• Nenhum resultado encontrado

6.4 Avaliação da Citotoxicidade em Células Tumorais

6.5.3 Avaliação da atividade citotóxica de CTL

A avaliação da atividade citotóxica de CTL em células tumorais utilizou o método do MTT. Este é um teste amplamente utilizado para determinação da viabilidade de células isoladas. No ensaio o MTT, um sal de tetrazólio solúvel em água, é convertido em cristais de formazan de cor púrpura, insolúveis em água, após clivagem do anel de tetrazólio por desidrogenases mitocondriais e outras enzimas lisossomais (LIU et al., 1997). Na verdade, o MTT não interage diretamente com as desidrogenases e sim com os seus subprodutos, NADH e NADPH (LIU et al., 1997). Os cristais de formazan são solubilizados, formando assim um composto colorido cuja medição da densidade óptica é feita em espectrofotômetro.

A intensidade do produto colorido formado é diretamente proporcional ao número de células viáveis presente na amostra, confirmando a capacidade redutora do sistema sobre o MTT (LIU et al., 1997; HEINRICH et al, 2005). Outros estudos têm examinado a correspondência entre os resultados obtidos durante contagem direta de células e confirmou-se que a análise com MTT é um indicador válido do número de células viáveis (KIM et al., 2009). Como resultado do ensaio, verificou-se que CTL não foi hábil em reduzir significativamente a viabilidade celular dos gliomas de (Figura 26).

Figura 25. Ensaio de citotoxidade de CTL em células tumorais.

Fonte: Elaborado pelo autor. Gráfico de “Concentração × Viabilidade celular” de CTL. Média ± Média do erro padrão (n = 3).

Estudos anteriores mostraram a capacidade de da lectina de Canavalia ensiformis (ConA) de induzir morte autofágica de células de glioma na linhagem de células de glioma humano U87. Foi mostrado que essa atividade se deve a regulação da proteína MT1-MMP (proteína de membrana – metaloproteinase tipo 1), uma glicoproteína fortemente expressa em

gliobastomas radio- e quimioresistentes. Essa proteína é responsável por mediar a sinalização pró-apoptótica e autofágica em células de câncer do cérebro. A lectina foi capaz de induzir a atividade da proteína com consequente aumento de vacúolos ácidos característicos de processos autofágicos (BELKAID et al., 2007; GINGER et al., 2000; PRATT; ROY; ANNABI, 2012).

Outros trabalhos também demonstraram que as lectinas de Canavalia ensiformis,

Canavalia brasiliensis e Cratylia floribunda foram citotóxicas, inibindo tanto a viabilidade

quanto a proliferação celular de diferentes linhagens tumorais murina (J774) e humanas (MCF- 7, HL-60 e MOLT-4) (FAHEINA-MARTINS, 2009; FAHEINA-MARTINS et al., 2012). Foi possível observar no trabalho que houve uma variação na ação das lectinas em cada linhagem, Sendo ConA, mais tóxica sobre as linhagens, pelo fato desta encontrar-se completamente tetramérica em pH fisiológico, conseguindo exercer um efeito mais pronunciado que ConBr e CFL, que se apresentam numa mistura de dímeros e tetrâmeros em pH fisiológico (SANS- APARÍCIO et al., 1997; CALVETE et al., 1999).

7 CONCLUSÃO

Os resultados apresentados neste trabalho de tese forneceram dados importantes sobre a caracterização estrutural e bioquímica da lectina de sementes da espécie pertencente a tribo Dalbergieae, Centrolobium tomentosum. A lectina demonstrou alta similaridade de estrutura primária com outras lectinas de sua tribo. Além disso, os resultados sobre sua sequência corroboraram a possibilidade da existência de dois grupos na tribo Dalbergieae, apresentando especificidade a carboidratos, sítios de glicosilações e, principalmente, processamentos pós-traducionais diferentes.

