• Nenhum resultado encontrado

Avaliação da durabilidade do comportamento superhidrofóbico nas fibras de PLA nanorevestidas com nanocompósito PTFE/NPsCaO após lavagem

5 RESULTADOS E DISCUSSÃO

5.11 Avaliação da durabilidade do comportamento superhidrofóbico nas fibras de PLA nanorevestidas com nanocompósito PTFE/NPsCaO após lavagem

doméstica e teste de abrasão

A estabilidade das superfícies superhidrofóbicas são um importante obstáculo para suas aplicações práticas e a durabilidade dos tecidos foi avaliada no presente estudo.

Os resultados dos testes de durabilidade da superhidrofobicidade após lavagem doméstica, realizados de acordo com a norma AATCC 61-2003, onde cada ciclo de lavagem equivalerá a 5 lavagens domésticas, indicaram que o tecido de PLA nanorevestido com nanocompósito PTFE/NPsCaO, ainda exibe sua superhidrofobicidade mesmo após 25 ciclos de lavagem com alto ângulo de contato com a água, conforme figura 52.

Figura 52 - Comportamento da superhidrofobicidade do revestimento com nanocompósito PTFE/NPsCaO após ciclos de lavagem

A figura 53(a) mostra as amostras submetidas ao ensaio de abrasão e pode-se observar as regiões de abrasão na amostra. A figura 53(b) mostra a imagem de uma gota de 20 µl sobre o tecido revestido com PTFE/NPsCaO após o teste.

Figura 53 – (a) imagens das amostras após o ensaio de abrasão e (b) imagens das amostras após o ensaio de abrasão com gotas de água sobre o tecido de malha de PLA.

O tecido de malha revestido com o nanocompósito de PTFE/NPsCaO mostra superhidrofobicidade mesmo após 100 ciclos de abrasão conforme figura 54, indicando que a propriedade de repelência a água possui boa estabilidade a abrasão mecânica. Após 100 ciclos de abrasão a amostra de tecido de malha de PLA revestida com o nanocompósito de PTFE/NPsCaO tornou-se hidrofílica perdendo seu caráter superhidrofóbico.

Figura 54 - Comportamento da superhidrofobicidade do revestimento com nanocompósito PTFE/NPsCaO após 100 ciclos de a brasão

6 CONCLUSÕES

O objetivo do presente trabalho foi estudar a formação dos revestimentos superhidrofóbicos nanoestruturados de PTFE/NPsCaO em superfícies de fibra de PLA via processo por espuma. As principais conclusões da pesquisa são:

 Por meio do processo por espuma, foi possível depositar filmes superhidrofóbicos e autolimpantes de PTFE/NPsCaO sobre as fibras de PLA;

 Dentre os parâmetros de processo estudados, a condição de 0,6% (spm) de NPsCaO, 80g/l de PTFE, 140°C e 90 segundos de polimerização resultou no maior valor de ângulo de contato para o revestimento de PTFE/NPsCaO (159,67 ± 1,05°) ideal para superfícies superhidrofóbicas;  Os resultados de DRX e FTIR indicaram a presença de PTFE e NPsCaO

sobre a superfície das fibras de PLA, confirmando a deposição do revestimento pelo processo desenvolvido;

 As imagens de MEV, MET-EDS e AFM mostraram NPsCaO com formas esféricas, retangulares e alterações morfológicas e topográficas na superfície das fibras de PLA com a deposição do recobrimento;

 Os resultados dos testes de repelência aquosa realizados utilizando uma série de soluções de água/álcool isopropílico com diferentes tensões superficiais indicaram repelência da superfície revestida a todas as soluções testadas;

 As fibras com o revestimento de PTFE/NPsCaO também apresentaram propriedade de autolimpeza fazendo com que uma gota de água removesse a sujeira da superfície;

 O revestimento manteve a superhidrofobicidade mesmo após 25 ciclos de lavagem e 100 ciclos de abrasão;

 As nanopartículas de CaO contribuíram para o aumento do ângulo de contato, um incremento em torno de 10°. Com este resultado obteve-se uma superfície superhidrofóbica, o que não foi alcançado utilizando apenas o PTFE.

REFERÊNCIAS

ADAM, N. K; LIVINGSTON, H. K. Contact angles and work of adhesion. Nature, v. 182, n. 4628, p. 128, 1958.

AHMAD, I; KAN, C. A Review on Development and Applications of Bio-Inspired Superhydrophobic Textiles. Materials, v. 9, p. 892, 2016.

