• Nenhum resultado encontrado

Na rizofera do milho por meio da análise metataxonômica do sequenciamento parcial do gene 16S rRNA foram encontrados 28 filos, 62 classes, 83 ordens, 183 famílias e 582 gêneros.

O filo com maior predominância foi Proteobacteria. A classe dominante foi

Alphaproteobacteria. A ordem dominante foi Myxococcales. A família dominante foi Planctomycetaceae. O gênero dominante foi Gp6.

As bibliotecas que apresentaram maior riqueza foram aplicadas doses de 30 kg/ha de N sem inoculação, 160 kg/ha de N sem inoculação e 30 kg de N + Azototal inoculado com A.

Brasilense AbV5 + AbV6. As que apresentaram a menor riqueza foram aplicadas doses de 30

kg/ha de N + 4331 inoculado com Enhydrobacter.

As que apresentaram maior diversidade receberam dose de 160 kg/ha de N sem inoculação e 30 kg/ha de N + HM053 inoculado com A. Brasilense. Menor diversidade foram as bibliotecas com dose de 0 kg/ha de N sem inoculação, 30 kg/ha de N + L27 inoculado com

Herbaspirillum e 30 kg/ha de N sem inoculação.

A maioria dos gêneros que contém bactérias promotoras do crescimento vegetal encontram-se nas bibliotecas que receberam dose de 0N kg/h e 30N kg/h sem inoculantes.

REFERÊNCIAS

ALVES, Gabriela Cavalcanti et al. Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants. Plant and soil, v. 387, n. 1-2, p. 307-321, 2015.

ARAUJO, Janaina F. et al. Characterization of soil bacterial assemblies in Brazilian savanna- like vegetation reveals acidobacteria dominance. Microbial ecology, v. 64, n. 3, p. 760-770, 2012.

ASHRAF, Muhammad Arslan; RASOOL, Mahmood; MIRZA, Muhammad Sajjad. Nitrogen fixation and indole acetic acid production potential of bacteria isolated from rhizosphere of sugarcane (Saccharum officinarum L.). Adv Biol Res, v. 5, n. 6, p. 348-355, 2011.

BAKKER, Matthew G. et al. Impacts of bulk soil microbial community structure on rhizosphere microbiomes of Zea mays. Plant and Soil, v. 392, n. 1-2, p. 115-126, 2015.

BARRIUSO, Jorge; MARÍN, Silvia; MELLADO, Rafael P. Effect of the herbicide glyphosate on glyphosate‐tolerant maize rhizobacterial communities: a comparison with pre‐emergency applied herbicide consisting of a combination of acetochlor and terbuthylazine. Environmental

microbiology, v. 12, n. 4, p. 1021-1030, 2010.

BOUFFAUD, MARIE‐LARA et al. Is diversification history of maize influencing selection of soil bacteria by roots?. Molecular ecology, v. 21, n. 1, p. 195-206, 2012.

BRUSAMARELLO-SANTOS, Liziane Cristina et al. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense. PloS one, v. 12, n. 3, p. e0174576, 2017.

BLOEMBERG, Guido V.; LUGTENBERG, Ben JJ. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current opinion in plant bi-ology, v. 4, n. 4, p. 343-350, 2001. CANTARELLA, H.; DUARTE, A. P. Manejo da fertilidade do solo para a cultura do milho. Tecnologia de produção de milho. Viçosa: UFV, v. 5, p. 139-182, 2004.

CAPORASO, J. Gregory et al. QIIME allows analysis of high-throughput com-munity sequencing data. Nature methods, v. 7, n. 5, p. 335-336, 2010.

CHAUHAN, Puneet Singh et al. Uncultured bacterial diversity in tropical maize (Zea mays L.) rhizosphere. Journal of basic microbiology, v. 51, n. 1, p. 15-32, 2011.

COHEN, Jacques. Bioinformatics—an introduction for computer scien-tists. ACM Computing

Surveys (CSUR), v. 36, n. 2, p. 122-158, 2004.

CORREA-GALEOTE, David et al. Bacterial communities in the rhizosphere of amilaceous maize (Zea mays L.) as assessed by pyrosequencing. Frontiers in plant science, v. 7, 2016.

CHABOT, Rock; ANTOUN, Hani; CESCAS, Michel P. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli. Plant and soil, v. 184, n. 2, p. 311-321, 1996.

COLE, James R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic acids research, v. 42, n. D1, p. D633-D642, 2013.

CURÁ, José et al. Inoculation with Azospirillum sp. and Herbaspirillum sp. bacteria increases the tolerance of maize to drought stress. Microorganisms, v. 5, n. 3, p. 41, 2017.