A partir de dados de cristalografia de raios X foram obtidas duas estruturas de CTL, uma de forma monoclínica e a outra tetragonal, sendo elucidados dados importantes sobre suas interações proteína-ligante. Esses foram aprofundados com o estudo de Docking molecular. A lectina xibiu forte afinidade para manosídeos, sendo essa característica demonstrada tanto por co-cristalização, como por Docking molecular.

De posse desses resultados, a lectina pode ser utilizada para reconhecer glicanos específicos envolvidos eventos biológicos, tanto para entendimento do evento, quanto para aplicação biotecnológica. Um bom exemplo disso foi a indução do efeito edematogênico demonstrado por CTL no modelo de edema da pata, mostrando uma resposta inflamatória aguda, com a participação de seu domínio de reconhecimento a carboidratos. A elevada afinidade por complexos de manose apresentada pela sua estrutura cristalográfica pode explicar os resultados obtidos nos testes em modelos de inflamação.

Este estudo apresentou, pela primeira vez, a estrutura tridimensional de uma lectina nativa, específica à manose, pertencente à tribo Dalbergieae.

REFERÊNCIAS

ABBAS, A. K.; FAUSTO, N.; KUMAR, V. Robbins e Cotran - Patologia: bases patológicas das doenças. 8ªed. Rio de Janeiro: Elsevier. 2010.

ABERGEL, C. Molecular replacement: tricks and treats. Acta Crystallogr. D Biol.

Crystallogr., v. 69, p. 2167-2173, 2013.

ADAMS, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst., v. 66, p. 213-221, 2010.

AEBERSOLD, R.; MANN, M. Mass spectrometry-based proteomics. Nature, v. 422, n. 6928, p. 198-207, 2003.

ALENCAR, N. M. et al. The galactose binding lectin from Vatairea macrocarpa seeds induces in vivo neutrophil migration by indirect mechanism. Int. J. Biochem. Cell Biol., v. 35, p. 1674- 1681, 2003.

ALENCAR, N. M. et al. Vatairea macrocarpa (Leguminosae) lectin activates cultured macrophages to release chemotactic mediators. Naunyn Schmiedebergs Archives of

Pharmacology, v. 374, p. 275-282, 2007.

ALENCAR, N. M. et al. Vatairea macrocarpa lectin induces paw edema with leukocyte infiltration. Prot. Pept. Lett., v. 11, p. 195-200, 2004.

ALENCAR, N. M. et al. Anti-inflammatory and antimicrobial effect of lectin from

Lonchocarpus sericeus seeds in an experimental rat model of infectious peritonitis. J. Pharm. Pharmacol., v. 57, n. 7, p. 919-22, 2005.

ALENCAR, N. M. et al. Leguminous lectins as tools for studying the role of sugar residues in leukocyte recruitment. Mediators. Inflamm., v. 8, p. 107-13, 1999.

ALESSI, D. et al. The control of protein phosphatase-1 by targetting subunits. The major myosin phophastase in avian smooth muscle is a novel form of protein phosphatase-1. Eur. J.

Biochem., v. 210, p. 1023-1035, 1992.

ALLEN, A. K.; NEUBERGER, A. The purification and properties of the lectin from potato tubers, a hydroxyproline-containing glycoprotein. Biochemical Journal, v.135, p. 307-324, 1973.

ALMEIDA, A. C. et al. Purification and partial characterization of a new mannose/glucose- specific lectin from Centrolobium tomentosum Guill. ex Benth seeds exhibiting low toxicity on Artemia sp. International Journal of Indigenous Medical Plants, v. 47, p. 1567-1577, 2014. ALMEIDA, L.M. et al. Edematogenic and antinociceptive activities of the lectin isolated from the albumin fraction of Acacia farnesiana. Ciencia Animal (UECE), v. 25, p. 19-22, 2015. ALTSCHUL, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, v. 25, p. 3389-3402, 1997.

ALVES, A. C. et al. A novel vasorelaxant lectin purified from seeds of Clathrotropis nitida: partial characterization and immobilization in chitosan beads. Archives of Biochemistry and

Biophysics, v. 588, p. 33-40, 2015.