ARAÚJO, R.C. Competitividade de diferentes atmosferas de plasma sobre as propriedades hidrofílicas em tecidos de polilático. 2013. Dissertação de Mestrado. Universidade Federal do Rio Grande do Norte.

ARUNRAJ, T. R; SANOJ, R. N; ASHWIN, K. N; JAYAKUMAR, R. Bio-responsive chitin-poly(l-lactic acid) composite nanogels for liver cancer. Colloids and Surfaces

B: Biointerfaces, v. 113, p. 394–402, 2014.

ATHAUDA, T. J; OZER, R. R. Investigation of the effect of dual-size coatings on the hydrophobicity of cotton surface. Cellulose, v. 19, n. 3, p. 1031–1040, 2012.

BAČOVSKÁ, R; WISIAN, N. P; ALBERTI, M; PŘÍHODA, J; ZÁRYBNICKÁ, L; VORÁČ, Z. Phenyl-methyl phosphazene derivatives for preparation and modification of hydrophobic properties of polymeric nonwoven textiles. Reactive and Functional

Polymers, v. 100, p. 53–63, 2016.

BALTER, M. Clothes Make the (Hu) Man. Science, v. 325, n. 5946, p. 1329 LP-1329, 10 set. 2009.

BRITISH STANDARDS INSTITUTION (BSI). PAS71 (Publicly Available Specification), 2005.

BURKARTER, E. Desenvolvimento de Superfícies Superhidrofóbicas de

Politetrafluoretileno. Tese de Doutorado. Universidade Federal do Paraná. 2010.

CANTIN, S; BENHABIB, F; BOUTEAU, M; PERROT, F. Surface free energy evaluation of well-ordered Langmuir–Blodgett surfaces: comparison of different approaches. Colloids and Surfaces A: Physicochemical and Engineering

Aspects, v. 276, n. 1, p. 107–115, 2006.

CASCHERA, D; MEZZI, A; CERRI, L; CARO, T; RICCUCCI, C; INGO, G. M; PADELETTI, G; BIASIUCCI, M; GIGLI, G; CORTESE, B. Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics. Cellulose, v. 21, n. 1, p. 741–756, 2014.

CASTANO, L. M; FLATAU, A. B. Smart fabric sensors and e-textile technologies: a review. Smart Materials and Structures, v. 23, n. 5, p. 53001, 2014.

CORTESE, B; CASCHERA, D; FEDERICI, F; INGO, G. M; GIGLI, G. Superhydrophobic fabrics for oil–water separation through a diamond like carbon (DLC) coating. Journal of Materials Che mistry A, v. 2, n. 19, p. 6781–6789, 2014.

DEBNATH, S; KITINYA, J; ONYANGO, M. S. Removal of Congo red from aqueous solution by two variants of calcium and iron based mixed oxide nano-particle agglomerates. Journal of Industrial and Engineering Chemistry, v. 20, n. 4, p. 2119–2129, 2014.

DJURIŠIĆ, A. B; LEUNG, Y. H; NG, A. M. C; XU, X. Y; LEE, P. K. H; DEGGER,N; WU, R. S. S. Toxicity of metal oxide nanoparticles: Mechanisms, characterization, and avoiding experimental artefacts. Small, v. 11, n. 1, p. 26–44, 2015.

DUAN, W; XIE, A; SHEN, Y; WANG, X; WANG, F; ZHANG, Y; LI, J. Fabrication of superhydrophobic cotton fabrics with UV protection based on CeO2 particles.

Industrial & Engineering Chemistry Research, v. 50, n. 8, p. 4441–4445, 2011.

DUTSCHK, V; PISANOVA, E; ZHANDAROV, S; LAUKE, B. “Fundamental” and “practical” adhesion in polymer-fiber systems. Mechanics of composite materials, v. 34, n. 4, p. 309–320, 1998.

FOWKES, F. M. Attractive forces at interfaces. Industrial & Engineering Chemistry, v. 56, n. 12, p. 40–52, 1964.

HANUMANSETTY, S.; MAITY, J.; FOSTER, R.; O’REAR, E. A. Stain resistance of cotton fabrics before and after finishing with admicellar polymerization. Applied

Sciences, v. 2, n. 1, p. 192–205, 2012.

HOLME, I. Adhesion to textile fibres and fabrics. International journal of adhesion

and adhesives, v. 19, n. 6, p. 455–463, 1999.

