultâneos: alguns são exotérmicos, como a neutralização, e outros endotérmicos, como a ionização do ácido e da base. O calor medido é a soma de todos os processos: neutralização, ionização, solvatação, diluição, entre outros.

Calor integral de dissolução é a variação de entalpia associada com a adição de certa quantidade de um soluto a uma determinada quantidade de solvente, à temperatura e pressão constantes. Exs.:

I: HCl(g) + 10H2O( ℓ ) → HCl ·10H2O( ℓ) ΔHI = -16,608 kcal.mol-1. (6)

II: HCl(g) + 25H2O( ℓ ) → HCl ·25H2O( ℓ) ΔHII = -17,272 kcal.mol-1. (7)

Os processos acima representam os calores integrais de dissolução do HCl na água, à 25 °C. A diferença entre os processos  e  é a quantidade do solvente. Portanto, ΔH - ΔHrepresenta o calor integral de diluição do HCl quando se

acrescentam 15 mols de água à solução de HCl do processo I.

A determinação do calor de neutralização e do calor integral de dissolução é feita a partir de um sistema calorimétrico, de acordo com:

Δ Hr = qr

n , qr = −qcal = −CcalΔ T ⇒ Δ Hr =

−CcalΔ T

n , (8)

onde ΔHr e qr são a entalpia e o calor da reação (neutralização e dissolução),

respectivamente, n o número de mols neutralizados e Ccal a capacidade calorífica

do calorímetro.

M

ATERIAIS

: E

QUIPAMENTOS

& R

EAGENTES

01 Frasco de Dewar (Garrafa Térmica/Calorímetro) de 500 mL; 01 Béquer de 200 mL + Proveta de 50 mL (ou 100 mL) + Funil; 01 Chapa Elétrica Aquecedora (ou Bico de Bunsen + Tripé de Ferro); 02 Termômetros (0-100 °C±0,5 °C);

HCl 1,0 mol/L + NaOH 1,0 mol/L (prepare-as se necessário); Nitrato de Sódio (NaNO3) ou Nitrato de Potássio (KNO3).

P

ROCEDIMENTO

PARTE A: CALIBRAÇÃO DO CALORÍMETRO

1. Coloque 100 mL de água destilada, sob temperatura ambiente, no interior do recipiente calorimétrico (frasco de Dewar/garrafa térmica) e anote a temperatura (T1) de equilíbrio. Este conjunto (recipiente calorimétrico +

100 mL de água a temperatura ambiente) constitui o calorímetro a ser utilizado em todas as demais etapas da prática.

2. Aqueça 100 mL de água destilada até ~80 °C. Coloque 50 mL da água aquecida em uma proveta e a devolva. Repita este procedimento 3 vezes de modo que a proveta entre em equilíbrio térmico com a água aquecida. Finalmente, colete 50 mL da água aquecida em uma proveta, anote a temperatura (T2) e a transfira para o interior do calorímetro.

3. Espere o equilíbrio térmico ser alcançado e anote a temperatura (Tf). PARTE B: CALOR DE NEUTRALIZAÇÃO DE UM ÁCIDO FORTEPORUMA BASE FORTE

1. Esvazie o calorímetro e lave-o cuidadosamente (com bastante água da torneira e depois com água destilada). Em seguida, coloque 50 mL de uma solução de NaOH 1,0 mol/L no interior do calorímetro e anote a temperatura (Ti) quando esta estiver constante.

2. Pegue 50 mL de uma solução de HCl 1,0 mol/L, à temperatura conhecida e igual à do interior do calorímetro (Ti; caso as temperaturas não sejam

iguais, deve-se esperar que até que as temperaturas estabilizem até atingirem a temperatura ambiente), e coloque-a (com auxílio de um funil, se necessário) sobre a solução de hidróxido de sódio do calorímetro.

3. Agite suavemente a mistura e anote a temperatura de equilíbrio (Tf). Note

que os 100 mL de água no interior do calorímetro foram restaurados.

No documento QuimFisicaE (Manual Completo).pdf (páginas 30-34)