• Nenhum resultado encontrado

No trabalho de revisão da literatura sobre a importância da castanha-do-brasil na dieta, os dados indicam que quantidade moderada está diretamente envolvida com a proteção contra as DCNT. Atuais estudos e meta-análises sustentam dados que mostram a diminuição dos fatores de risco de doenças metabólicas e cardiovasculares e remissão das já estabelecidas. Estudos sobre a prevenção do câncer são escassos, mas a semente tem mostrado benefício na diminuição de risco do câncer colorretal quando há o envolvimento de polimorfismo genético da SePP1.

Em função da variabilidade dos indivíduos na resposta à suplementação com SeMet, os trabalhos experimentais in vitro mostraram a relevância dos estudos sobre o polimorfismo Val16Ala-SOD2 e o desbalanço S-PH quimicamente induzido no efeito da SeMet purificada e da SeMet associada à matriz química do EACB.

Considerando o polimorfismo Val16Ala-SOD2, no primeiro protocolo in vitro, a SeMet mostrou um efeito nutrigenético expressivo na modulação da expressão das (seleno)enzimas antioxidantes em todos os genótipos da SOD2. Contudo, o efeito da SeMet nas AA-CMSP corrobora a hipótese de Ambrosone et al. (1999) de que frutos e vegetais teriam potencial para diminuir os fatores de risco de câncer de mama no genótipo AA-SOD2, uma vez que a SeMet está disponível em vegetais e em alta concentração nas castanhas-do-brasil.

O segundo protocolo in vitro indicou que a SeMet associada à matriz química do EACB foi capaz de restaurar a homeostasia celular em situação de estresse oxidativo de maneira nutrigenômica nos fibroblastos AA-SO2-like e VV-SO2-like tratados com EACB, uma vez que mostraram diminuição dos parâmetros oxidativos e um mecanismo regulatório sinérgico em relação à expressão gênica das (seleno)enzimas antioxidantes. Por conseguinte, é provável atribuir à castanha-do-brasil um maior efeito nutrigenômico do que a SeMet purificada.

Apesar das limitações metodológicas das investigações in vitro, os autores sugerem a realização de mais investigações para avaliar o potencial efeito quimiopreventivo/ quimioprotetivo do EACB em células tumorais. Adicionalmente, nossos resultados sugerem a plausível extrapolação em estudos in vivo para confirmar os potenciais benefícios baseados na inclusão da castanha-do-brasil na dieta, considerando o polimorfismo humano Val16Ala-SOD2.

REFERÊNCIAS

ALASALVAR, C.; BOLLING, B. W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. The British Journal of Nutrition, v. 113 Suppl, n. S2, p. S68-78, apr. 2015.

ALGARVE, T. D. et al. In vitro effects of Ala16Val manganese superoxide dismutase gene polymorphism on human white blood cells exposed to methylmercury.

Genetics and Molecular Research, v. 12, n. 4, p. 5134-5144, 2013.

AMBROSONE, C. B. et al. Manganese Superoxide Dismutase ( MnSOD ) Genetic Polymorphisms, Dietary Antioxidants, and Risk of Breast Cancer. Cancer Research, v. 59, p. 602-606, 1999.

AUNE, D. et al. Nut consumption and risk of cardiovascular disease, cancer, all- cause and cause-specific mortality: a systematic review and dose-response meta- analysis of prospective studies. British Medical Journal, p. 1-14, 2016.

BARBISAN, F. et al. Methotrexate-related response on human peripheral blood mononuclear cells may be modulated by the Ala16Val-SOD2 gene polymorphism. PLoS ONE, v. 9, n. 10, p. 1-11, 2014.

BARREIROS, A. L. B. S.; DAVID, J. M. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Química Nova, v. 29, n. 1, p. 113-123, 2006.

BAUER, G. Tumor cell-protective catalase as a novel target for rational therapeutic approaches based on specific intercellular ROS signaling. Anticancer Research, v. 32, n. 7, p. 2599-2624, 2012.

