• Nenhum resultado encontrado

100 Bibliography

[12] P.Erd˝os,Some combinatorial,geometric and set theoretic problems in mea-sure theory,in:Measure Theory Oberwolfach 1983(Proceedings of the Confer-ence held at Oberwolfach,June 26–July 2,1983;D.K¨olzow and D. Maha-ram-Stone,eds.),Lecture Notes in Mathematics 1089,Springer-Verlag,Berlin, 1984,pp.321–327.

[13] K.J.Falconer,The realization of distances in measurable subsets coveringRn, Journal of Combinatorial Theory,Series A31 (1981) 184–189.

[14] K.J.Falconer,The realization of small distances in plane sets of positive mea-sure,Bulletin of the London Mathematical Society18 (1986) 475–477.

[15] K.J. Falconer and J.M. Marstrand, Plane sets with positive density at in-finity contain all large distances, Bulletin of the London Mathematical Soci-ety18 (1986) 471–474.

[16] P. Frankl and R.M. Wilson, Intersection theorems with geometric conse-quences,Combinatorica1 (1981) 357–368.

[17] H.Furstenberg,Y.Katznelson,and B.Weiss,Ergodic theory and configura-tions in sets of positive density,in: Mathematics of Ramsey Theory(J.Neˇsetˇril and V.R¨odl,eds.),Springer-Verlag,Berlin,1990,pp.184–198.

[18] B.Gerard and L. Roberts, Graphical discovery of a new identity for Jacobi polynomials,American Mathematical Monthly105 (1998) 163–166.

[19] M.Gr¨otschel,L.Lov´asz,and A.Schrijver,Geometric Algorithms and Combina-torial Optimization,Algorithms and Combinatorics 2,Springer-Verlag,Berlin, 1988.

[20] N.Gvozdenovi´c,Approximating the Stability Number and the Chromatic num-ber of a Graph via Semidefinite Programming,PhD thesis,University of Ams-terdam,2008.

[21] H.Hadwiger,Ungel¨oste probleme Nr.40,Elemente der Mathematik16 (1961) 103–104.

[22] P.R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, 1950.

[23] G.A.Kabatyanskii and V.I.Levenshtein,Bounds for packings on a sphere and in space,Problems of Information Transmission14 (1978) 1–17.

[24] R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations (Proceedings of a symposium on the Complexity of Computer Computations,IBM Thomas J.Watson Research Center,Yorktown Heights,New York, 1972; R.E. Miller, J.W. Thatcher, eds.), Plenum Press, New York,1972,pp.85–103.

[25] Y.Katznelson,An Introduction to Harmonic Analysis,John Wiley & Sons,Inc., New York,1968.

Bibliography 101 [26] D.E. Knuth, The sandwich theorem, Electronic Journal of Combinatorics 1

(1994) 48pp.

[27] D.G.Larman and C.A.Rogers,The realization of distances within sets in Eu-clidean space,Mathematika19 (1972) 1–24.

[28] L. Lov´asz, Discrete and continuous: two sides of the same?, Geometric and Functional Analysis,Special Volume,Part I (2000) 359–382.

[29] L.Lov´asz,On the Shannon capacity of a graph,IEEE Transactions on Informa-tion TheoryIT-25 (1979) 1–7.

[30] L.Lov´asz,Self-dual polytopes and the chromatic number of distance graphs on the sphere,Acta Scientiarum Mathematicarum45 (1983) 317–323. [31] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes,

North-Holland Mathematical Library 16, Twelfth impression, North-Holland,Amsterdam,2006.

[32] P.Mattila,Geometry of Sets and Measures in Euclidean Space: Fractals and rec-tifiability,Cambridge Studies in Advanced Mathematics 44,Cambridge Uni-versity Press,Cambridge,1995.

[33] R.J. McEliece, E.R. Rodemich, and H.C. Rumsey, Jr., The Lov´asz bound and some generalizations,Journal of Combinatorics,Information & System Sci-ences3 (1978) 134–152.