AMBROSI, M.; CAMERON, N. R.; DAVIS, B. G. Lectins: tools for the molecular understanding of the glycocode. Org. Biomol. Chem., v. 3, p. 1593-1608, 2005.

ANDRADE, J. L. et al. Lectin-induced NO production. Cellular Immunology, v. 194, p. 98- 102, 1999.

BRÜNGER, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature, v. 355, p. 472-475, 1992.

BANERJEE, R. et al. Conformation, Protein-Carbohydrate Interactions and a Novel Subunit Association in the Refined Structure of Peanut Lectin-Lactose Complex. J. Mol. Biol., v. 259, p. 281-296, 1996.

BARBOSA, T. et al. In Vivo lymphocyte activation and apoptosis by lectins of The Diocleinae Subtribe. Memórias do Instituto Oswaldo Cruz, v. 96, n. 5, p. 673-678, 2001.

BARBOSA, T. et al. In Vivo Lymphocyte Activation and Apoptosis by lectins of the Diocleinae Subtribe. Memórias do Instituto Oswaldo Cruz., v. 96, n. 5, p. 673-678, 2001.

BARI, A. U. et al. Purification and partial characterization of a new mannose/glucose-specific lectin from Dialium guineense Willd seeds that exhibits toxic effect. JMR. Journal of

Molecular Recognition, v. 26, p. 351-356, 2013.

BARRAL-NETTO, M. et al. Human lynphocyte stimulation by legume lectins from the

Diocleae tribe. Immunol. Invest., v. 21, p. 297-303, 1992.

BARROSO-NETO, I. L. et al. Structural analysis of a Dioclea sclerocarpa lectin: Study on the vasorelaxant properties of Dioclea lectins. International Journal of Biological

Macromolecules, v. 82, p. 464-470, 2016.

BARROSO-NETO, I. L. et al. Vasorelaxant activity of Canavalia grandiflora seed lectin: A structural analysis. Archiv. of Biochem. and Biophys., v. 543, p.31-39, 2014.

BELKAID, A. et al. Necrosis induction in glioblastoma cells reveals a new "bioswitch" function for the MT1-MMP/G6PT signaling axis in proMMP-2 activation versus cell death decision. Neoplasia, v. 9, p. 332-340, 2007.

BENEVIDES, R. G. et al. A Lectin from Platypodium elegans with Unusual Specificity and Affinity for Asymmetric Complex N-Glycans. Journal of Biological Chemistry, v. 287, p. 26352-26364, 2012.

BENEVIDES, R.G. Avaliação do Potencial Fungicida e Termiticida de uma Fração Protéica Lectínica de Sementes de Platypodium elegans Vogel e Obtenção da Lectina Purificada. Dissertação (Mestrado em Bioquímica) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 151 p., 2008.

BENEVIDES, R.G. Caracterização bioquímica e estrutural de uma lectina recombinante de sementes de Platypodium elegans Vogel, Tese (Doutorado em Bioquímica) – Universidade Federal do Ceará, Fortaleza, 292 p. 2011.

BERMAN, H. M. et al. The Protein Data Bank And The Challenge Of Structural Genomics.

Nat. Struc. Biol., v. 7, p. 957-959, 2000.

BERTRAM, J. S. The molecular biology of cancer. Mol. Aspects Med., v. 21, p. 167-223, 2000.

BEZERRA, D. P. et al. Purificação de uma lectina presente em sementes de Machaerium

acutifolium. Anais da XXVI Reunião Nordestina de Botânica, In: XXVI Reunião Nordestina de Botânica, Fortaleza, 2003.

BEZERRA, M. J. B. et al. Crystal structure of Dioclea violacea lectin and a comparative study of vasorelaxant properties with Dioclea rostrata lectin. Internat. J. of Bioc. & Cell Biol., v. 45, p. 807-815, 2013.

BIES, C.; LEHR, C.; WOODLEY, J. F. Lectin-mediated drug targeting: history and applications. Advanced Drug Delivery Reviews, v. 56, p. 425–435, 2004.

