• Nenhum resultado encontrado

Nesse estudo nós mostramos que os tratamentos com injeções repetidas de DM i.n. ou i.c.v. foram capazes de causar alterações cognitivas e emocionais, na ausência de alterações motoras. Essas alterações foram acompanhadas da redução de neurônios TH+ na SNpc e VTA, mostrando o envolvimento da via dopaminérgica. O curso temporal das alterações motoras e cognitivas, associados à redução de neurônios dopaminérgicos, podem ser relacionados com diferentes estágios da DP, em humanos e em modelos animais progressivos da doença, sugerindo que esse seja um possível modelo animal para se compreender melhor possíveis alterações envolvidas na natureza progressiva da DP. Porém, outros estudos deverão ser realizados para se conhecer melhor os efeitos causados por esse pesticida sobre os mecanismos comportamentais e neuroquímicos.

REFERÊNCIAS BIBLIOGRÁFICAS

ASCHERIO, A. et al. Pesticide exposure and risk for Parkinson's disease. Ann Neurol., p.197-203, 2006.

BEDIN, S.; FERRAZ, A.C. Organização Funcional dos Circuitos dos Núcleos da Base Afetados na Doença de Parkinson e na Discinesia Induzida pela Levodopa.

SAÚDE REV., v.5, n.9, p. 77-88, 2003.

BEHARI, M.; SRIVASTAVA, A.K.; PANDEY, R.M. Quality of life in patients with Parkinson's disease. Parkinsonism Relat Disord., v.11, n.4, p.221-226, 2005. BETARBET, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci., v.3, p.1301–1306, 2000.

BEZARD, E. et al. Animal models of Parkinson’s disease: limits and relevance to neuroprotection studies. Mov Disord., 2012.

BLANDINI, F.; ARMENTERO, M. Animal models of Parkinson’s disease. The FEBS

journal, v.279, n.7, p. 1156-66, 2012.

BLONDER, L.X.; SLEVIN, J.T. Emotional Dysfunction in Parkinson's disease. Behav.

Neurol., n.24, v.3, 2011.

BOVÉ, J; PERIER, C. Neurotoxin-based models of Parkinson's disease.

Neuroscience, p. 51-76, 2012.

BOWERS, D. et al. Startling facts about emotion in Parkinson’s disease: blunted reactivity to aversive stimuli. Brain, p.3356-3365, 2006.

BRONNICK, K. et al. Attentional deficits affect activities of daily living in dementia- associated with Parkinson’s disease. Journal Neurol. Neurosurg. Psychiatry, p. 1136-1142, 2006.

BRAIBANTE, M.E.F; ZAPPE, J.A. A química dos agrotóxicos. Química Nova na

Escola, v.34, n.1, p. 10-15, 2012.

CAETANO, K.A.S. Envolvimento de mecanismos dopaminérgicos na expressão do medo condicionado contextual em ratos. (Dissertação de mestrado), Departamento de psicologia, USP, 2012.

CAMPÊLO, C.L.C. Efeitos da estimulação ambiental sobre os aspectos motores, cognitivos e neuronais em um modelo farmacológico progressivo da doença de Parkinson. (Dissertação de mestrado), Departamento de Fisiologia PPG Psicobiologia, UFRN, 2013.

CARVALHO, R.C. et al. Effects of reserpine on the pluz-maze discriminative avoidance task: dissociation between memory and motorimpairments. Brain Res., 2006.

CASTRO, A.A. et al. Atorvastatin improves cognitive, emotional and motor impairments induced by intranasal 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine

(MPTP) administration in rats, an experimental model of Parkinson’s disease. Brain

research, 2013.

CAVALCANTI, J.A.; FREITAS, J.C.R.; MELO, A.C.N.; FREITAS FILHO, J.R. Agrotóxicos: Uma Temática para o Ensino de Química. Química nova na escola, v.32, n.1, 2010.

CLARK, L.K.; NOUDOOST, B. The role of prefrontal catecholamines in attention and working memory. Frontiers in Neural Circuits, v.8, 2014.

COSTA, E.F.A.; PORTO, C.C.; SOARES, A.T. Envelhecimento populacional brasileiro e o aprendizado de geriatria e gerontologia. Revista da UFG, v.5, n2, 2003.

COLPAERT, F.C. Pharmacological characteristics of tremor, rigidity and hypokynesia induced by reserpine in rat. Neuropharmacology, v.26, n.9, p. 1431-1440, 1987. CRUZ, J.G.P. et al. Efeitos do extrato de Ginkgo biloba (EGb 761) e da natação repetida sobre a memória, ansiedade e atividade motora de ratos. Rev. Ciênc.

Farm. Básica Apl., v.31, n.2, p. 149-155, 2010.