[34] W. Moser, Research Problems in Discrete Geometry, McGill University, Mon-treal,1981.

[35] O.Nechushtan,On the space chromatic number, Discrete Mathematics 256 (2002) 499–507.

[36] Y.Nesterov and A.Nemirovskii,Interior-Point Polynomial Algorithms in Convex Programming,SIAM Studies in Applied Mathematics 13,Society for Industrial and Applied Mathematics,Philadelphia,1994.

[37] F.M. de Oliveira Filho and F. Vallentin, Fourier analysis, linear program-ming, and densities of distance avoiding sets in Rn, arXiv:0808.1822v2 [math.CO],to appear inJournal of the European Mathematical Society,2008, 11pp.

[38] A. Quas, Distances in positive density sets in Rd, Journal of Combinatorial Theory,Series A116 (2009) 979–987.

[39] A.M.Raigorodskii,On the chromatic number of a space,Russian Mathematical Surveys55 (2000) 351–352.

[40] M.Reed and B.Simon,Methods of Modern Mathematical Physics I: Functional Analysis,Academic Press,New York,1972.

102 Bibliography

[41] M.Reed and B.Simon,Methods of Modern Mathematical Physics II: Fourier Analysis,Self-adjointness,Academic Press,New York,1975.

[42] F. Riesz and B. Sz.-Nagy, Functional Analysis, Translated from the second French edition by Leo F.Boron, Reprint of the 1955 original,Dover Books on Advanced Mathematics,Dover Publications,Inc.,New York,1990. [43] I.J.Schoenberg,Metric spaces and completely monotone functions,Annals of

Mathematics39 (1938) 811–841.

[44] I.J. Schoenberg, Positive definite functions on spheres, Duke Mathematical Journal9 (1942) 96–108.

[45] A.Schrijver,A comparison of the Delsarte and Lov´asz bounds,IEEE Transac-tions on Information TheoryIT-25 (1979) 425–429.

[46] A.Schrijver,Combinatorial Optimization: Polyhedra and Efficiency,Volume B, Algorithms and Combinatorics 24,Springer-Verlag,Berlin,2003.

[47] A.Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, Chichester,1986.

[48] A.Soifer,The Mathematical Coloring Book,Springer,New York,2009. [49] K.Stromberg, An elementary proof of Steinhaus’s theorem,Proceedings of the

American Mathematical Society36 (1972) 308.

[50] G. Szeg¨o, Orthogonal Polynomials, American Mathematical Society Collo-quium Publications Volume XXIII,Fourth Edition,American Mathematical Society,Providence,1975.

[51] L.A.Sz´ekely,Erd˝os on unit distances and the Szemer´edi-Trotter theorems,in: Paul Erd˝os and His Mathematics II (Papers from the conference held in Bu-dapest,July 4–11,1999;G.Hal´asz,L.Lov´asz,M.Simonovits,and V.T.S´os, eds.),Bolyai Society Mathematical Studies 11,J´anos Bolyai Mathematical So-ciety,Budapest;Springer-Verlag,Berlin,2002,pp.649–666.

[52] L.A.Sz´ekely,Measurable chromatic number of geometric graphs and sets with-out some distances in Euclidean space,Combinatorica4 (1984) 213–218. [53] L.A. Sz´ekely, Remarks on the chromatic number of geometric graphs, in:

Graphs and other combinatorial topics(Proceedings of the Third Czechoslovak Symposium on Graph Theory, held in Prague, August 24th to 27th, 1982; M.Fiedler,ed.),Teubner-Texte zur Mathematik 59,Teubner,Leipzig,1983, pp.312–315.

[54] L.A.Sz´ekely and N.C.Wormald,Bounds on the measurable chromatic num-ber ofRn,Discrete Mathematics75 (1989) 343–372.

[55] G.N.Watson,A Treatise on the Theory of Bessel Functions,Cambridge University Press,Cambridge,1922.