BLUNDELL, T.L.; JONHSON, L.N. Protein crystallography. Academic Press. USA, 1976. BOGOEVA, V. P.; PETROVA, L. P.; TRIFONOV, A. A. New Activity of a Protein from

Canavalia ensiformis. Sci. Pharm., v. 82, n. 4, p. 825-34, 2014.

BOUCKAERT, J. et al. Crystallographic structure of metal-free concanavalin A at 2.5 Å resolution. Proteins Struct. Funct. Genet., v. 23, p. 510-524, 1995.

BOUCKAERT, J.; DEWALLEF, Y.; POORTMANS, F.; WYNS, L.; LORIS, R. The

structural features of concanavalin A governing non-proline peptide isomerization.

Journal of Biological Chemistry, v. 275, p. 19778-19787, 2000.

CALVETE, J. J. et al. Amino acid sequence, glycan structure, and proteolytic processing of the lectin of Vatairea macrocarpa seeds. FEBS Letters, v. 425, p. 286-292, 1998.

CALVETE, J. J. et al. Molecular characterization and crystallization of Diocleinae lectins.

Biochimica et Biophysica Acta., v. 1430, p. 367-375, 1999.

CANTU, M. et al. Sequenciamento de peptídeos usando espectrometria de massas: um guia prático. Quím. Nova, v. 31, n. 3, p. 669-675, 2008.

CARTER, C. W. JR.; CARTER, C. W. Protein crystallization using incomplete factorial experiments. J. Biol. Chem., v. 254, p. 12219, 1979.

CARVALHO, H. F. Aspectos moleculares e biológicos das lectinas. Ciência e Cultura., v. 42, p. 884-893, 1990.

CARVALHO, M.H.C. et al. Hipertensão arterial: o endotélio e suas múltiplas funções. Rev.

Bras. Hipertens., v. 8, n. 1, 2001.

CAVADA B.S. et al. Purification and characterization of a lectin from seeds of Vatairea

macrocarpa Duke. Phytochemistry, v. 49, n. 3, p. 675-80, 1998.

CAVADA, B. S. et al. Revisiting proteus: Do minor changes in lectin structure matter in biological activity? Lessons from and potential biotechnological uses of the Diocleinae subtribe lectins. Current Protein and Peptide Sciences, v. 2, p. 123-135, 2001.

CAVADA, B.S. et al. cDNA cloning and 1.75 Å crystal structure determination of PPL2, an endochitinase and N-acetylglucosamine-binding hemagglutinin from Parkia platycephala seeds. The FEBS Journal, v. 273, p. 3962-3974, 2006.

CHAMRAD, D. C. et al. Evaluation of algorithms for protein identification from sequence databases using mass spectrometry data. Proteomics., v. 4, n. 3, p. 619-628, 2004.

CHANDRA, N. R. et al. Structural similarity and functional diversity in proteins containing the legume lectin fold. Protein Eng., v. 14, p. 857-866, 2001.

CHAPMAN, J. R. Practical Organic Mass Spectrometry - A guide for chemical and biochemical analysis. 2ª.Ed., Chinchester: John Wiley & Sons, 1993.

CHEN, X. J.; CARROLL, J. A.; BEAVIS R. C. Near-UV-induced matrix-assisted laser desorption/ionization as a function of wavelength. J. Am. Soc. Mass. Spectrom., v. 9, n. 9, p. 885-91, 1998.

CHEN, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica D, v. 66, p. 12-21, 2010.

CHIAL, H. Proto-oncogenes to oncogenes to cancer. Nat. Education., v.1, 33 p., 2008. CHRISPEELS, M. J. Biosynthesis, processing, and transport of storage proteins and lectins in cotyledons of developing legume seeds. Philos. Trans. R. Soc. Lond., v. 304, p. 309-322, 1984.

CHRISPEELS, M. J.; RAIKHEL, N. V. Short peptide domains target proteins to plant vacuoles.

Cell, v. 68, p. 613-616, 1992.

CIOPRAGA, J. et al. Fusarium spp. growth inhibition by wheat germ agglutinin. Biochim.

