• Nenhum resultado encontrado

O controle da expressão de Let-7b-5p é mediado via ativação do eixo PPARβ/LIN28a. Neste contexto, o aumento na transativação do PPARβ parece estar diretamente associado a indução de LIN28a e, consequentemente, redução na expressão do let-7b-5p. Além disso, nossos resultados mostram que o PGC1α é alvo direto do Let-7b-5p, sugerindo que o controle da expressão desse miRNA contribui com a manutenção do processo de biogênese e função mitocondrial em células musculares esqueléticas. Vale ressaltar que o controle desse eixo envolvendo, fator de transcrição, co-reguladores e miRNA, abre perspectivas para o controle de doenças metabólicas associadas ao processo de disfunção mitocondrial em tecidos periféricos.

Figura 16. Sumário Gráfico. A ativação de PPARβ pelo exercício físico, PGC1α ou por GW501516 é responsável pela aumento na expressão de LIN28a, uma proteína ligante de mRNA, conhecida também com proteína esponja, que impede o processo de maturação do miRNA Let-7b-5p. Por outro lado, bloqueio de PPARβ por antagonista GSK0660 ou siRNA, reduz a expressão de Lin28a e aumenta a expressão de Let-7b-5p.

REFERÊNCIA

ABBOT, E.L.; MCCORMACK, J.G.; REYNET, C.; HASSALL, D.G.; BUCHAN, K.W.; YEAMAN, S.J. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells. FEBS J., v. 272, n. 12, p.3004-3014, jun 2005. ALMEIDA, M.I.; REIS, R.M.; CALIN, G.A. MicroRNA history: Discovery, recent application, and next frontiers. Mutat Res., n. 717, v. 1-2, p. 1-8, dec 2011.

AMBROS, V. The functions of animal microRNAs. Nature., n. 431, v. 7006, p. 350-355, set 2004.

AOI, W.; NAITO, Y.; MIZUSHIMA, K.; TAKANAMI, Y.; KAWAI, Y.; ICHIKAWA, H.; YOSHIKAWA, T. The microRNA miR-696 regulates PGC-1{alpha} in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab., n.298, v. 4, p. 799-806, apr 2010.

ASHRAFIAN, H.; FRENNEAUX, M.P.; OPIE, L.H. Metabolic mechanisms in heart failure. Circulation, n. 116, v. 4, p. 434-448, jul 2007.

BALZEAU, J.; MENEZES, M.R.; CAO, S.; HAGAN, J.P. The LIN28/let-7 Pathway in Cancer. Front Genet., n. [s.n.], v 8, p. 1-16, mar 2017.

BARBER, J.L.; ZELLARS, K.N.; BARRINGHAUS, K.G.; BOUCHARD, C.; SPINALE, F.G.; SARZYNSKI, M.A. The Effects of Regular Exercise on Circulating Cardiovascular- related MicroRNAs. Sci Rep., n.9, v.1, p. 7527, mai 2019.

BARTEL, D.P. Metazoan MicroRNAs. Cell., n. 173, v. 1, p. 20-51, mar 2018.

BARTEL, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell., n. 116, v. 2, p. 281-297, jan 2004.

BERGMEYER, H.U. Methods of Enzymatic analysis. New York: Academic, United States, ed. 2, p. 120-301, 1974.

BIAMONTE, F.; SANTAMARIA, G.; SACCO, A.; PERRONE, F.M.; DI CELLO, A.; BATTAGLIA, A.M.; SALATINO, A.; DI VITO, A.; AVERSA, I.; VENTURELLA, R.; ZULLO, F.; COSTANZO, F. MicroRNA let-7g acts as tumor suppressor and predictive biomarker for chemoresistance in human epithelial ovarian cancer. Sci Rep., n.9, v. 1, p. 5668, abr 2019

BRODERICK, T.L.; SENNOTT, J.M.; GUTKOWSKA, J.; JANKOWSKI, M. Anti- inflammatory and angiogenic effects of exercise training in cardiac muscle of diabetic mice. Diabetes Metab Syndr Obes., n.12, [s.v], p. 565-573, abr 2019.

CAI, H.; CHEN, Y.; YANG, X,. MA, S.; WANG, Q.; ZHANG, Y.; NIU, X.; DING, G.; YUAN, Y. Let7b modulates the Wnt/β-catenin pathway in liver cancer cells via downregulated Frizzled4. Tumour Biol., n. 39, v. 7, p.1-7, jul 2017.