Bibliography 103 [56] A.Weil, L’int´egration dans les groupes topologiques et ses applications, Publica-tions de l’Institut de Math´ematique de l’Universit´e de Strasbourg IV,deuxi`eme

´edition,Hermann,Paris,1965.

[57] R.Wong and J.-M.Zhang,Asymptotic monotonicity of the relative extrema of Jacobi polynomials,Canadian Journal of Mathematics46 (1994) 1318–1337. [58] R.Wong and J.-M.Zhang,On the relative extrema of the Jacobi

polynomi-alsPn(0,−1)(x),SIAM Journal on Mathematical Analysis25 (1994) 776–811.

Index

A(n, d) 2,19 A(n, θ) 2,56

Aconjugated transpose of matrixA AÌtranspose of matrixA

α(G)stability number

αm(G)measurable stability number Andrews,G.E. 35,36,38,42,43,45,

46,60,69

Askey,R. 35,36,38,42,43,45,46,60, 69

association scheme 20

Aut(G) automorphism group of a graph

Axiom of Choice

relation to the chromatic number of the Euclidean space 7

Axler,S. 60 Bachoc,C. 23

Bessel function of the first kind 69 Bessel’s equation for the 69 integral representation 69 interlacing property 71 properties of the 69–72 zeros of the 39,70,71 Bessel,F.W. 70

binary code 2,19

linear programming bound 5,20 Bochner’s theorem 87

Bochner,S. 26 Bourdon,P. 60 Bourgain,J. 80 Bruijn,N.G.de 7,24

Bukh,B. 80,81

C+ytranslation of a set Ckλpolynomial,ultraspherical χ(G)chromatic number

χ(Rn) chromatic number of the Eu-clidean space

χm(Rn)measurable chromatic number of the Euclidean space

chromatic number 1,11

bounds for theof the plane 6 bounds for theofR3 6 computing the 11

measurableof Euclidean space 6,24 measurableof graphs on the

sphere 24

measurableof the Euclidean space, asymptotic upper bound 8 measurableof the Euclidean space,

exponential growth 40,73 measurableof the Euclidean space,

upper bounds 8

measurable∼,relation to measurable stability number 24

of graphs on the sphere 24

of graphs on the sphere,relation to mea-surable 24

of the Euclidean space 5,24

of the Euclidean space,asymptotic upper bound 7

of the Euclidean space,exponential growth 6

105

106 Index

of the Euclidean space,relation to mea-surable 6,8

of the Euclidean space,relation to the Axiom of Choice 7

of the unit-distance graph 3 relation to stability number 11 color class (in a coloring) 11 Coulson,D. 6,7

Delsarte,P. 5,10,20,56,57 δ(C)upper density distance graph 2

on the Euclidean space 84 on the unit sphere 23 distance-avoiding set 9,63

maximum density of 3,6,9,63 maximum density of ∼,exponential

de-cay 9,73

restriction to periodic sets 67 eigenfunction of a kernel 26 eigenvalue of a kernel 26 Erd˝os,P. 6,7,24,80 Euclidean space

bounds for the chromatic number of the plane 6

bounds for the chromatic number ofR3 6

chromatic number of the 5,24 chromatic number of the∼,asymptotic

upper bound 7

chromatic number of the∼,exponential growth 6

chromatic number of the∼,relation to measurable chromatic number 6 chromatic number of the∼,relation to

the Axiom of Choice 7

chromatic number of ∼,relation to mea-surable chromatic number 8 coloring of the plane 6

distance graph on the 84 kissing number of the plane 2 kissing number of the 2 measurable chromatic number of

the 6,24

measurable chromatic number of the∼, asymptotic upper bound 8

measurable chromatic number of the∼, exponential growth 40

measurable chromatic number of the∼, upper bounds 8

norm of a vector in(x) 13 standard inner product in(x·y) 13 theta number for graphs on the 85–