Biophys. Acta., v. 1428, p. 424-432, 1999.

CLAYDON M. et al. The rapid identification of intact microorganisms using mass spectrometry. Nat. Biotechnol., v. 14, n. 11, p. 1584-1586.

COELHO, L. C. B. B.; SILVA, M. B. R. Simple method to purify milligram quantities of the galactose-specific lectin from the leaves of Bauhinia monandra. Phytochemical Analysis, v. 11, p. 295-300, 2000.

COLEMAN, R.G. et al. Ligand Pose and Orientational Sampling in Molecular Docking. Plos

One., v. 8, 2013.

COOLINGE, D. B. et al. Plant chitinases. Plant Journal, v. 3, p. 31-40, 1993.

COOPER, D.R. et al. X-ray crystallography: Assessment and validation of protein-small molecule complexes for drug discovery. Expert. Opin. Drug. Discov., v. 6, p. 771-782, 2012. CORNER, J.; BAILEY, C. Cancer nursing: care in context, 2ª ed. Oxford, Wiley-Blackwell, 2008.

COSTA, R. M. P. B., et al. A new mistletoe Phthirusa pyrifolia leaf lectin with antimicrobial properties. Process Biochemistry, v. 45, p. 525-533, 2010.

CRUNKHORN, P.; MEACOCK, S.C.R. Mediators of the inflammation induced in the rat paw by carrageenin. Br. J. Pharmac., v. 42, p. 392-402, 1971.

DAM, T. K. et al. Diocleinae lectins: a group of proteins with conserved binding sites for the core trimannoside of asparagine-linked oligosaccharide and differential specificities for complex carbohydrates. The Journal Of Biological Chemistry, v. 273, n. 20, p. 12082-12088, 1998.

DAM, T. K. et al. Thermodynamic Binding Studies of Lectins from the Diocleinae Subtribe to Deoxy Analogs of the Core Trimannoside of Asparagine-Linded Oligosaccharides. The

Journal of Biological Chemistry, v. 275, n.21, p. 16119-16126, 2000.

DAM, T. K. et al. Binding studies of alpha-GalNAc-specific lectins to the alpha-GalNAc (Tn- antigen) form of porcine submaxillary mucin and its smaller fragments. The Journal Of

Biological Chemistry., v. 282, p. 28256-28263, 2007.

DATTA, P. K.; FIGUEROA, M. O. R.; LAJOLO, F. M. Purification and characterization of two major lectins from Araucaria brasiliensis syn Araucaria angustifolia seeds (pinhão). Plant

Physiology., v. 97, p. 856-862, 1991.

DELANO, W. L. The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA, 2002.

DELATORRE, P. et al. Structure of a lectin from Canavalia gladiata seeds: new structural insights for old molecules, BMC Struct. Biol., v. 7, p. 52, 2007.

DELATORRE, P. Lectinas de leguminosas: novos enfoques estruturais para velhas

moléculas. Tese (Doutorado em Bioquímica) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2006.

DENNIS, J. W.; GRANOVSKY, M.; WARREN, C. E. Protein glycosylation in development and disease. BioEssay, v. 21, p. 412-21, 1999.

DREISEWERD K. (2003) The Desorption Process in MALDI. Chem Rev, v. 103, p. 395. DRENTH, J. Principles of Protein X-Ray Crystallography. Springer Advanced Texts in

DUBOIS B. et al. Regulation of gelatinase B (MMP-9) in leukocytes by plant lectins. FEBS

Letters, 427, 275-278,1998.

DUCRUIX, A.; GIEGE, R. Crystallization of nucleic acids and proteins. A practical approach.

Oxford University Press, 435 p., 1992.

DUIJN, E. et al. Chaperonin Complexes Monitored by Ion Mobility Mass Spectrometry.

Journal of the American Chemical Society, v. 131, p. 1452-1459, 2009.

ELIAS, J. E. et al. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat. Methods, v. 2, p. 667-675. 2005.