CARTONI, R.; LÉGER, B.; HOCK, M.B.; PRAZ, M.; CRETTENAND, A.; PICH, S.; ZILTENER, J.L.; LUTHI, F.; DÉRIAZ, O.; ZORZANO, A.; GOBELET, C.; KRALLI, A.; RUSSELL, A.P. Mitofusins 1/2 and ERRalpha expression are increased in human skeletal muscle after physical exercise. J Physiol., n. 567, v. 1. P. 39-358, aug 2005.

CHEN, C.; RIDZON, D.A.; BROOMER, A.J.; ZHOU, Z.; LEE, D.H.; NGUYEN, J.T.; BARBISIN, M.; XU, N.L.; MAHUVAKAR, V.R.; ANDERSEN, M.R.; LAO, K.Q.; LIVAK, K.J.; GUEGLER, K.J. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res., n. 33, v. 20, p 179, nov 2005.

CHRISTENSEN, R.H.; WEDELL-NEERGAARD, A.S.; LEHRSKOV, L.L.; LEGAARD, G.E.; DORPH, E.; LARSEN, M.K.; LAUNBO, N.; FAGERLIND, S.R.; SEIDE, S.K.; NYMAND, S.; BALL, M.; VINUM, N.B.; DAHL, C.N.; HENNEBERG, M.; RIED- LARSEN, M.; BOESEN, M.P.; CHRISTENSEN, R.; KARSTOFT, K.; KROGH-MADSEN, R.; ROSENMEIER, J.B.; PEDERSEN, B.K.; ELLINGSGAARD, H. Effect of aerobic and resistance exercise on cardiac adipose tissue: a secondary analyses from a randomized clinical trial. JAMA Cardiol. [s.n], [s.v], [s.p], jul 2019.

CIVITARESE, A.E.; CARLING, S.; HEILBRONN, L.K.; HULVER, M.H.; UKROPCOVA, B.; DEUTSCH, W.A.; SMITH, S.R.; RAVUSSIN, E.; CALERIE PENNINGTON TEAM. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med., n. 4, v. 3, p. e76, mar 2007.

COEN, P.M.; MENSHIKOVA, E.V.; DISTEFANO, G.; ZHENG, D.; TANNER, C.J.; STANDLEY, R.A.; HELBLING, N.L.; DUBIS, G.S.; RITOV, V.B.; XIE, H.; DESIMONE, M.E.; SMITH, S.R.; STEFANOVIC-RACIC, M.; TOLEDO, F.G.; HOUMARD, J.A.; GOODPASTER, B.H. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery. Diabetes., n. 64, v. 11, p. 3737-3750, nov 2015.

DAVALOS, A.; GOEDEKE, L.; SMIBERT, P.; RAMIREZ, C.M,; WARRIER, N.P.; ANDREO, U.; CIRERA-SALINAS, D.; RAYNER, K.; SURESH, U.; PASTOR-PAREJA, J.C.; ESPLUGUES, E.; FISHER, E.A.; PENALVA, L.O.; MOORE, K.J.; SUAREZ, Y.; LAI, E.C.; FERNANDEZ-HERNANDO C. MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A, n. 108, v. 22, p.9232–9237, mai 2011.

DRUMMOND, M.J.; MCCARTHY, J.J.; SINHA, M.; SPRATT, H.M.; VOLPI, E.; ESSER, K.A.; RASMUSSEN, B.B. Aging and microRNA expression. In human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics. N. 43, v. 10, p. 295-603, mai 2011.

ELDOR, R.; NORTON, L.; FOURCAUDOT, M.; GALINDO, C.; DEFRONZO, R.A.; ABDUL-GHANI, M. Increased lipid availability for three days reduces whole body glucose uptake, impairs muscle mitochondrial function and initiates opposing effects on PGC-1a promoter methylation in healthy subjects. PLoS One, n. 12, v. 12, p. e0188208, dez 2017. ELIA, L; CONTU, R.; QUINTAVALLE, M.; VARRONE, F.; CHIMENTI, C.; RUSSO, M.A CIMINO, V.; DE MARINIS, L.; FRUSTACI, A.; CATALUCCI, D.; CONDORELLI, G. Reciprocal regulation of MicroRNA-1 and insulin-like growth factor-1 signal transduction cascade in pathological conditions. Circulation., n. 120, v. 23, p. 2377-2385, 2009.

FAN, W.; EVANS, R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol., n. 33, p. 49-54, apr 2015.

FAN, W.; WAIZENEGGER, W.; LIN, C.S.; SORRENTINO, V.; HE, M.X.; WALL, C.E.; LI, H.; LIDDLE, C.; YU, R.T.; ATKINS, A.R.; AUWERX, J.; DOWNES, M.; EVANS, R.M. PPARδ promotes running endurance by preserving glucose. Cell Metab., n.25, v. 5, p. 1186- 1193, mai 2017.