DA, FF Mota et al. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum- tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil. Journal of microbiology and biotechnology, v. 18, n. 5, p. 805-814, 2008. DAWID, Wolfgang. Biology and global distribution of myxobacteria in soils. FEMS

microbiology reviews, v. 24, n. 4, p. 403-427, 2000.

DESANTIS, T. Z. et al. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic acids research, v. 34, n. suppl_2, p. W394-W399, 2006.

DUBOIS, Marieke; VAN DEN BROECK, Lisa; INZÉ, Dirk. The pivotal role of ethylene in plant growth. Trends in plant science, v. 23, n. 4, p. 311-323, 2018.

ECKER, Joseph R.; DAVIS, Ronald W. Plant defense genes are regulated by ethylene. Proceedings of the National Academy of Sciences, v. 84, n. 15, p. 5202-5206, 1987. EDGAR, Robert C. et al. UCHIME improves sensitivity and speed of chimera detection.

Bioinformatics, v. 27, n. 16, p. 2194-2200, 2011.

EL-BANNA, N.; WINKELMANN, Günther. Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. Journal of Applied

Microbiology, v. 85, n. 1, p. 69-78, 1998.

FAN, Fenliang et al. Probing potential microbial coupling of carbon and nitrogen cycling during decomposition of maize residue by 13C-DNA-SIP. Soil Biology and Biochemistry, v. 70, p. 12-21, 2014.

FURLONG, Michelle A. et al. Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Applied and environmental microbiology, v. 68, n. 3, p. 1265-1279, 2002.

FUKAMI, Josiane et al. Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express, v. 6, n. 1, p. 3, 2016.

FIERER, Noah; BRADFORD, Mark A.; JACKSON, Robert B. Toward an ecological classification of soil bacteria. Ecology, v. 88, n. 6, p. 1354-1364, 2007.

FISH, Jordan A. et al. FunGene: the functional gene pipeline and repository. Frontiers in

FUENTES-RAMÍREZ, Luis E. et al. Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiology Ecology, v. 29, n. 2, p. 117-128, 1999. FUENTES-RAMÍREZ, Luis E. et al. Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. International Journal of Systematic and Evolutionary Microbiology, v. 51, n. 4, p. 1305-1314, 2001.

GILLIS, Monique et al. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. International Journal of Systematic and Evolutionary

Microbiology, v. 45, n. 2, p. 274-289, 1995.

GREMION, Fabienne; CHATZINOTAS, Antonis; HARMS, Hauke. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal‐contaminated bulk and rhizosphere soil. Environmental Microbiology, v. 5, n. 10, p. 896-907, 2003.

GUO, Min et al. Genomic evolution of 11 type strains within family Planctomycetaceae. PLoS

One, v. 9, n. 1, p. e86752, 2014.

HERMANS, Syrie M. et al. Bacteria as emerging indicators of soil condition. Appl. Environ.

Microbiol., v. 83, n. 1, p. e02826-16, 2017.

HANDELSMAN, Jo et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & biology, v. 5, n. 10, p. R245-R249, 1998.

HUNGRIA, Mariangela et al. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, v. 331, n. 1-2, p. 413-425, 2010.

IGNJATOVIC-MICIC, Dragana et al. Grain nutrient composition of maize (Zea mays L.) drought-tolerant populations. J Agric Food Chem, v. 63, p. 1251-1260, 2015.

JAMES, E. K. Nitrogen fixation in endophytic and associative symbiosis. Field crops research, v. 65, n. 2-3, p. 197-209, 2000.

JANGID, Kamlesh et al. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and

Biochemistry, v. 40, n. 11, p. 2843-2853, 2008.

JANSSEN, Peter H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol., v. 72, n. 3, p. 1719-1728, 2006.

JIMÉNEZ, Diego Javier et al. Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes. PloS one, v. 7, n. 12, p. e52069, 2012.

JOSHI, Mohini; DESHPANDE, J. D. Polymerase chain reaction: methods, principles and application. International Journal of Biomedical Research, v. 2, n. 1, p. 81-97, 2010.

JOHNSTON-MONJE, David et al. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant and Soil, v. 405, n. 1-2, p. 337-355, 2016.

JONES, Ryan T. et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME journal, v. 3, n. 4, p. 442, 2009.

KAPPES, Claudinei et al. Inoculação de sementes com bactéria diazotrófica e aplicação de nitrogênio em cobertura e foliar em milho. Semina: Ciências Agrárias, v. 34, n. 2, 2013. LATATI, Mourad et al. The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. European Journal

of Agronomy, v. 72, p. 80-90, 2016.