HOLME, I. Innovative technologies for high performance textiles. Coloration

Technology, v. 123, n. 2, p. 59–73, 2007.

HSU, S; YAO, Y. L. Effect of film formation method and annealing on crystallinity of poly (L-lactic acid) films. In: Proceedings International Manufacturing Science and Engineering Conference. 2011.

HUANG, J. Y; LI, S. H; GE, M. Z; WANG, L. N; XING, T. L; CHEN, G. Q; LIU, X. F; AL- DEYAB, S. S; ZHANG, K. Q; CHEN, T; LAI, Y. K. Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil-water separation. JOURNAL OF

MATERIALS CHEMISTRY A, v. 3, n. 6, p. 2825–2832, 2015.

HUSSAIN, T; TAUSIF, M; ASHRAF, M. A review of progress in the dyeing of eco- friendly aliphatic polyester-based polylactic acid fabrics. Journal of Cleaner

Production, v. 108, p. 476–483, 2015.

IHRIG, J. L; LAI, D. Y. F. Contact angle measurement. J. Chem. Educ, v. 34, n. 4, p. 196, 1957.

JIANG, T; GUO, Z; LIU, W. Biomimetic superoleophobic surfaces: focusing on their fabrication and applications. J. Mater. Chem. A, v. 3, n. 5, p. 1811–1827, 2015.

MAZROUEI-SEBDANI, Z; KHODDAMI, A. Alkaline hydrolysis: A facile method to manufacture superhydrophobic polyester fabric by fluorocarbon coating. Progress in Organic Coatings, v. 72, n. 4, p. 638-646, 2011.

KING, K. M. Emerging technologies for digital textile printing. AATCC review, v. 8, p. 34–36, 2009.

LEE, H. J. Design and development of anti-icing textile surfaces. Journal of Materials

Science, v. 47, n. 13, p. 5114–5120, 2012.

LI, J; CUI, Y; LYU, L; WANG, X; Water/oil repellent and foam finishing of polyester non-woven filter cloth processed by plasma. Journal of Dalian Polytechnic

University, v. 3, p. 16, 2015.

LI, K; ZHANG, Jian F; GONG, J. Wrinkle-resistant finish of foam technology for cotton fabric. Journal of Industrial Textiles, v. 43, n. 4, p. 525-535, 2014.

LI, K; ZHANG, JIAN F; LI, QIU J. Study on Foaming Properties of Sodium Dodecyl Sulfate for Textile Foam Dyeing and Finishing. In: Advanced Materials Research. Trans Tech Publications, 2011. p. 1515-1519.

LI, S; HUANG, J; CHEN, Z; CHEN, G; LAI, Y. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal

of Materials Chemistry A, v. 5, n. 1, p. 31–55, 2017.

LIN, J; ZHENG, C; YE, W. J; WANG, H. Q; FENG, D. Y; LI, Q. Y; HUAN, B. W. A. facile dip-coating approach to prepare SiO2/fluoropolymer coating for superhydrophobic and superoleophobic fabrics with self-cleaning property. Journal of Applied Polymer

Science, v. 132, n. 1, p. 1–9, 2014.

LUO, Y; LI, J; ZHU, J; ZHAO, Y; GAO, X. Fabrication of Condensate Microdrop Self- Propelling Porous Films of Cerium Oxide Nanoparticles on Copper Surfaces.

Angewandte Chemie International Edition, v. 54, n. 16, p. 4876–4879, 2015.

MA, Z; FAN, C; LU, G; LIU, X; ZHANG, H. Synergy of Magnesium and Calcium Oxides in Intumescent Flame-Retarded Polypropylene. Journal of Applied Polymer

Science. n. September 2011, 2012.

MADAN, S. S; WASEWAR, K. L; PANDHARIPANDE, S. L. Modeling the adsorption of benzeneacetic acid on CaO 2 nanoparticles using artificial neural network. Resource-

Efficient Technologies, v. 2, p. S53–S62, 2016.

MAITY, J; KOTHARY, P; O’REAR, E. A; JACOB, C. Preparation and comparison of hydrophobic cotton fabric obtained by direct fluorination and admicellar polymerization of fluoromonomers. Industrial & Engineering Chemistry Research, v. 49, n. 13, p. 6075–6079, 2010.