FARZANEH, M.; ATTARI, F.; KHOSHNAM, S.E. Concise Review: LIN28/Let-7 signaling, a critical double-negative feedback loop during pluripotency, reprogramming and tumorigenicity. Cell Reprogram., n. 19, v. 5, p. 289-293, out 2017.

FEIGE, J.N.; AUWERX, J. Transcriptional coregulators in the control of energy homeostasis. Trends Cell Biol., n. 17, v. 6, p. 292-301, jun 2007.

FERNANDEZ-MARCOS, P.J.; AUWERX, J. Regulation of PGC-1a, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr., n. 93, v. 4, p. 884-890, abr 2011.

FIORENZA, M.; GUNNARSSON, T.P.; HOSTRUP, M.; IAIA, F.M.; SCHENA, F.; PILEGAARD, H.; BANGSBO, J. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. J Physiol., n. 596, v. 14, p. 2823-2840, jul 2018.

FROST, R.J.; OLSON, E.N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci U.S.A., n. 108, v. 52, p. 21075-80, 2011. GE, G.; YANG, D.; TAN, Y.; CHEN, Y.; JIANG, D.; JIANG, A.; LI, Q.; LIU, Y.; ZHONG, Z.; LI, X.; ZHANG, S.; ZHU, L. miR-10b-5p Regulates C2C12 Myoblasts Proliferation and Differentiation. Biosci Biotechnol Biochem., n. 83, v. 3, p. 291-299, fev 2019.

GILL, J.F.; DELEZIE, J.; SANTOS, G.; MCGUIRK, S.; SCHNYDER, S.; FRANK, S.; RAUSCH, M.; ST-PIERRE, J.; HANDSCHIN C. Peroxisome proliferator‐activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress, and cell death to mitigate skeletal muscle aging Aging Cell., [s;n], [s.v], p. 1-13, julh 2019. GOMEZ-HUELGAS, R.; RUIZ-NAVA, J.; SANTAMARIA-FERNANDEZ, S.; VARGAS- CANDELA, A.; ALARCON-MARTIN, A.V.; TINAHONES, F.J.; BERNAL-LOPEZ, M.R. Impacto f intensive lifestyle modification on levels of adipokines and inflammatory biomarkers in metabolically health obese women. Mediators Inflamm., [s.n], [s.v], p. 4165260, abr 2019.

GUPTA, R.A.; TAN, J.; KRAUSE, W.F.; GERACI, M.W.; WILLSON, T.M.; DEY, S.K.; DUBOIS, R.N. Prostacyclin-mediated activation of peroxisome proliferator-activated receptor delta in colorectal cancer. Proc. Natl. Acad. Sci. USA, n. 97, v. 24, p. 13275-13280, nov 2000.

HANDSCHIN, C.; SPIEGELMAN, B.M. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature., n. 454, v. 7203, p. 463-469, jul 2008

HARDIE, D.G.; ROSS, F.A.; HAWLEY, S.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol., n. 13, v. 4, p. 251-262, mar 2012. HARMON, G.S.; LAM, M.T.; GLASS, C.K. PPARs and lipid ligands in inflammation and metabolism. Chem Rev., n. 111, v. 10, p. 6321-6340, out 2011.

HEO, I.; JOO, C.; CHO, J.; HÁ, M.; HAN, J.; KIM, V.N. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell., n.32, v. 2, p. 276-284, out 2008.

HEO, I.; JOO, C.; KIM, Y.K.; HÁ, M.; YOON, M.J.; CHO, J.; YEOM, K.H.; HAN, J.; KIM, V.N. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell., n. 138, v. 4, p. 696-708, aug 2009.

HERNANDEZ-MIJARES, A.; ROCHA, M.; APOSTOLOVA, N.; BORRAS, C.; JOVER, A.; BAÑULS, C.; SOLA, E.; VICTOR, V.M. Mitochondrial complex I impairment in leukocytes from type 2 diabetic patients. Free Radic Biol Med., n. 50, v. 10, p. 1215-1221, mai 2011. HIGUCHI, R.; DOLLINGER, G.; WALSH, P.S.; GRIFFITH, R. Simultaneous amplification and detection of specific DNA sequences. Biotechnology (NY)., n 10, v. 4, p. 413-417, abr 1992.

HONARDOOST, M.; AREFIAN, E.; SOLEIMANI, M.; SOUDI, S.; SAROOKHANI, M.R. Development of Insulin Resistance through Induction of miRNA-135 in C2C12 Cells. Cell J., n. 18, v. 3, p. 353-361, out-dez 2016.

HOTAMISLIGIL, G.S. Inflammation and metabolic disorders. Nature., n. 444, v. 7121, p. 860-867, dec 2006.