DALAKER, T.O. et al. Ventricular enlargement and mild cognitive impairment in early Parkinson's disease. Mov Disord. v. 26, n.2, 2011.

DARDIOTIS, E. et al. The interplay between environmental and genetic factors in Parkinson’s disease susceptibility: The evidence for pesticides. Toxicology, p.17-23, 2013.

DICK, F. D. Parkinson’s disease and pesticide exposures. British Medical Bulletin, v.79, p. 219–223, 2006.

DLUZEN, D.E., KEFALAS, G. The effects of intranasal infusion of 1-methyl- 4 phenyl- 1,2,3,6-tetrahydropyridine (MPTP) upon catecholamine concentrations within

olfactory bulbs and corpus striatum of male mice. Brain Res., p.215–219, 1996. DOTY, R.L. The olfactory vector hypothesis of neurodegenerative disease: is it viable? Ann Neurol, p.63-67, 2008.

ENNACEUR, A.; DELACOUR, J. A new one-trial test for neurobiological studies of memory in rats. I: Behavioral data. Behav Brain Res., p. 47-59, 1988.

FERNANDES, V.S. et al. Memory impairment induced by low doses of reserpine in rats: Possible relationship with emotional processing deficits in Parkinson disease.

Progress in Neuro-Psychopharmacology & Biological Psychiatry, p. 1479-1483,

2008.

FERNANDES, V.S. et al. Repeated treatment with a low dose of reserpine as a progressive model of Parkinson’s disease. Behavioural Brain Research, p. 154- 163, 2012.

FRANCO, R. et al. Rev Ciênc Farm Básica Apl., 2010;31(2):149-155. Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson’s disease.

Chem Biol Interact, n.188, p.289–300, 2010.

GAO, H.M.; LIU, B.; HONG, J.S. Critical Role for Microglial NADPH Oxidase in Rotenone Induced Degeneration of Dopaminergic Neurons. The Journal of

Neuroscience, v. 23, n.15, p. 6181-6187, 2003.

GORELL, J.M. et al. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology 50, p.1346–1350, 1998.

HABR, S.F.; MACRINI, D.J.; SPINOSA, H.S.; FLORIO, J.C.; BERNARD, M.M. Repeated forced swim stress has additive effects in anxiety behavior and in

cathecolamine levels of adult rats exposed to deltamethrin. Neurotoxicology and

Teratology, p. 57–61, 2014.

HANCOCK, D.B.; SCOTT, W.K.; CHEN, H. Challenges for Epidemiological Research of Pesticide Exposure and Parkinson’s Disease. US Neurology, Touch Briefings, p.48-50, 2008.

HIGGINSON, C.I. et al. The relationship between executive function and verbal memory in Parkinson’s disease. Brain and Cognition, p. 343-352, 2003.

HOSSAIN, M.M. et al. Differential effects of pyrethroid insecticides on extracellular dopamine in the striatum of freely moving rats. Toxicology and Applied

Pharmacology, v.217, p. 25-34, 2006.

JONES, D.C; MILLER, G.W. The effects of environmental neurotoxicants on the dopaminergic system: a possible role in drug addiction. Biochem. Pharmacol., n.76, p. 569–581, 2008.

KALE, M. et al. Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicology Letters, p.197-205, 1999.

LAZARANI, C.A.; FLORIO, J.C.; LEMONICA, I.P.; BERNARDI, M.M. Effects of prenatal exposure to deltamethrin on forced swimming behavior, motor activity, and striatal dopamine levels in male and female rats. Neurotoxicology and Teratology, p. 665-673, 2001.

LEWIS, S.J.G. et al. Cognitive Impairments in Early Parkinson’s disease are

accompanied by reductions in activity in frontostriatal neural circuitry. The Journal of

Neuroscience, v.23, n.15, p.6351-6356, 2003.

LI, H.Y. et al. NF-E2 Related Factor 2 Activation and Heme Oxygenase-1 Induction by tert-Butylhydroquinone Protect against Deltamethrin-Mediated Oxidative Stress in PC12 Cells. Chem. Res. Toxicol., v. 20, p. 1242-1251, 2007.

LIU, G.P.; MA, Q.; SHI. N. Tyrosine hydroxylase as a target for deltamethrin in the nigrostriatal dopaminergic pathway. Biomed Environ Sci., v.19, n.1, p. 27-34, 2006.

MAYEUX, R. Epidemiology of neurodegeneration. Annu. Rev. Neurosci., p. 81-104, 2003.

MACHADO, B.S. et al. Características espectrais da atividade elétrica hipocampal durante o medo condicionado ao contexto. Einstein, v.10, n.2, p.140-144, 2012. MANI, V.M; ASHA, S.; SADIQ, A.M.M. Pyrethroid deltamethrin-induced

developmental neurodegenerativecerebral injury and ameliorating effect of dietary glycoside naringin in male wistar. Biomedicine & Aging Pathology, 2013.