BINDOLI, A.; RIGOBELLO, M. P. Principles in redox signaling: from chemistry to functional significance. Antioxidant Redox Signaling, v. 18, n. 13, p. 1557-1593, 2013.

BJÖRNSTEDT, M. et al. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. The Journal of biological chemistry, v. 270, n. 20, p. 11761-11764, 1995.

BLUM, J.; FRIDOVICH, I. Inactivation of glutathione peroxidase by superoxide radical. Archives of Biochemistry and Biophysics, v. 240, n. 2, p. 500-508, 1985. BRAICU, C. et al. Nutrigenomics in cancer: revisiting the effects of natural

compounds. Seminars in Cancer Biology, 2017.

BRASIL. Resolução ANVISA/MS RDC no 269, de 22 setembro de 2005.

Regulamento Técnico Sobre Ingestão Diária Recomendada (IDR) Para Proteína, Vitaminas e Minerais. Diário Oficial da União, Brasília, DF, 2005.

BRESCIANI, G. et al. The MnSOD Ala16Val SNP: relevance to human diseases and interaction with environmental factors. Free Radical Research, v. 47, n. 10, p. 781- 792, 2013.

BRIGELIUS-FLOHÉ, R. et al. The Yin and Yang of Nrf2-regulated selenoproteins in carcinogenesis. International Journal of Cell Biology, v. 2012, 2012.

BRIGELIUS-FLOHÉ, R.; FLOHÉ, L. Basic Principles and Emerging Concepts in the Redox Control of Transcription Factors. Antioxidants and Redox Signaling, v. 15, n. 8, p. 2335-2381, 2011.

BULTEAU, A.; CHAVATTE, L. Update on selenoprotein biosynthesis. Antioxidants and Redox Signaling, n. June 2017, p. 1-59, 2015.

CAPELETO, D. et al. The anti-inflammatory effects of resveratrol on human

peripheral blood mononuclear cells are influenced by a superoxide dismutase 2 gene polymorphism. Biogerontology, v. 16, n. 5, p. 621-630, 2015.

CARDARELLI, H. R.; DE OLIVEIRA, A. J. Conservation of Brazil nut extract. Scientia Agricola, v. 57, n. 4, p. 617-622, 2000.

CARDOSO, B. R. et al. Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial. European Journal of Nutrition, v. 55, n. 1, p. 107-116, 2016. CEBULA, M.; SCHMIDT, E. E.; ARNÉR, E. S. J. TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxidants and Redox Signaling, v. 23, n. 10, p. 823-853, 2015.

CHANG, J. C. et al. Selenium content of Brazil nuts from two geographic locations in Brazil. Chemosphere, v. 30, n. 4, p. 801-802, 1995.

CHANG, Y.; LI, H.; GUO, Z. Mesenchymal stem cell-like properties in fibroblasts. Cellular Physiology and Biochemistry, v. 34, n. 3, p. 703-714, 2014.

CIRCU, M. L.; YEE AW, T. Glutathione and apoptosis. Free Radical Research, v. 42, n. 8, p. 689-706, 7 jan. 2008.

COSTA, F. et al. Influence of Val16Ala SOD2 polymorphism on the in-vitro effect of clomiphene citrate in oxidative metabolism. Reproductive BioMedicine Online, v. 24, n. 4, p. 474-481, 2012.

DEL GOBBO, L. C. et al. Effects of tree nuts on blood lipids, lipoproteins, and blood pressure: Meta-analysis and dose-response of 61 trials. The American Journal of Clinical Nutrition, v. 102, p. 1347-1356, 2015.

FAO/WHO/2001. Human Vitamin and Mineral Requirements. In: Report 7th Joint FAO/WHO Expert Consultation. Bangkok, Thailand, 2001.

FENECH, M. Genome health nutrigenomics and nutrigenetics - diagnosis and

nutritional treatment of genome damage on an individual basis. Food and Chemical Toxicology, v. 46, n. 4, p. 1365-1370, 2008.

FLOEN, M. J. et al. Thioredoxin-1 redox signaling regulates cell survival in response to hyperoxia. Free Radical Biology and Medicine, v. 75, n. 605, p. 167-177, 2014.