Emsley, B. et al. Features and development of Coot. Acta Crystallogr. D, v. 66, p. 486-501, 2010.

ETZLER, M. E. Distribution and function of plant lectins. Lectins. Properties, Function, and Applications in Biology and Medicine. Academic Press, p. 371-435, 1986.

EVANS, P. “Data reduction”, Proceedings of CCP4 Study Weekend. Data Collection &

Processing, p. 114-122, 1993.

FAHEINA-MARTINS, G. V. et al. Antiproliferative effects of lectins from Canavalia

ensiformis and Canavalia brasiliensis in human leukemia cell lines. Toxicology in Vitro, v.

26, n. 7, p. 1161-1169, 2012.

FANTONE, J. C. et al. Inflamação: Patologia. Rio de Janeiro, Brasil: Guanabara Koogan, p. 34-58, 1990.

FAVACHO, A. R. M. et al. In vitro activity evaluation of Parkia pendula seed lectin against human cytomegalovirus and herpes virus 6. Biologicals., v. 35, p. 189-194, 2007.

FENG, H. et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science, v. 319, n. 5866, p. 1096-1100, 2008.

FENN, J. B. et al. Electrospray ionization-principles and practice. Mass Spectrometry

Reviews, v. 9, p. 37-70, 1990.

FENSELAU C.; DEMIREV P. A. Characterization of intact microorganism by MALDI mass spectrometry. Mass Spectrom. Rev., v. 20, n. 4, p. 157-171, 2001.

FERENCÍK, M.; STVRTINOVÁ, V. Endogenous control and modulation of inflammation.

Folia Biol. Praha., v. 42, p. 47-55, 1996.

FERNÁNDEZ-ALONSO, J. L.; PÉREZ, G.; VEGA, N. Lectin prospecting in Colombian

Labiatae. A systematic-ecological approach. Biochemical Systematics and Ecology, v. 31, n.

6, p. 617-633, 2003.

FERREIRA, S. H. et al. Proceedings: the concomitant release of bradykinin and prostaglandin in the inflammatory response to carrageenin. Br. J. Pharmacol., v. 52, p. 108-109, 1974.

FRIGERIO, L.; ROBERTS, L. M. The enemy within: ricin and plant cells. Journal of

Experimental Botany, v. 49, n. 326, p. 1473-1480, 1998.

FURCHGOTT, R.; ZAWADZKI, Z. The obligatory role of the endothelial cells in relaxation of arterial smooth muscle by acetycholine. Nature, v. 288, p. 373-376, 1980.

FURNARI, F. B. et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment.

Genes Dev., v. 21, p. 2683-2710, 2007.

GABIUS, H. J. et al. From lectin structure to functional glycomics: principles of the sugar code.

Trends Biochem. Sci., v. 36, n. 6, p. 298-313, 2011.

GABIUS, H. J.; GABIUS, S. Glycoscience: status and perspectives. Chapman & Hall, Weinheim, Germany, 1997.

GALEGO DEL SOL, F. et al. The First Crystal Structure of a Mimosoideae Lectin Reveals a Novel Quaternary Arrangement of a Widespread Domain. J. Mol. Biol., v. 353, p. 574-583, 2005.

GASTEIGER, E. et al. Protein identification and analysis tools on the ExPASy Server. In: Walker JM editor. The Proteomics Protocols Handbook Totowa: Humana Press., p. 571- 607, 2009.

GHAZARIAN, H.; IDONI, B.; OPPENHEIMER, S. B. A. Glycobiology Review: Carbohydrates, Lectins, and Implications in Cancer Therapeutics. Acta Histochemica, v. 113, p. 236, 2011.

GINGER, D. et al. Rapid activation of matrix metalloproteinase-2 by glioma cells occurs through a posttranslational MT1-MMP-dependent mechanism. Biochim. Biophys. Acta., v. 1497, p. 341-350, 2000.

GINGRAS, D. et al. Rapid activation of matrix metalloproteinase-2 by glioma cells occurs through a posttranslational MT1-MMP-dependent mechanism. Biochim. Biophys. Acta., v. 1497, p. 341-350, 2000.