LEE, Sang-Hoon; KA, Jong-Ok; CHO, Jae-Chang. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS microbiology letters, v. 285, n. 2, p. 263-269, 2008.

LI, Xiangzhen et al. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biology and Biochemistry, v. 68, p. 392-401, 2014.

LIU, Huixue et al. Insight into the correlation between biochar amendment and shifts in bacterial community 4 years after a single incorporation in soybean-and maize-planted soils in northeastern China. Canadian journal of microbiology, v. 65, n. 5, p. 353-364, 2019.

LÜCKER, Sebastian et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of

Sciences, v. 107, n. 30, p. 13479-13484, 2010.

MARRA, Leandro Marciano et al. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant and soil, v. 357, n. 1-2, p. 289-307, 2012.

MALAVOLTA, Eurípides. Avaliação do estado nutricional das plantas: princípios e aplicações/Eurípedes Malavolta, Godofredo Cesar Vitti, Sebastião Alberto de Oliveira.—2. ed., ver. e atual. Piracicaba: Potafos, 1997.

MOUTIA, Jean-Francois Yvan et al. Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant and soil, v. 337, n. 1-2, p. 233-242, 2010. MEHNAZ, Samina; LAZAROVITS, George. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microbial Ecology, v. 51, n. 3, p. 326-335, 2006.

MUTHUKUMARASAMY, R. et al. Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Current Science, p. 137-145, 2002.

MOHAN, Anand; KUMAR, Baidyanath. Growth performance and yield potential of cereal crops (wheat, maize and barley) in association with cyanobacteria. Int J Curr Microbiol App

Sci, v. 6, n. 10, p. 744-758, 2017.

NANNIPIERI, P. et al. Effects of root exudates in microbial diversity and activity in rhizosphere soils. In: Molecular mechanisms of plant and microbe coexistence. Springer Berlin

Heidelberg, 2008. p. 339-365.

NELSON, Michael C. et al. Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys. PloS one, v. 9, n. 4, p. e94249, 2014.

NAWROCKI, Eric P.; KOLBE, Diana L.; EDDY, Sean R. Infernal 1.0: inference of RNA alignments. Bioinformatics, v. 25, n. 10, p. 1335-1337, 2009.

NGUYEN, Vu Tuan et al. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Current Microbiology, v. 57, n. 5, p. 449, 2008.

ÖZTÜRK, Lokman; DEMIR, Yavuz. Effects of putrescine and ethephon on some oxidative stress enzyme activities and proline content in salt stressed spinach leaves. Plant Growth

Regulation, v. 40, n. 1, p. 89-95, 2003.

PATEL, Jean Baldus. 16S rRNA gene sequencing for bacterial pathogen identification in the clinical laboratory. Molecular Diagnosis, v. 6, n. 4, p. 313-321, 2001.

PAUDYAL, Som Prasad; GUPTA, V. N. P. Substitution of chemical fertilizer nitrogen through Rhizobium inoculation technology. Our Nature, v. 16, n. 1, p. 43-47, 2018.

PEIFFER, Jason A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, v. 110, n. 16, p. 6548- 6553, 2013.

PENG, Shaobing et al. Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agronomy Journal, v. 94, n. 4, p. 925-929, 2002.

PERIN, L. et al. Diazotrophic Burkholderia species associated with field-grown maize and sugarcane. Appl. Environ. Microbiol., v. 72, n. 5, p. 3103-3110, 2006.

POLTI, Marta A. et al. Simultaneous bioremediation of Cr (VI) and lindane in soil by actinobacteria. International Biodeterioration & Biodegradation, v. 88, p. 48-55, 2014. PEREIRA, Paola et al. Analysis of the bacterial diversity associated with the roots of maize (Zea mays L.) through culture-dependent and culture-independent methods. ISRN Ecology, v. 2011, 2011.

PEIFFER, Jason A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, v. 110, n. 16, p. 6548- 6553, 2013.

PRASANNA, Radha et al. Cyanobacterial inoculation elicits plant defense response and enhanced Zn mobilization in maize hybrids. Cogent Food & Agriculture, v. 1, n. 1, p. 998507, 2015.

re3data.org: RDP; editing status 2017-05-26; re3data.org - Registry of Research Data Repositories. http://doi.org/10.17616/R3C087. Acesso em: 13-11-2017.

RAMIREZ-VILLANUEVA, Daniel A. et al. Bacterial community structure in maize residue amended soil with contrasting management practices. Applied soil ecology, v. 90, p. 49-59, 2015.

ROSSELLÓ-MORA, Ramon; AMANN, Rudolf. The species concept for prokaryotes. FEMS

microbiology reviews, v. 25, n. 1, p. 39-67, 2001.