MARQUIS, G; RAMASAMY, B; BANWARILAL, S; MUNUSAMY, A. P. Evaluation of antibacterial activity of plant mediated CaO nanoparticles using Cissus quadrangularis extract. Journal of Photochemistry and Photobiology B: Biology, v. 155, p. 28–33, 2016.

MENDES, F. M. T; OLIVEIRA, M. S; ANDRADE, L. C. Introdução a espectroscopia fotoeletrônica por raios x - tratamento dos dados gerados: tutorial do software casaxps. 1. ed. Rio de Janeiro: Synergia, 2015. 88 p. v. 1

MENG, J; LIN, S; XIONG, X. Preparation of breathable and superhydrophobic coating film via spray coating in combination with vapor-induced phase separation. Progress

in Organic Coatings, v. 107, p. 29–36, 2017.

MIRGHIASI, Z; BAKHTIARI, F; DAREZERESHKI, E. Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method. Journal

of Industrial and Engineering Chemistry, v. 20, n. 1, p. 113–117, 2014.

MITTAL, V. Surface modification of nanoparticle and natural fiber fillers. John Wiley & Sons, 2015.

NAGAPPAN, S; HA, C. S. Emerging trends in superhydrophobic surface based magnetic materials: fabrications and their potential applications. Journal of Materials

Chemistry A, v. 3, n. 7, p. 3224–3251, 2015.

NASCIMENTO, J. H. O. Aplicação e caracterização de nanorevestimentos PVD e

de outros materiais com comportamento termocromático e hidrofóbico em substratos têxteis. Tese de Doutorado. Universidade do Minho. 2012.

NOGI, K; HOSOKAWA, M; NAITO, M; YOKOYAMA, T. Nanoparticle technology

handbook. [s.l.] Elsevier, 2012.

OH, J.-H; KO, T; MOON, M; PARK, C. H. Nanostructured superhydrophobic silk fabric fabricated using the ion beam method. RSC Advances, v. 4, n. 73, p. 38966–38973, 2014.

PACKHAM, D. E. Surface energy, surface topography and adhesion. International

Journal of Adhesion and Adhesives, v. 23, n. 6, p. 437–448, 2003.

PEDRAM, S; MORTAHEB, H. R; FAKHOURI, H; AREFI-KHONSARI, F. Polytetrafluoroethylene Sputtered PES Membranes for Membrane Distillation: Influence of RF Magnetron Sputtering Conditions. Plasma Chemistry and Plasma

Processing, v. 37, n. 1, p. 223–241, 2017.

PEREIRA, F. K; TRAJANO, M. F; ALVES, S. M; FACCIO, M.T; SILVA, P. S. G.

Nanopartículas de óxidos como aditivo químico em lubrificantes. In: Congresso Químico do Brasil. 2012.

QI, X; REN, Y; WANG, X. New advances in the biodegradation of Poly(lactic) acid.

RAZA, Z. A; ANWAR, F; AHMAD, N; REHMAN, A; NASIR, N. Polyurethane cum hydrophobic finishing of acrylic fabrics for enhanced comfort characteristics. Pigment

& Resin Technology, v. 45, n. 3, p. 199–205, 2016.

REDDY, C. K; SHAILAJA, D. Improving hydrophobicity of polyurethane by PTFE incorporation. v. 42779, p. 1–5, 2015.

RIVERO, P. J; URRUTIA, A; GOICOECHEA, J; ARREGUI, F. J. Nanomaterials for Functional Textiles and Fibers. Nanoscale Research Letters, v. 10, p. 501, 2015.

RODRIGUES, J. G. Caracterização por Espectroscopia de Fotoelétrons de Nano tubos de Carbono Funcionalizados. 2011. Tese de Doutorado. Universidade Federal de Minas Gerais. Belo Horizonte.

ROY, A; GAURI, S. S; BHATTACHARYA, M; BHATTACHARYA, J. Antimicrobial activity of CaO nanoparticles. Journal of Biomedical Nanotechnology, v. 9, n. 9, p. 1570–1578, 2013.

SAFAEI-GHOMI, J; GHASEMZADEH, M. A; MEHRABI, M. Calcium oxide nanoparticles catalyzed one-step multicomponent synthesis of highly substituted pyridines in aqueous ethanol media. Scientia Iranica, v. 20, n. 3, p. 549–554, 2013. SARWAR, N; MOHSIN, M; BHATTI, A. A; AHMMAD, S. W; HUSAAIN, A. Development of water and energy efficient environment friendly easy care finishing by foam coating on stretch denim fabric. Journal of Cleaner Production, v. 154, p. 159–166, 2017. SHIM, M. H; KIM, J; PARK, C. H. The effects of surface energy and roughness on the hydrophobicity of woven fabrics. Textile Research Journal, v. 84, n. 12, p. 1268– 1278, 2014.