FLOHÉ, L. The labour pains of biochemical selenology: The history of selenoprotein biosynthesis. Biochimica et Biophysica Acta - General Subjects, v. 1790, n. 11, p. 1389-1403, 2009.

FLOHÉ, L. et al. A comparison of thiol peroxidase mechanisms. Antioxidants and Redox Signaling, v. 15, n. 3, p. 763-780, 2011.

GANTHER, H. E. Selenium metabolism, selenoproteins and mechanisms of cancer prevention: Complexities with thioredoxin reductase. Carcinogenesis, v. 20, n. 9, p. 1657-1666, 1999.

GROSSO, G. et al. Nut consumption on all-cause , cardiovascular , and cancer mortality risk : a systematic review and meta-analysis of epidemiologic studies 1 – 4. American Journal of Clinical Nutrition, v. 101, p. 783-793, 2015.

HALLIWELL, B.; WHITEMAN, M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? British Journal of Pharmacology, v. 142, n. 2, p. 231-255, 2004.

HARRIS, I. S. et al. Glutathione and Thioredoxin Antioxidant Pathways Synergize to Drive Cancer Initiation and Progression. Cancer Cell, v. 27, n. 2, p. 211-222, 2015. HU, Y. et al. Supplementation with Brazil nuts and green tea extract regulates

targeted biomarkers related to colorectal cancer risk in humans. British Journal of Nutrition, v. 116, n. 11, 2016.

HUANG, T. T. et al. Superoxide-mediated cytotoxicity in superoxide dismutase- deficient fetal fibroblasts. Archives of Biochemistry and Biophysics, v. 344, n. 2, p. 424-432, 1997.

HUGUENIN, G. V. B. et al. Improvement of antioxidant status after Brazil nut intake in hypertensive and dyslipidemic subjects. Nutrition Journal, v. 14, n. 1, p. 54, jan. 2015.

INCA. Ministério da Saúde – Instituto Nacional do Câncer – Números. Disponível em: <http://www2.inca.gov.br/wps/wcm/connect/tiposdecancer/site/home/mama/canc er_mama>. Acesso em: 18 jun. 2017.

______. Ministério da Saúde – Instituto Nacional do Câncer – Números. Disponível em:<http://www2.inca.gov.br/wps/wcm/connect/tiposdecancer/site/home/ perostata>. Acesso em: 18 jun. 2017.

______. Ministério da Saúde – Instituto Nacional do Câncer – Números. Disponível em: <http://www2.inca.gov.br/wps/wcm/connect/tiposdecancer/site/home/colorretal. Acesso em: 18 jun. 2017.

______. Ministério da Saúde – Instituto Nacional do Câncer – Números. Disponível em: <http://www2.inca.gov.br/wps/wcm/connect/tiposdecancer/site/home/estomago. Acesso em: 18 jun. 2017.

INOUE, H.; TANI, K. Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death and Differentiation, v. 21, n. 1, p. 39-49, 2014.

IP, C.; LISK, D. J. Bioactivity of selenium from Brazil nut for cancer prevention and selenoenzyme maintenance. Nutrition and Cancer, v. 21, n. 3, p. 203-212, 1994. JAIN, V. K.; TURNER, N. C. Challenges and opportunities in the targeting of

fibroblast growth factor receptors in breast cancer. Breast Cancer Research, v. 14, n. 3, p. 208, 2012.

JARIWALLA, R. J.; GANGAPURKAR, B.; NAKAMURA, D. Differential sensitivity of various human tumour-derived cell types to apoptosis by organic derivatives of selenium. The British Journal of nutrition, v. 101, n. 2, p. 182-189, 2009. JEET, G. et al. Community health workers for non-communicable diseases

prevention and control in developing countries: Evidence and implications. PloS one, v. 12, n. 7, p. e0180640, 2017.

JOHN, J. A.; SHAHIDI, F. Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). Journal of Functional Foods, v. 2, n. 3, 2010.