RIBAUDO, C. M. et al. Effect of Herbaspirillum seropedicae inoculation on maize nitrogen metabolism. Maydica, v. 51, n. 3, p. 481, 2006.

ROESCH, Luiz FW et al. Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME journal, v. 1, n. 4, p. 283, 2007.

ROGNES, Torbjørn et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ, v. 4, p. e2584, 2016.

SANGOI, Luís et al. Desempenho agronômico do milho em razão do tratamento de sementes com azospirillum sp. e da aplicação de doses de nitrogênio mineral. Revista Brasileira de

Ciência do Solo, v. 39, n. 4, 2015.

SCHLOSS, Patrick D.; HANDELSMAN, Jo. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ.

Microbiol., v. 71, n. 3, p. 1501-1506, 2005.

SCHLOSS, Patrick D.; HANDELSMAN, Jo. Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. Appl.

Environ. Microbiol., v. 72, n. 10, p. 6773-6779, 2006.

SCHLOSS, Patrick D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl.

Environ. Microbiol., v. 75, n. 23, p. 7537-7541, 2009.

SCHRÖDER, J. J. et al. Does the crop or the soil indicate how to save nitrogen in maize production?: Reviewing the state of the art. Field Crops Research, v. 66, n. 2, p. 151-164, 2000. SEGATA, Nicola et al. Computational meta9omics for microbial community studies. Molecular systems biology, v. 9, n. 1, p. 666, 2013.

Secretaria da agricultura e do abastecimento - SEAB, 2017. Produção Agropecuária. Disponível

em: <http://www.agricultura.pr.gov.br/modules/conteudo/conteudo.php?conteudo=137>.

SHAHAROONA, Baby et al. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Applied

microbiology and biotechnology, v. 79, n. 1, p. 147-155, 2008.

SINGH, Jay Shankar et al. Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in microbiology, v. 7, p. 529, 2016.

SPAGNOLLO, E. et al. Leguminosas estivais intercalares como fonte de nitrogênio para o milho, no Sul do Brasil. Revista brasileira de ciência do solo, v. 26, n. 2, 2002.

SPRENT, Janet I. Global distribution of legumes. Legume Nodulation: A Global Perspective, p. 35-50, 2009.

SZILAGYI-ZECCHIN, Vivian Jaskiw. Microrganismos endofíticos de milho (Zea Mays L.). 2012.

TEELING, Hanno; GLÖCKNER, Frank Oliver. Current opportunities and challenges in microbial metagenome analysis—a bioinformatic perspective. Briefings in bioinformatics, v. 13, n. 6, p. 728-742, 2012.

TORSVIK, Vigdis; ØVREÅS, Lise. Microbial diversity and function in soil: from genes to ecosystems. Current opinion in microbiology, v. 5, n. 3, p. 240-245, 2002.

TURNBAUGH, Peter J. et al. A core gut microbiome in obese and lean twins. Nature, v. 457, n. 7228, p. 480, 2009.

TAO, Jiemeng et al. Maize growth responses to soil microbes and soil properties after fertilization with different green manures. Applied microbiology and biotechnology, v. 101, n. 3, p. 1289-1299, 2017.

THOMSON, Bruce C. et al. Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil. Microbial ecology, v. 59, n. 2, p. 335-343, 2010.

TREUDE, Nicole et al. Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS microbiology ecology, v. 44, n. 2, p. 261-269, 2003.

VAISHAMPAYAN, A. et al. Cyanobacterial biofertilizers in rice agriculture. The Botanical

Review, v. 67, n. 4, p. 453-516, 2001.

VOGEL, Timothy M. et al. TerraGenome: a consortium for the sequencing of a soil metagenome. Nature Reviews Microbiology, v. 7, n. 4, p. 252, 2009.

WANG, Qiong et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol., v. 73, n. 16, p. 5261-5267, 2007.

WARD, Naomi L. et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol., v. 75, n. 7, p. 2046- 2056, 2009.

WARD, Naomi L. et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microbiol., v. 75, n. 7, p. 2046-2056, 2009.

WESTCOTT, Sarah L.; SCHLOSS, Patrick D. De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ, v. 3, p. e1487, 2015.

YANG, Yi et al. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS One, v. 12, n. 5, p. e0178425, 2017.

ZAFAR, M. et al. Effect of plant growth-promoting rhizobacteria on growth, nodulation and nutrient accumulation of lentil under controlled conditions. Pedosphere, v. 22, n. 6, p. 848-859, 2012.

ZEFFA, Douglas Mariani et al. The influence of topdressing nitrogen on Azospirillum spp. inoculation in maize crops through meta-analysis. Bragantia, n. AHEAD, 2018.

Documentos relacionados