SINGH, A. K; SINGH, J. K. Fabrication of durable super-repellent surfaces on cotton fabric with liquids of varying surface tension : Low surface energy and high roughness.

Applied Surface Science, v. 416, p. 639–648, 2017.

SONG, L; ZHANG, S. A simple mechanical mixing method for preparation of visible- light-sensitive NiO–CaO composite photocatalysts with high photocatalytic activity. Journal of hazardous materials, v. 174, n. 1, p. 563-566, 2010.

SOUZA, J. R. Desenvolvimento de compósitos tribologicamente eficazes. Tese de Doutorado. Universidade Federal do Rio Grande do Norte. 2015.

SPARKS, B. J; HOFF, E. F. T; XIONG, L; GOETZ, J. T; PATTON, D. L. Superhydrophobic hybrid inorganic–organic thiol-ene surfaces fabricated via spray- deposition and photopolymerization. ACS applied materials & interfaces, v. 5, n. 5, p. 1811–1817, 2013.

SURYAPRABHA, T; SETHURAMAN, M. G. Fabrication of copper-based superhydrophobic self-cleaning antibacterial coating over cotton fabric. Cellulose, v. 24, n. 1, p. 395–407, 2017.

TÁBI, T; SAJÓ, I. E; SZABÓ, F; LUYT, A. S; KOVÁCS, J. G. Crystalline structure of annealed polylactic acid and its relation to processing. Express Polymer Letters, v. 4, n. 10, p. 659–668, 2010.

TANG, Z. X; CLAVEAU, D; CORCUFF, R; BELKACEMI, K; ARUL, J. Preparation of nano-CaO using thermal-decomposition method. Materials Letters, v. 62, n. 14, p. 2096–2098, 15 maio 2008.

TAVARES, M. T. S; SANTOS, A. S. F; SANTOS, I. M. G; SILVA, M. R. S; BOMIO, M. R. D; LONGO, E; PASKOCIMAS, C. A; MOTTA, F. V. Surface & Coatings Technology TiO 2 / PDMS nanocomposites for use on self-cleaning surfaces. Surface & Coatings

Technology, v. 239, p. 16–19, 2014.

TSIROPOULOS, I; FAAIJ, A. P. C; LUNDQUIST, L; SCHENKER, U; BRIOIS, J. F; PATEL, M. K. Life cycle impact assessment of bio-based plastics from sugarcane ethanol. Journal of Cleaner Production, v. 90, p. 114–127, 2015.

TUNZELMANN, G. N. V. Time-Saving Technical Change: The Cotton Industry in the English Industrial Revolution. Explorations in Economic History, v. 32, n. 1, p. 1– 27, 1995.

VEERANNA, K. D; LAKSHAMAIAH, M. T; NARAYAN, R. T. Photocatalytic Degradation of Indigo Carmine Dye Using Calcium Oxide. International Journal of

Photochemistry, v. 2014, 2014.

VENTURA, S; CARNEIRO, N; SOUTO, A. P. Acabamento de têxteis multifuncionais com nanocompósitos poliméricos. Nova Têxtil, v. 97, n. 1a, p. 8–13, 2011.

WANG, H; ZHOU, H; GESTOS, A; FANG, J; LIN, T. Robust, Superamphiphobic Fabric with Multiple Self-Healing Ability against Both Physical and Chemical Damages. ACS

Applied Materials & Interfaces, v. 5, n. 20, p. 10221–10226, 23 out. 2013.

WANG, H; ZHOU, H; YANG, W; ZHAO, Y; FANG, J; LIN, T. Selective, Spontaneous One-Way Oil-Transport Fabrics and Their Novel Use for Gauging Liquid Surface Tension. ACS Applied Materials and Interfaces, v. 7, n. 41, p. 22874–22880, 2015. WU, L; ZHANG, J; LI, B; WANG, A. Mimic nature, beyond nature: facile synthesis of durable superhydrophobic textiles using organosilanes. Journal of Materials

Chemistry B, v. 1, n. 37, p. 4756, 2013a.