HU, Q.; LI, J.; NITTA, K.; KITADA, M.; NAGAI, T.; KANASAKI, K.; KOYA, D. FGFR1 is essential for N-acetyl-seryl-aspartyl-lysyl-proline regulation of mitochondrial dynamics by upregulating microRNA let-7b-5p. Biochem Biophys Res Commun., n. 495, v. 3, p. 2214-2220, jan 2018.

HUANG, Y.; SHEN, X.J.; ZOU, Q.; ZHAO, Q.L. Biological functions of microRNAs. Bioorg Khim., n.36, v. 6, p. 747-752, nov-dez 2010.

IRRCHER, I.; ADHIHETTY, P.J.; JOSEPH, A.M.; LJUBICIC, V.; HOOD, D.A. Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med., n. 33, v. 11, p. 783-93, 2003.

JÄGER, S.; HANDSCHIN, C.; ST-PIERRE, J.; SPIEGELMAN, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle viadirect phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA., n. 104, v. 29, p. 12017–12022, jul 2007.

JOHNSON, C.D.; ESQUELA-KERSCHER, A.; STEFANI, G.; BYROM, M.; KELNAR, K.; OVCHARENKO, D.; WILSON, M.; WANG, X.; SHELTON, J.; SHINGARA, J.; CHIN, L.; BROWN, D.; SLACK, F.J. The let-7 microRNA represses cell proliferation pathways in humans cells. Cancer Res., n. 67, v. 16, p. 7713-7722, aug 2007.

JOHNSON, S.M.; GROSSHANS, H.; SHINGARA, J.; BYROM, M.; JARVIS, R.; CHENG, A.; LABOURIER, E.; REINERT, K.L.; BROWN, D.; SLACK, F.J. RAS is regulated by the let-7 microRNA family. Cell., n. 120, v. 5, p. 635-647, mar 2005.

JORDAN, S.D.; KRIEBS, A.; VAUGHAN, M.; DUGLAN, D.; FAN, W.; HENRIKSSON, E.; HUBER, A.L.; PAPP, S.J.; NGUYEN, M.; AFETIAN, M.; DOWNES, M.; YU, R.T.; KRALLI, A.; EVANS, R.M.; LAMIA, K.A. CRY1/2 Selectively Repress PPARδ and Limit Exercise Capacity. Cell Metab., n. 26, v. 1, p. 243-255, jul 2017.

KANG, H.; KHANG, R.; HAM, S.; JEONG, G.R.; KIM, H.; JO, M.; LEE, B.D.; LEE, Y.I.; JO, A.; PARK, C.; KIM, H.; SEO, J.; PAEK, S.H.; LEE, Y.S.; CHOI, J.Y.; LEE, Y.; SHIN, J.H. Activation of the ATF2/CREB-PGC-1α pathway by metformin leads to dopaminergic neuroprotection. Oncotarget., n. 8, v. 30, p, 48603-48618, jul 2017.

KRAS, K.A.; LANGLAIS, P.R.; HOFFMAN, N.; ROUST, L.R.; BENJAMIN, T.R.; DE FILIPPIS, E.A.; DINU, V.; KATSANOS, C.S. Obesity modifies the stoichiometry of mitochondrial proteins in a way that is distinct to the subcellular localization of the mitochondria in skeletal muscle. Metabolism., [s.n], v. 89, p. 18-26, dez 2018.

KUPPUSAMY, K.T.; JONES, D.C.; SPERBER, H.; MADAN, A.; FISCHER, K.A.; RODRIGUEZ, M.L.; PABON, L.; ZHU, W.Z.; TULLOCH, N.L.; YANG, X.; SNIADECKI, N.J.; LAFLAMME, M.A.; RUZZO, W.L.; MURRY, C.E.; RUOHOLA-BAKER, H. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc Natl Acad Sci U S A., n. 112, v. 21, p. 2785-2794, mai 2015.

KURAUTI, M.A.; COSTA-JÚNIOR, J.M.; FERREIRA, S.M.; SANTOS, G.J.; PROTZEK, A.O.; NARDELLI, T.R.; REZENDE, L.F.; BOSCHERO, A.C. Acute exercise restores insulin clearance in diet-induced obese mice. J Endocrinol, n.229, v. 3, p. 221-232, mar 2016. LEE, R.C.; FEIMBAUM, R.L.; AMBROS, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell , n.75, v. 5, p-843-854, 1993.