GOLDSTEIN, I. J. et al. What should be called a lectin? Nature, v. 285, p. 66, 1980.

GONÇALVES, F. M. et al. Vatairea macrocarpa Lectin (VML) Induces Depressive-like Behavior and Expression of Neuroinflammatory Markers in Mice. Neurochemical Research, v. 38, p. 2375-2384, 2013.

NASCIMENTO-NETO, L. G. et al. Characterization of Isoforms of the Lectin Isolated from the Red Algae Bryothamnion seaforthii and Its Pro-Healing Effect. Marine Drugs, v. 10, p. 1936-1954, 2012.

GROSS, J. H. Mass Spectrometry - A Textbook. Berlin, Springer, 2004.

GUPTA, R.; JUNG, E.; BRUNAK, S.; Prediction of N-glycosylation sites in human proteins.

HAMELRYCK, T. W. et al. Properties and structure of the legume lectin family. Trends in

Glycoscience and Glycobiology, v. 10, p. 349-404, 1998.

HAMPEL, A., LABANANSKAS, M., CORNNERS, P. G., KIRKEGARD, L., RAJBHANDARY, U. L., SIGLER, P. B., AND BOCK, R. M. Single crystals of transfer RNA from formylmethionine and phenylalanine transfer RNA's. Science, 162, 1384, 1968.

HANAHAN, D.; WEINBERG, R. A. Hallmarks of cancer: the next generation. Cell., v. 144, p. 646-674, 2011.

HANKINS, C. N.; KINDINGER, J. I.; SHANNON, L. M. The lectins of Sophora japonica II. Purification, properties, and N-terminal amino acid sequences of five lectins from bark. Plant

Physiol., v. 86, p. 67-70, 1988.

HE, X. M. et al. Purification, characterization, and molecular cloning of a novel antifungal lectin from the roots of Ophioglossum pedunculosum. Appl. Biochem. Biotechnol., v. 165, p. 1458-1472, 2011.

HEGI, M. E. et al., MGMT gene silencing and benefit from temozolomide in glioblastoma. N.

Engl. J. Med., v. 352, p. 997-1003, 2005.

HEINRICH, E. L. et al. Direct Targeting of Cancer Cells: A Multiparameter Approach. Acta

Histochem., v. 107, n. 5, p. 335-344, 2005.

HEINRICH, E. L. et al. Mass Spectrometry Principles and Applications. 3 ed. Wiley, England. 2007.

HOFFMAN, E. H.; STROOBANT, V. Mass Spectrometry. Principles and applications. Wiley, 502 p., 2007.

HOLLINGSWORTH, S.A.; KARPLUS, P.A. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol. Concepts., v. 1, p. 271-883, 2011. HOLTON, J.M. et al. The R-factor gap in macromolecular crystallography: an untapped potential for insights on accurate structures. Febs J., v. 281, p. 4046-4060, 2014.

IKEMOTO, K. et al. Bauhinia purpurea agglutinin-modified liposomes for human prostate cancer treatment. Cancer Sci., v. 07, n. 1, p. 53-59, 2016.

IMBERTY, A. et al. Structures of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition. Microbes and Infection, v. 6, n. 2, p. 221-228, 2004.

INA, C. et al. Screening for and purification of novel self-aggregatable lectins reveal a new functional lectin group in the bark of leguminous trees. Biochimica et Biophysica Acta, v. 1726, n. 1, p. 21-27, 2005.

IRWIN, J.J.; SHOICHET, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., v. 45, p. 177-182, 2005.

JANCARIK, J.; KIM, S. H. Sparse matrix sampling: a screening method for crystallization of proteins. Journal of Applied Crystallography, v. 24, p. 409-411, 1991.

JOHNSON, G. G.; WHITE, M. C.; GRIMALDI, M. Stressed to death: targeting endoplasmic reticulum stress response induced apoptosis in gliomas. Curr. Pharm. Des., v. 17, p. 284-292, 2011.