WU, S. Calculation of interfacial tension in polymer systems. Journal of Polymer Science: Polymer Symposia. Anais...Wiley Online Library, 1971

XIONG, D; LIU, G; DUNCAN, E. J. S. Diblock-Copolymer-Coated Water- and Oil- Repellent Cotton Fabrics. Langmuir, v. 28, n. 17, p. 6911–6918, 1 maio 2012.

XU, B; DING, Y; QU, S; CAI, Z. Superamphiphobic cotton fabrics with enhanced stability. Applied Surface Science, v. 356, p. 951–957, 2015.

XU, L; CAI, Z; SHEN, Y; WANG, L; DING, Y. Facile Preparation of Superhydrophobic Polyester Surfaces with Fluoropolymer / SiO 2 Nanocomposites Based on Vinyl Nanosilica Hydrosols. v. 40340, p. 1–10, 2014.

XU, Z; MASLIYAH, J. H. Contact angle measurements on oxide and related surfaces. In: Encyclopedia of Surface and Colloid Science, Second Edition. [s.l.] Taylor & Francis, 2006. p. 1540–1554.

XUE, C.-H; YIN, W; JIA, S; MA, J. UV-durable superhydrophobic textiles with UV- shielding properties by coating fibers with ZnO/SiO2 core/shell particles.

Nanotechnology, v. 22, n. 41, p. 415603, 2011.

XUE, C.-H; ZHANG, L; WEI, P; JIA, S. Fabrication of superhydrophobic cotton textiles with flame retardancy. CELLULOSE, v. 23, n. 2, p. 1471–1480, 2016.

XUE, C. H; JIA, S. T; ZHANG, J; TIAN, L. Q. Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization. Thin Solid

Films, v. 517, n. 16, p. 4593–4598, 2009.

YAO, L; HE, J. Recent progress in antireflection and self-cleaning technology - From surface engineering to functional surfaces. Progress in Materials Science, v. 61, p. 94–143, 2014.

YETISEN, A. K; QU, H; MANBACHI, A; BUTT, H; DOKMECI, M. R; HINESTROZA, J. P; SKOROBOGATIY, M; KHADEMHOSSEINI, A; YUN, S. H. Nanotechnology in Textiles. ACS Nano, v. 10, n. 3, p. 3042–3068, 2016.

YOUNES, B. Classification, characterization, and the production processes of biopolymers used in the textiles industry. The Journal of The Textile Institute, v. 108, n. 5, p. 674–682, 2017.

YOUNGBLOOD, J. P; SOTTOS, N. R. Bioinspired materials for self-cleaning and self- healing. Mrs Bulletin, v. 33, n. 8, p. 732-741, 2008.

YU, H; WANG, Y.; ZHONG, Y.; MAO, Z.; TAN, S. Foam properties and application in dyeing cotton fabrics with reactive dyes. Coloration Technology, v. 130, n. 4, p. 266- 272, 2014.

ZHANG, M; ZANG, D; SHI, J; GAO, Z; WANG, C; LI, J. Superhydrophobic cotton textile with robust composite film and flame retardancy. RSC Adv., v. 5, n. 83, p. 67780– 67786, 2015a.

ZHANG, Y; LI, Y; SHAO, J; ZOU, C. Fabrication of superhydrophobic fluorine-free films on cotton fabrics through plasma-induced grafting polymerization of 1, 3, 5, 7- tetravinyl-1, 3, 5, 7-tetramethylcyclotetrasiloxane. Surface and Coatings Technology, v. 276, p. 16–22, 2015b.

ZHAO, Y; TANG, Y; WANG, X; LIN, T. Superhydrophobic cotton fabric fabricated by electrostatic assembly of silica nanoparticles and its remarkable buoyancy. Applied

ZHOU, C; CHEN, Z; YANG, H; HOU, K; ZENG, X; ZHENG, Y; CHENG, J. Nature- Inspired Strategy toward Superhydrophobic Fabrics for Versatile Oil/Water Separation.

ACS Applied Materials & Interfaces, 2017.

ZHU, T; CAI, C; DUAN, C; ZHAI, S; LIANG, S; JIN, Y; ZHAO, N.X. J. Robust polypropylene fabrics super-repelling various liquids: a simple, rapid and scalable fabrication method by solvent swelling. ACS applied materials & interfaces, v. 7, n. 25, p. 13996–14003, 2015.

ZHU, X; ZHANG, Z; YANG, J; XU, X; MEN, X; ZHOU, X. Facile fabrication of a superhydrophobic fabric with mechanical stability and easy-repairability. Journal of