MASCARENHA, T.K.S.F.; PESSOA, Y.S.R.Q. Aspectos que potencializam a contaminação do trabalhador rural com agrotóxicos: uma revisão integrativa.

Trabalho & Educação, v.22, n.2, p.87-103, 2013.

MAZOYER, M.; ROUDART, L. História das agriculturas no mundo: do neolítico à crise contemporânea. São Paulo: editora UNESP, 569 p., 2010.

MIYAMOTO, J. et al. Pyrethroids, nerve poisons: how their risks to human health should be assessed. Toxicol. Lett., v. 82, n.83, p. 933-940, 1995.

MOREIRA, M.D. et al. Uso de inseticidas botânicos no controle de pragas. In: controle alternativo de pragas, 2006.

MOREIRA, J.C.; JACOB, S.C.; PERES, F.; LIMA, J.S.; MEYER, A.; OLIVEIRA- SILVA, J.J. Avaliação integrada do impacto do uso de agrotóxicos sobre a saúde humana em uma comunidade agrícola de Nova Friburgo/RJ. Ciência e Saúde

Coletiva, v.7, n. 2, p.299-311, 2002.

MORIKAWA, T.; FURUHAMA, K. Effects of the NMDA Receptor Antagonists on Deltamethrin-Induced Striatal Dopamine Release in Conscious Unrestrained Rats. J.

Vet. Med. Sci., v. 71, n.8, p. 1129–1132, 2009.

MORAGAS, W.M.; SCHNEIDER, M.O. Biocidas: propriedades e seu histórico no Brasil. Caminhos de Geografia, v.3, n.10, p.26-40, 2003.

NIERADKO-IWANICKA, B.; BORZECKI, A. Subacute poisoning of mice with

deltamethrin produces memory impairment, reduced locomotor activity, liver damage and changes in blood morphology in the mechanism of oxidative stress.

Pharmacological Reports, p.535-541, 2015.

PAXINOS, G.; WATSON, C. The rat brain in stereotaxic coordinates. 6ª edição, 2007.

PEREIRA, D.; GARRET, C. Factores de risco da doença de parkinson: um estudo epidemiológico. Acta med port., v.23, n.1, p.15-24, 2010.

PERES, F. Saúde, trabalho e ambiente no meio rural brasileiro. Ciência & Saúde Coletiva, v.14, n.6, p.1995-2004, 2009.

PEREZ, R.G. et al. A Role for alfa-Synuclein in the Regulation of Dopamine Biosynthesis. The Journal of Neuroscience, v.22, n.8, p.3090-3099, 2002. PIMPÃO, C.T. et al. Avaliação da estimulação de LPS na migração celular em Rhamdia quelen expostos à Deltametrina. Rev. Acad., v.3, n.4, p. 11-17, 2005. PONZONI, S.; GARCIA-CAIRASCO, N. Neurobiologia do parkinsonismo. Arq.

Neuropsiquiatr., v.53, p.706-710, 1995.

PREDIGER, R.D.S. et al. The risk is in the air: Intranasal administration of MPTP to rats reproducing clinical features of Parkinson's disease. Experimental Neurology, p.391-403, 2006.

PREDIGER, R.D.S. et al. Single Intranasal Administration of 1-Methyl-4-Phenyl- 1,2,3,6 Tetrahydropyridine in C57BL/6 Mice Models Early Preclinical Phase of Parkinson’s Disease. Neurotox Res, n.17, p.114–129, 2010.

PREDIGER, R.D.S. et al. Intranasal Administration of Neurotoxicants in Animals: Support for the Olfactory Vector Hypothesis of Parkinson’s Disease. Neurotox Res, p. 90-116, 2012.

RICCI, E.L. et al. Behavioral and neurochemical evidence of deltamethrin

anxiogenic-like effects in rats. Braz. J. Vet. Res. Anim. Sci., v. 50, n. 1, p. 33-42, 2013.

ROSS, C.A.; SMITH, W.W. Gene-environment interactions in Parkinson’s disease.

Parkinsonism and Related Disorders, v.13, p.309-315, 2007.

SANTOS, J.R. Estudo das alterações cognitivas, motoras e neuroquímicas em dois novos modelos progressivos da Doença de Parkinson. Tese (Doutorado em

Psicobiologia), Universidade Federal do Rio Grande do Norte, 2012.

SANTOS, J.R. et al. Cognitive, motor and tyrosine hydroxylase temporal impairment in a model of parkinsonism induced by reserpine. Behavioural Brain Research, p.68-77, 2013.

SCHAPIRA. A.H.V. Mitochondrial Patology in Parkinson’s disease. Mount Sinai

Journal of Medicine, v.78, p.872-881, 2011.