LEHMANN, S.M., KRUGER, C., PARK, B., DERKOW, K., ROSENBERGER, K., BAUMGART, J., TRIMBUCH, T.,EOM, G., HINZ, M., KAUL, D., HABBEL, P., KALIN, R., FRANZONI, E., RYBAK, A., NGUYEN, D., VEH,R., NINNEMANN, O., PETERS, O., NITSCH, R., HEPPNER, F.L., GOLENBOCK, D., SCHOTT, E.,PLOEGH, H.L., WULCZYN, F.G., LEHNARDT, S. An unconventional role for miRNA:let-7 activates Toll- like receptor 7 and causes neurodegeneration. Nat. Neurosci. n.15, [sv], p. 827–835, 2012.

LIESA, M.; SHIRIHAI, O.S. Mitochondrial dynamics in the regulation of nutriente utilization and energy expenditure. Cell Metab., n. 17, v. 4, p. 491-506, abr 2013.

LIMA, T.I., ARAUJO, H.N., MENEZES, E.S., SPONTON, C.H., ARAÚJO, M.B., BOMFIM, L.H., QUEIROZ, A.L., PASSOS, M.A., E SOUSA, T.A., HIRABARA, S.M., MARTINS, A.R., SAMPAIO, H.C., RODRIGUES, A., CURI, R., CARNEIRO, E.M., BOSCHERO, A.C., SILVEIRA, L.R. Role of microRNAs on the Regulation of Mitochondrial Biogenesis and Insulin Signaling in Skeletal Muscle. J Cell Physiol. n. 232, v. 5, mai 2017. LIU, Y.; COLBY, J.K.; ZUO, X.; JAOUDE, J.; WEI, D.; SHUREIQI, I. The Role of PPAR-δ in Metabolism, Inflammation, and Cancer: Many Characters of a Critical Transcription Factor. Int J Mol Sci., n. 19, v. 11, p. 1-14, out 2018.

LIVAK, K.J.; SCHMITTGEN, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods., n. 25, v. 4, p. 402-408, dec 2001.

MAYR, C.; HEMANN, M.T.; BARTEL, D.P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science., n. 315, v. 5818, p. 1576-1579, mar 2007.

MOORE, K.J.; RAYNER, K.J.; SUÁREZ, Y.; FERNÁNDEZ-HERNANDO, C. microRNAs and cholesterol metabolism. Trends Endocrinol Metab., n. 21, v. 12, p. 699-706, dez 2010. MOSS, E.G.; LEE, R.C.; AMBROS, V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell, n. 88, p. 637– 646, 1997.

MOTTIS, A.; MOUCHIROUD, L.; AUWERX, J. Emerging roles of the corepressors NCoR1 and SMRT in homeostasis. Genes Dev., n. 27, v. 8, p. 819-835, abr 2013.

MOUCHIROUD, L.; EICHNER, L.J,.; SHAW, R.J.; AUWERX, J. Transcriptional coregulators: fine-tuning metabolismo. Cell Metab., n. 20, v. 1, . p. 26-40, jul 2014.

NARKAR, V.A.; DOWNES, M.; YU, R.T.; EMBLER, E.; WANG, Y.X.; BANAYO, E.; MIHAYLOVA, M.M.; NELSON, M.C.; ZOU, Y.; JUGUILON, H.; KANG, H.; SHAW, R.J.; EVANS, R.M. AMPK and PPARdelta agonists are exercise mimetics. Cell., n. 134, v. 3, p. 405-415, aug 2008.

NARKAR, V.A.; FAN, W.; DOWNES, M.; YU, R.T.; JONKER, J.W.; ALAYNICK, W.A.; BANAYO, E.; KARUNASIRI, M.S.; LORCA, S.; EVANS, R.M.Exercise and PGC-1a-

independent synchronization of type I muscle metabolism and vasculature by ERRg. Cell Metabolism, n. 13, v. 3, p. 283-293, mar 2011.

NARUHN, S.; MEISSNER, W.; ADHIKARY, T.; KADDATZ, K.; KLEIN, T.; WATZER, B.; MULLER-BRUSSELBACH, S.; MULLER, R. 15-hydroxyeicosatetraenoic acid is a preferential peroxisome proliferator-activated receptor beta/delta agonist. Mol. Pharmacol., n. 77, v.2, p. 171-184, nov 2010.

NELSON, M.E.; PARKER, B.L.; BURCHFIELD, J.G.; HOFFMAN, N.J.; NEEDHAM, E.J.; COOKE, K.C.; NAIM, T.; SYLOW, L.; LING, N.X.; FRANCIS, D.; NORRIS, D.M.; CHAUDHURI, R.; OAKHILL, J.S.; RICHTER, E.A.; LYNCH, G.S.; STÖCKLI, J.; JAMES, D.E. Phosphoproteomics reveals conserved exercise-stimulated signaling and AMPK regulation of store-operated calcium entry. EMBO J., [s.n], [s.v], [s.p], 2019.