KUPPUSAMY, U. R. et al. Antioxidant enzyme activities of human peripheral blood mononuclear cells exposed to trace elements. Biological Trace Element Research, v. 106, n. 1, p. 29-40, 2005.

LARABEE, J. L.; HOCKER, J. R.; HANAS, J. S. Mechanisms of inhibition of zinc- finger transcription factors by selenium compounds ebselen and selenite. Journal of Inorganic Biochemistry, v. 103, n. 3, p. 419-426, 2009.

LAZARD, M. et al. Trans-sulfuration pathway seleno-amino acids are mediators of selenomethionine toxicity in Saccharomyces cerevisiae. Journal of Biological Chemistry, v. 290, n. 17, p. 10741-10750, 2015.

LILLIG, C. H.; BERNDT, C.; HOLMGREN, A. Glutaredoxin systems. Biochimica et Biophysica Acta - General Subjects, v. 1780, n. 11, p. 1304-1317, 2008.

LÜ, J. et al. Cancer chemoprevention research with selenium in the post-SELECT era: Promises and challenges. Nutrition and Cancer, v. 68, n. 1, p. 1-17, 2016. LU, J.; HOLMGREN, A. Selenoproteins. The Journal of Biological Chemistry, v. 284, n. 2, p. 723-727, 9 jan. 2009.

LU, J.; HOLMGREN, A. Thioredoxin System in Cell Death Progression. Antioxidants and Redox Signaling, v. 17, n. 12, p. 1738-1747, 2012.

LU, J.; HOLMGREN, A. The thioredoxin antioxidant system. Free Radical Biology and Medicine, v. 66, p. 75-87, 2014.

MORI, S. A.; PRANCE, G. T. Taxonomy, Ecology, and Economic Botany of the Brazil Nut (Bertholletia excelsa Humb. & Bonpl.: Lecythidaceae). Advances in Economic Botany, v. 8, p. 130-150,1990.

NASCIMENTO, V. et al. Synthesis and biological evaluation of new nitrogen- containing diselenides. European Journal of Medicinal Chemistry, v. 87, p. 131- 139, 2014.

NÉMETH, A. et al. The relationship of selenium tolerance and speciation in Lecythidaceae species. M ll  : Integrated Biometal Science, v. 5, n. 12, p. 1663–1673, 2013.

O’NEIL, C. E.; FULGONI, V. L.; NICKLAS, T. A. Tree Nut consumption is associated with better adiposity measures and cardiovascular and metabolic syndrome health risk factors in U.S. Adults: NHANES 2005-2010. Nutrition journal, v. 14, p. 64, 2015.

OTTEN, J. J.; HELLWIG, J. P.; MEYERS, L. D. IOM (INSTITUTE OF MEDICINE). Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Washington, DC: The National Academies Press, 2006. 1326 p.

PAPP, L. V. et al. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxidants and Redox Signaling, v. 9, n. 7, p. 775-806, 2007. PARK, H.-S. et al. Selenite Inhibits the c-Jun N-terminal Kinase/Stress-activated Protein Kinase (JNK/SAPK) through a Thiol Redox Mechanism. The Journal of Biological Chemistry, v. 275, n. 4, p. 2527-2531, 2000.

PARK, S. O. et al. Effects of combination therapy of docetaxel with selenium on the human breast cancer cell lines MDA-MB-231 and MCF-7. Annals of Surgical Treatment and Research, v. 88, n. 2, p. 55-62, 2015.

PROSKURYAKOV, S. Y.; KONOPLYANNIKOV, A. G.; GABAI, V. L. Necrosis: A specific form of programmed cell death? Experimental Cell Research, v. 283, n. 1, p. 1-16, 2003.

REDMAN, C. et al. Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Letters, v. 125, n. 1-2, p. 103-110, 1998. RIEDL, S. J.; SALVESEN, G. S. The apoptosome: signalling platform of cell death. Nature Reviews. Molecular Cell Biology, v. 8, n. 5, p. 405-413, 2007.