89

unit-distance graph on the 3,6 Falconer,K.J. 6–8,24,40,49,74,77,

80,81 Feldheim,E. 38 Fourier coefficient 67 Frankl,P. 6,9 function

almost periodic 67 autocorrelation 67

autocorrelation∼,expansion 68,85 Fourier coefficient of a periodic 67 of positive type 85

over the cube[−R, R]n 25 periodicity lattice of a 66 periodic 65

pole of zonal spherical 32 radial 93

square-integrable periodic 66 zonal spherical 32

zonal spherical∼,properties 32 Furstenberg,H. 10,80

Gerard,B. 48

Goethals,J.M. 10,56,57 Gr¨otschel,M. 14 graph 11

adjacency in a 11

automorphism group of a 12 automorphism of a 12 coloring of a 11 complementary graph 11 distance 2

distanceon the unit sphere 23 edge set 11

finite 11 Moser 6

stable set in a 2,11 subgraph of a 11 unit-distance 3,6 vertex set 11

vertex-transitive 12 Gvozdenovi´c,N. 15

Index 107 HnHamming cube

Hadwiger,H. 6 Halmos,P.R. 30 Hamming cube 2,19

invariant matrix over the∼, characteriza-tion 20

isometry group of the 19 Hamming distance 2,19 harmonic analysis onRn 65–67 Hilbert space 25

Hilbert-Schmidt theorem 26 hypergeometric series 69 inner product

invariance of onL2(Sn−1) un-derO(Rn) 29

inL2(Sn−1×Sn−1)(A, B) 25 inL2(Sn−1)((f, g)) 25

of periodic functions (f, g) 66 onL2([−1,1])((f, g)α,β) 30 standard Euclidean(x·y) 13 traceof matrices (A, B) 13 invariant integration 30

Isbell,J. 6

JαBessel function of the first kind Kabatyanskii,G.A. 10,56,57 Karp,R.M. 11

Katznelson,Y. 10,65,67,80 kernel 25

as linear operator 25 condition for positivity 26 eigenfunction of a 26 eigenvalue of a 26 Hilbert-Schmidt theorem 26 Hilbert-Schmidt∼ ≡kernel Mercer’s theorem 27

norm of aover the sphere (A) 25 over the sphere,characterization of

posi-tive,invariant 30,31,57 over the sphere,invariant under

O(Rn) 29

over the sphere,symmetrization of a 30

positive 25

positivity in terms of eigenvalues 26 symmetric 25

trace of a 27 trace-class 27

translation invariantinRn 88 kissing number 2

Knuth,D.E. 21 L2(Rn/Λ) 66 l2(t),computing 35 ln(t) 33

complete characterization 47 computing 37

partial characterization 41,42 Larman,D.G. 7,8,97 lattice

dual 66

fundamental domain of a 66 Levenshtein,V.I. 10,56,57 linear programming 13

relation with semidefinite program-ming 13

Lov´asz,L. 4,14,15,17,18,22,24,30 m1(Rn)maximum density of

distance-avoiding set MacWilliams,F.J. 19 Marstrand,J.M. 80 matrix

conjugate transpose of a 12 entry notation 12

Hermitian 12

indexed by a finite set 12

invariantoverHn,characterization 20 invariantunder automorphism

group 18

invariantunder the isometry group ofHn 20

positive definite 14 positive semidefinite 12 symmetric 12

trace of a 12 transpose of a 12 Mattila,P. 30,56,76 McEliece,R.J. 10,19,20,56 Mercer’s theorem 27

Moser,L. 6 Moser,W. 9 Nebe,G. 23 Nechushtan,O. 6,8 Nelson,E. 6 Nemirovskii,A. 14 Nesterov,Y. 14