NEMATIAN, S.E.; MAMILLAPALLI, R.; KADAKIA, T.S.; MAJIDI-ZOLBIN, M.; MOUSTAFA, S.; TAYLOR, H.S. Systemic Inflammation Induces by microRNAS: Endometriosis-Derived Alteration in Circulating microRNA 125b-5p and Let-7b-5p Regulate Macrophage Cytokine Production. J Clin Endocrinol Metab., n. 103, v.1, p. 64-74, jan 2018. NEMOTO, S.; FERGUSSON, M. M.; FINKEL, T. SIRT1functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1alpha. J. Biol. Chem. N.280, v. 16, p. 16456–16460, abr 2005.

O'CONNOR, R.S.; MILLS, S.T.; JONES, K.A.; HO, S.N.; PAVLATH, G.K. A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal musclemyogenesis. J Cell Sci., n. 120, v. 1, p. 149-159, jan 2007.

O'NEILL, H.M.; HOLLOWAY, G.P.; STEINBERG, G.R. AMPK regulation of fatty acid metabolism and mitochondrial biogenesis: implications for obesity. Mol Cell Endocrinol., n. 366, v. 2, p. 135-151, fev 2013.

PAULA, F.M.; LEITE, N.C.; VANZELA, E.C.; KURAUTI, M.A.; FREITAS-DIAS, R.; CARNEIRO, E.M.; BOSCHERO, A.C.; ZOPPI, C.C. Exercise increases pancreatic β-cell viability in a model of type 1 diabetes through IL-6 signaling. FASEB J., n.29, v. 5, p. 1805- 1816, mai 2015.

PISKOUNOVA, E.; POLYTARCHOU, C.; THORNTON, J.E.; LAPIERRE, R.J.; POTHOULAKIS, C.; HAGAN, J.P.; ILIOPOULOS, D.; GREGORY, R.I. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell., n. 147, v. 5, p. 1066-1079, nov 2011.

POLESSKAYA, A.; CUVELLIER, S.; NAGUIBNEVA, I.; DUQUET, A.; MOSS, E.G.; HAREL-BELLAN, A. Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes Dev., n. 21, v. 9, p. 1125-1138, mai 2007.

POTES, Y.; PÉREZ-MARTINEZ, Z.; BERMEJO-MILLO, J.C.; RUBIO-GONZALEZ, A.; FERNANDEZ-FERNÁNDEZ, M.; BERMUDEZ, M.; ARCHE, J.M.; SOLANO, J.J.; BOGA, J.A.; OLIVÁN, M.; CABALLERO, B.; VEGA-NAREDO, I.; COTO-MONTES, A. Overweight in the Elderly Induces a Switch in Energy Metabolism that Undermines Muscle Integrity. Aging Dis., n. 10, v. 2, p. 217-230, abr 2019.

PUIGSERVER, P.; WU, Z.; PARK, C.W.; GRAVES, R.; WRIGHT, M.; SPIEGELMAN, B.M. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell., n. 92, v. 6, p. 829-839, mar 1998.

RADOM-AIZIK, S.; ZALDIVAR, F.; HADDAD, F.; COOPER, D.M. Impact of brief exercise on peripheral blood NK cell genes and microRNA expression in young adults. J Appl Physiol (1985)., n. 114, v. 5, p. 628-636, mar 2013.

REINHART, B.J.; SLACK, F.J.; BASSON, M.; PASQUINELLI, A.E.; BETTINGER, J.C.; ROUGVIE, A.E.; HORVITZ, H.R.; RUVKUN, G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature., n. 403, v. 2000, p. 901-906, fev 2000.

ROCHA, M.; ROVIRA-LLOPIS, S.; BAÑULS, C.; BELLOD, L.; FALCON, R.; CASTELLO, R.; MORILLAS, C.; HERANCE, J.R.; HERNANDEZ-MIJARES, A.; VICTOR, V.M. Mitochondrial Dysfunction and Oxidative Stress in Insulin Resistance. Curr Pharm Des., n. 13, v., 32, p. 5730-5741, 2013.

ROUSH, S.; SLACK, F.J. The let-7 family of microRNAs. Trends Cell Biol., n 18, v. 10, p. 505-516, oct 2008.

SCARPULLA, R.C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function, Physiol Rev., n. 88, v. 6, p. 611-638, abr 2008.

SCHOLPA, N.E.; SCHNELLMANN, R.G. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target. J Pharmacol Exp Ther., n. 363, v.3, p. 303-313, dez 2017.