SCORZA JUNIOR, R. P.; NÉVOLA, F. A.; AYELO, V. S.; Avaliação da contaminação hídrica por agrotóxico. Boletim de pesquisa e desenvolvimento. Dourados:

EMBRAPA Agropecuária Oeste, 2010.

SHULMAN, L.M. Gender differences in Parkinson's disease. Gend Med., v.4, n.1, p.8-18, 2007.

SILVA et al., Agrotóxico e trabalho: uma combinação perigosa para a saúde do trabalhador rural. Ciência e Saúde Coletiva, v. 10, n. 4, p. 891 - 903, 2005.

SMULDERS, K. et al. Freezing of gait in Parkinson’s Disease is related to impaired motor switching during stepping. Movement disorder, 2015.

SKALISZ, L.L. et al. Evaluation of the face validity of reserpine administration as an animal model of depression–Parkinson's disease association. Progress in

Neuropsychopharmacology and Biological Psychiatry, v.26, p.879-883, 2002.

SODERLUND, D.M. et al. Mechanisms of pyrethroid neurotoxicity: implications for cumulative risk assessment. Toxicology, v.171, p. 53-59, 2002.

SOARES, W.L.; FREITAS, E.A.V.; COUTINHO, J.A.G. Trabalho rural e saúde: intoxicações por agrotóxicos no município de Teresópolis – RJ. RER, v. 43, n.4, p. 685-701, 2005.

SONSALLA, P.K.; ZEEVALK, G.D.; GERMAN, D.C. Chronic intraventricular

administration of 1-methyl-4-phenylpyridinium as a progressive model of Parkinson’s disease. Parkinsonism and Related Disorders., v.14, p. 116-18, 2008.

SOUZA, V.F. Déficit de memória induzidos por baixas doses de reserpina em ratos: possível relação com prejuízos no processamento emocional na Doença de

Parkinson. Tese (Mestrado em Psicobiologia), Universidade Federal do Rio Grande do Norte, 2008.

SUZUKI, K. et al. Destruction of dopaminergic neurons in the midbrain by 6- hydroxydopamine decrease hippocampal cell proliferation in rats: reversal by fluoxetine. Plos one, v.5, n.2, 2010.

TADAIESKY, M.T.; DOMBROWSKI, P.A.; FIGUEIREDO, C.P.; CARGNIN- FERREIRA, E.; CUNHA, C.; TAKAHASHI, R.N. Emotional, cognitive and neurochemical alterations in a premotor stage model of parkinson’s disease.

Neuroscience, p.830-840, 2008.

TAKASAKI, I. et al. Type II pyrethroid deltamethrin produces antidepressant-like effects in mice. Behavioural Brain Research, p. 182-188, 2013.

TAYEBATI, S.K. et al. Influence of dermal exposure to the pyrethroid insecticide deltamethrin on rat brain microanatomy and cholinergic/dopaminergic

neurochemistry. Brain research, p.180-188, 2009.

TRISTÃO, F.S.M. et al. Evaluation of Nigrostriatal Neurodegeneration and Neuroinflammation Following Repeated Intranasal 1-Methyl- 4-Phenyl-1,2,3,6- Tetrahydropyridine (MPTP) Administration in Mice, an Experimental Model of Parkinson’s Disease. Neurotox Res, n. 25, p.24-32, 2014.

VANN, S.D.; ALBASSER, M.M. Hippocampus and neocortex: recognition and spatial memory. Current Opinion in Neurobiology, v.21, n.3, p.440-445, 2011.

VEIGA, M.M. et al. Análise da contaminação dos sistemas hídricos por agrotóxicos numa pequena comunidade rural do Sudeste do Brasil. Cad. Saúde Pública, v. 22, n.11, p.2391-2399, 2006.

VEIGA, M.M. et al. A contaminação por agrotóxicos e os Equipamentos de Proteção Individual (EPIs). Rev. bras. Saúde ocup., n. 32, v. 116, p. 57-68, 2007.

VERHEIJ, M.M.M.; COOLS, A.R. Differential contribution of storage pool to the extracellular amount of accumbal dopamine in high and low responders to novelty: effects of reserpine. Journal of Neurochemistry, v.100, p. 810-821, 2007.

VOON, V.; FOX, S.H. Medication-related impulse control and repetitive behaviors in Parkinson disease. Arch Neurol., v.64, n.8, p. 1089-96, 2007.

WIRDEFELDT, K. et al. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur. J. Epidemiol., 2011.

WOLANSKY, M.J.; HARRILL, J.A. Neurobehavioral toxicology of pyrethroid

insecticides in adult animals: A critical review. Neurotoxicology and Teratology, v. 30, p. 55-78, 2008.

ZIGMOND, M. J. Do Compensatory Processes Underlie the Preclinical Phase of Neurodegenerative Disease? Insights from an Animal Model of Parkinsonism.

Documentos relacionados