JOUBERT, F. J.; SHARON, N.; MERRIFIELD, E. H. Purification and properties of a lectin from Lonchocarpus capassa (apple-leaf) seed. Phytochemistry, v. 25, n. 2, p. 323-327, 1986. KABIR, S. (1998). Jacalin: a jackfruit (Artocarpus heterophyllus) seed-derived lectin of versatile applications in immunobiological research. Journal of Immunological Methods. Nº 212, p. 193-211.

KARAKI, H. et al. Calcium movements, distribution, and functions in smooth muscle.

Pharmacol Rev., v. 49, p. 157-230, 1997.

KARAS, M.; HILLENKAMP, F. Laser desorption ionization of proteins with molecular masses exceeding 10000 Daltons. Anal. Chem., v. 60, n. 20, p. 2299–2301, 1988.

KARPLUS, P.A.; DIEDERICHS, K. Acessing and maximizing data quality in macromolecular crystallography. Curr. Opi. Struct. Biol., v. 34, p. 60-68, 2015.

KAUR, M. et al. Assessment of Sauromatum guttatum lectin toxicity against Bactrocera

cucurbitae. J. Environ. Biol., v. 36, n. 6, p. 1263-1268, 2015.

KENNEDY, J. F. et al. Lectins, versatile proteins of recognition: a review. Carbohydrate

Polymers, v. 26, p. 219-30, 1995.

KIM, H. et al. Discriminative cytotoxicity assessment based on various cellular damages.

Toxicol. Lett., v. 184, n. 1, p. 13-17, 2009.

KIMBLE, B., RAMIREZ NIETO, G., PEREZ, D. R. Characterization of influenza virus sialic acid receptors in minor poultry species. Virol. J., v. 7, 365 p., 2010.

KINTER, M.; SCHERMAN, N.E. Protein Sequence and Identification using Tandem Mass Spectrometry. New York: John Wiley & Sons, 2000.

KITADA, M., KURODA, Y., DEZAWA, M. Lectins as a Tool for Detecting Neural Stem/Progenitor Cells in the Adult Mouse Brain. Anat. Rec. Hoboken., v. 1, p. 1-19, 2010. KONOZY, E. H. E. et al. Isolation, purification, and physicochemical characterization of a D- galactose-binding lectin from seeds of Erythrina speciosa. Archives of Biochemistry and

Biophysics, v. 410, p. 222-229, 2003.

KONOZY, E. H. E. et al. Purification, some properties of a D-galactose-binding leaf lectin from Erythrina indica and further characterization of seed lectin. Biochimie, v. 84, p. 1035- 1043, 2002.

SAUTEBIN, L. et al. Endogenous nitric oxide increases prostaglandin biosynthesis in carrageenin rat paw edema. Eur. J. Pharmacol., v. 286, p. 219-222, 1995.

LAEMMLI, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, v. 227, p. 680-685, 1970.

LANDUCCI, E. C. et al. Inhibition of carrageenin-induced rat paw edema by crotapotin, a polypeptide complexed with phospholipase A2. British Journal of Pharmacology, Londres, v. 114, p. 578-583, 1995.

LESLIE, A.; POWELL, H. Processing Diffraction Data with Mosflm. Evolving Methods for

Macromolecular Crystallography, v. 245, p. 41-51, 2007.

LI, H.; HE, M.; ZHANG, Z. Image definition evaluation functions for X-ray crystallography: a new perspective on the phase problem. Acta Cryst., v. 71, p.526-533, 2015.

LIS, H.; SHARON, N. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev., v. 98, p. 637-674, 1998.

LIU, B. et al. Antiproliferative activity and apoptosis-inducing mechanism of Concanavalin A on human melanoma A375 cells. Arch. Biochem. Biophys., v. 482, n. 1-2, p. 1-6, 2009. LIU, Y. et al. Mechanism of cellular 3-(4,5-Dimethyazol-2-yl-2,5-Diphenyltetrazolium bromide (MTT) reduction. Journal of Neurochemistry, v. 69, p 581-592, 1997.

Documentos relacionados