SHEN, L.; CHEN, L.; ZHANG, S.; DU, J.; BAI, L.; ZHANG, Y.; JIANG, Y.; LI, X.; WANG, J.; ZHU, L. MicroRNA-27b Regulates Mitochondria Biogenesis in Myocytes. PLoS One., n. 11, v. 2, p. 148532, fev 2016.

SHUREIQI, I.; JIANG, W.; ZUO, X.; WU, Y.; STIMMEL, J.B.; LEESNITZER, L.M.; MORRIS, J.S.; FAN, H.Z.; FISCHER, S.M.; LIPPMAN, S.M. The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proc. Natl. Acad. Sci. USA, n. 100, v. 17, p. 9968-9973, ago 2003. SHYH-CHANG, N.; ZHU, H.; SOYSA T.Y; SHINODA, G.; SELIGSON, M.T.; TSANOV, K.M,; NGUYEN, L.; ASARA, J.M.; CANTLEY, L.C.; DALEY, G.Q. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell, n. 155, v. 4, p. 778-92, 2013.

SORIANO-ARROQUIA, A.; HOUSE, L.; TREGILGAS, L.; CANTY-LAIRD, E.; GOLJANEK-WHYSALL, K. The functional consequences of age-related changes in microRNA expression in skeletal muscle. Biogerontology , n. 17, v. 3, p. 641-654, jun 2016. SPARKS, L.M.; XIE, H.; KOZA, R.A.; MYNATT, R.; HULVER, M.W.; BRAY, G.A.; SMITH, S.R. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes, n. 54, v. 7, p. 1926-1933, jul 2005. ST-PIERRE, J.; LIN, J.; KRAUSS, S.; TARR, P.T.; YANG, R.; NEWGARD, C.B.; SPIEGELMAN, B.M. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coativators 1 alpha and 1beta (PGC-1alpha e PGC-1beta) in muscles cells. J Biol Chem., n.278, v. 29, p. 26597-26603, jul 2003.

SU, J.L., CHEN, P.S.; JOHANSSON, G.; KUO, M.L. Function and regulation of let-7 family microRNAs. Microrna, n. 1, v.1 , 2012.

SUNG, Y.; JEONG, J.; KANG, R.J.; CHOI, M.; PARK, S.; KWON, W.; LEE, J.; JANG, S.; PARK, S.J.; KIM, S.H.; YI, J.; CHOI, S.K.; LEE, M.H.; LIU, K.; DONG, Z.; RYOO, Z.Y.; KIM, M.O. Lin28a expression protects against streptozotocin-induced β-cell destruction and prevents diabetes in mice. Cell Biochem Funct., n. 37, v. 3, p. 139-147, abr 2019.

VALERIO, A.; CARDILE, A.; COZZI, V.; BRACALE, R.; TEDESCO, L.; PISCONTI, A.; PALOMBA, L.; CANTONI, O.; CLEMENTI, E.; MONCADA, S.; CARRUBA, M.O.; NISOLI, E. TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. The Journal of clinical investigation., n. 116, v. 10, p. 2791- 2798, out 2006.

VIOLLET, B. The energy sensor AMPK: adaptation to exercise, nutritional and hormonal signals. In: Spiegelman B, editor. Hormones, Metabolism and the Benefits of Exercise [internet]. Chamcham: Springer; 2017.

VISWANATHAN, S.R.; DALEY, G.Q.; GREGORY, R.I. Selective blockade of microRNA processing by Lin28. Science., n. 5872, v. 320, p. 97-100, apr 2008.

VISWANATHAN, S.R.; POWERS, J.T.; EINHORN, W.; HOSHIDA, Y.; NG, T.L.; TOFFANIN, S.; O'SULLIVAN, M.; LU, J.; PHILLIPS, L.A.; LOCKHART, V.L.; SHAH, S.P.; TANWAR, P.S.; MERMEL, C.H.; BEROUKHIM, R.; AZAM, M.; TEIXEIRA, J.; MEYERSON, M.; HUGHES, T.P.; LLOVET, J.M.; RADICH, J.; MULLIGHAN, C.G.; GOLUB, T.R.; SORENSEN, P.H.; DALEY, G.Q. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet., n. 41, v. 7, p. 843-848, jul 2009. WANG, D.; LEGESSE-MILLER, A.; JOHNSON, E.L.; COLLER, H.A.Regulation of the let- 7a-3 promoter by NF-κB. PLoS One., n. 7, v. 2, p. 31240, 2012.