RODRIGO, R.; MIRANDA, A.; VERGARA, L. Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clinica Chimica Acta, v. 412, n. 5- 6, p. 410-424, 2011.

ROMAN, M.; JITARU, P.; BARBANTE, C. Selenium biochemistry and its role for human health. M ll  : I g B l S , v. 6, n. 1, p. 25-54, 2014.

SAFA, A. R. Roles of c-FLIP in Apoptosis, Necroptosis, and Autophagy. Journal of Carcinogenesis and Mutagenesis, v. 76, n. 3-5, p. 211-220, 25 jul. 2013.

SHELLY, C.; LU. Glutathione Synthesis. Biochimica et Biophysica Acta, v. 1830, n. 5, p. 3143-3153, 2013.

SHIMIZU, N.; KOBAYASHIS, K.; HAYASHI, K. The Reaction of Superoxide Radical with Catalase. The Journal of Biological Chemistry, v. 259, n. 7, p. 4414-4418, 1984.

SHIMODA-MATSUBAYASHI, S. et al. Structural Dimorphism in the Mitochondrial Targeting Sequence in the Human Manganese Superoxide Dismutase Gene. A Predictive Evidence for Conformational Change to Influence Mitochondrial Transport and a Study of Allelic Association in Parkinson’s Disease. Biochemical and

Biophysical Research Communications. v. 226, p. 561-565, 1996.

SPALLHOLZ, J. E.; PALACE, V. P.; REID, T. W. Methioninase and selenomethionine but not Se-methylselenocysteine generate methylselenol and superoxide in an in vitro chemiluminescent assay: Implications for the nutritional carcinostatic activity of selenoamino acids. Biochemical Pharmacology, v. 67, n. 3, p. 547-554, 2004. STOYTCHEVA, Z. R.; BERRY, M. J. Transcriptional regulation of mammalian selenoprotein expression. Biochimica et Biophysica Acta - General Subjects, v. 1790, n. 11, p. 1429-1440, 2009.

SUTTON, A. et al. The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics, v. 13, n. 3, p. 145-157, 2003.

SUZUKI, Y. J.; CARINI, M.; BUTTERFIELD, D. A. Protein carbonylation. Antioxidants and Redox Signaling, v. 12, n. 3, p. 323-325, 2010.

VEAL, E. A.; DAY, A. M.; MORGAN, B. A. Hydrogen Peroxide Sensing and Signaling. Molecular Cell, v. 26, n. 1, p. 1-14, 2007.

WHO/2013. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013-2020. Disponível em: <http://apps.who.int/iris/bitstream/10665/9 4384/1/9789241506236_eng.pdf?ua=1 >. Acesso em: 18 jun. 2017.

WROBEL, J. K.; POWER, R.; TOBOREK, M. Biological activity of selenium: Revisited. IUBMB Life, v. 68, n. 2, p. 97-105, 2016.

WU, J. et al. The effect of selenium, as selenomethionine, on genome stability and cytotoxicity in human lymphocytes measured using the cytokinesis-block

micronucleus cytome assay. Mutagenesis, v. 24, n. 3, p. 225-232, 2009.

XU, G.; SHI, Y. Apoptosis signaling pathways and lymphocyte homeostasis. Cell Research, v. 17, n. 9, p. 759-771, 2007.

YANG, J. Brazil nuts and associated health benefits: A review. LWT - Food Science and Technology, v. 42, n. 10, p. 1573-1580, 2009.

YILMAZ, Y.; TOLEDO, R. T. Major Flavonoids in Grape Seeds and Skins : Antioxidant Capacity of Catechin , Epicatechin , and Gallic Acid. Journal of Agricultural and Food Chemistry, v. 52, p. 255-260, 2004.

ZENG, H. Selenium as an Essential Micronutrient: Roles in Cell Cycle and Apoptosis. Molecules, v. 14, p. 1263-1278, 2009.

ZHANG, J. et al. Targeting the Thioredoxin System for Cancer Therapy. Trends in Pharmacological Sciences, v. 38, n. 9, p. 794-808, 2017.

Documentos relacionados