108 Index

norm inL2(Sn−1)(f) 25 Oliveira Filho,F.M.de 23,63 ωsurface measure on the sphere Ωn 64

asymptotic behavior 72 derivative of 70 global minimum 71 positive extrema 70,71 optimization

optimal solution of anproblem 14 constraints of an problem 13 dealing with numerical approximation

in 78

exploiting symmetry in 5

feasible solution of anproblem 14 feasibleproblem 14

infeasibleproblem 14

objective function of an problem 13 objective value of a solution 14 optimal value of anproblem 14 terminology for problems 13 use of supremum/infimum in

prob-lems 14

variables of an problem 13 O(Rn)orthogonal group orthogonal group 29

Haar measure over the 29 invariance of surface measure on the

sphere under the 29 P(α,β)k 31

Pk(α,β)Jacobi polynomial Parserval’s formula 67 polynomial

inner product Jacobis ((f, g)α,β) 30 Jacobi 30

Jacobis,Askey’s conjecture 48 Jacobis,complete orthogonal system

forL2([−1,1]) 31

Jacobis,interlacing property of 41 Jacobis,normalization 31 Jacobis,open questions 46–49 Jacobis,weight function for 30 orthogonals 30

ultrasphericals 38 Quas,A. 80

Raigorodskii,A.M. 7,9 Ramey,W. 60

Reed,M. 25,87 regular measure 27 Riesz,F. 25,59 Roberts,L. 48

Rodemich,E.R. 10,19,20,56 Rogers,C.A. 7,8,97

Roy,R. 35,36,38,42,43,45,46,60, 69

Rumsey,Jr.,H.C. 10,19,20,56 Sn−1sphere,unit

Schoenberg,I.J. 30,31,57,70,93 Schrijver,A. 10,13,14,19–21,56 Seidel,J.J. 10,56,57

semidefinite programming 13 complexity of 14 dual of aproblem 14 duality in 14

ellipsoid method applied to 14 interior-point algorithms for 14 problem 4,13

relation with linear programming 13 strict feasibility of aproblem 14,16 strong duality in 14

weak duality in 14 Simon,B. 25,87 Sloane,N.J.A. 19 Soifer,A. 6,7 sphere,unit 2,23

chromatic number of graphs on the 24

complements of graphs on the 52 distance graphs on the 23 inner product for functions on the

((f, g)) 25

measurable chromatic number of graphs on the 24

measurable stability number of graphs on the 24

norm of a kernel over the(A) 25 norm of function over the(f) 25 properties of the theta number for

graphs on the 52–55 regularity of surface measure on

the 27

surface measure on the(ω) 3,23 theta number for graphs on the 27–

29

Index 109 theta number of complements of graphs

on the 53 spherical code 2,56

linear programming bound fors 56 stability number 1,2,11

computing the 4,11 measurable 3

measurableof graphs on the sphere 24

measurable∼,relation to measurable chromatic number 24

relation to chromatic number 11 Steinhaus’ theorem 81

generalization by Weil 49 Stromberg,K. 49

surface measure on the sphere (ω) 3,23 regularity of the 27

invariance under the orthogonal group 29

Sz´ekely,L.A. 6,8,9,40,74,77,80 Sz.-Nagy,B. 25,59

Szeg¨o,G. 30,36–38,41,45,48 theta number 4,15

as lower bound for chromatic num-ber 16

as upper bound for stability number 15 computational complexity 21

dual formulation for theof a graph 16

for compact regular measure spaces 29 for complements of graphs on the

sphere 53

for graphs on the Euclidean space 85–

89

for graphs on the sphere 27–29 for graphs on the sphere,expression 34 monotonicity of the 17

properties of the 17

properties of thefor graphs on the sphere 52–55

strengthening of the (ϑ) 19 ϑparameter 19

ϑ(G)theta number topological group 29 TrAtrace of matrixA tradition 26

translation of a set 67

unit-distance graph 3,6 upper density 3,63 Vallentin,F. 23,63 vector

column 12

Euclidean norm of a(x) 13 indexed by a finite set 12 Vilenkin,N.J. 38

Watson,G.N. 69–72

weight function for Jacobi polynomials 30 Weil,A. 49

Weiss,B. 10,80 Wilson,R.M. 6,9 Wong,R. 45,48

Wormald,N.C. 8,40,74,77 Zhang,J.-M. 45,48

Documentos relacionados