WANG, H.; CHEN, Y.; MAO, X.; DU, M. Maternal obesity impairs fetal mitochondriogenesis and brown adipose tissue development partially via upregulation of miR-204-5p. Biochim Biophys Acta Mol Basis Dis., n. 1865, v. 10, p. 2706-2715, out 2019. WANG, L.; WEI, Y.; NING, C.; ZHANG, M.; FAN, P.; LEI, D.; DU, J.; GALE, M.; MA, Y.; YANG, Y. Ellagic acid promotes browning of white adipose tissues in high-fat diet-induced obesity in rats through suppressing white adipocyte maintaining genes. Endocr J., [s.n.], [s.v], [s.p], jul 2019.

WANG, Q.; HU, J.; LIU, Y.; LI, J.; LIU, B.; LI, M.; LOU, S. Aerobic exercise improves synaptic-related proteins of diabetic rats by inhibiting foFOXO1/NF-kB/NRLP3 inflammatory signaling pathway and ameliorating PI3K/AKT Insulin Signaling Pathway. J Mol Neurosci., [s.n], [s.v], [s.p], mai 2019.

XU, H.; LIU, C.; ZHANG, Y.; GUO, X.; LIU, Z.; LUO, Z.; CHANG, Y.; LIU, S.; SUN, Z.; WANG, X. Let-7b-5p regulates proliferation and apoptosis in multiple myeloma by targeting IGF1R. Acta Biochim Biophys Sin (Shanghai)., n. 46. v. 11, p. 965-972, nov 2014.

XU, H.E.; LAMBERT, M.H.; MONTANA, V.G.; PARKS, D.J.; BLANCHARD, S.G.; BROWN, P.J.; STERNBACH, D.D.; LEHMANN, J.M.; WISELY, G.B.; WILLSON, T.M.; KLIEWER, S.A.; MILBURN, M.V. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell., n. 3, v. 3, p. 397-403, mar 1999.

XU, Y., ZHAO, C.; SUN, X.; LIU, Z.; ZHANG, J. MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise. Biochem Biophys Res Commun., n. 467, v. , p.103–108, 2015.

YAMAMOTO, H.; WILLIAMS, E.G.; MOUCHIROUD, L.; CANTÓ, C.; FAN, W.; DOWNES, M.; HÉLIGON, C.; BARISH, G.D.; DESVERGNE, B.; EVANS, R.M.; SCHOONJANS, K.; AUWERX, J. NCoR1 is conserverd physiological modulator of muscle massa and oxidative function. Cell., n. 147, v. 4, p. 827-839, nov 2011.

YANG, Y.; DODBELE, S.; PARK, T.; GLASS, R.; BHAT, K.; SULMAN, E.P.; ZHANG, Y.; ABOUNADER, R. MicroRNA-29a inhibits glioblastoma stem cells and tumor growth by regulating the PDGF pathway. J Neurooncol., [s.n], [s.v], [s.p], set 2019.

ZHANG, F.; CHEN, K.; TAO, H.; KANG, T.; XIONG, Q.; ZENG, Q.; LIU, Y.; JIANG, S.; CHEN, M. miR-25-3p, Positively Regulated by Transcription Factor AP-2α, Regulates the Metabolism of C2C12 Cells by Targeting Akt1. Int J Mol Sci., n. 19, v. 3, [s.p.], mar 2018. ZHANG, Y.; YIN, B.; SHU, B.; LIU, Z.; DING, H.; JIA, C. Differential expression of microRNA Let-7b-5p regulates burn-induced hyperglycemia. Oncotarget., n. 8, v. 42, p. 72886-72892, aug 2017.

ZHAO, Y.; LIU, Y.; LIN, L.; HUANG, Q.; HE, W.; ZHANG, S.; DONG, S.; WEN, Z.; RAO, J.; LIAO, W.; SHI, M. The lncRNA MACC1-1S1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1. Mol Cancer., n. 17, v. 1, p. 69, mar 2018.

ZHENG, S.; LIU, Q.; MA, R.; TAN, D.; SHEN, T.; ZHANG, X.; LU, X. Let-7b-5p inhibits proliferation and motility in squamous cell carcinoma cells through negative modulation of KIAA1377. Cell Biol Int., n. 43. V. 6, p. 634-641, jun 2019.

ZHU, H.; SHYH-CHANG, N.; SEGRÈ, A.V.; SHINODA, G.; SHAH, S.P.; EINHORN, W.S.; TAKEUCHI, A.; ENGREITZ, J.M.; HAGAN, J.P.; KHARAS, M.G.; URBACH, A.; THORNTON, J.E.; TRIBOULET, R.; GREGORY, R.I.; DIAGRAM CONSORTIUM; MAGIC INVESTIGATORS; ALTSHULER, D.; DALEY, G.Q. The Lin28/let-7 axis regulates glucose metabolism. Cell., n. 147, v. 1, p. 81-94, sep 2011.

Documentos relacionados