• Nenhum resultado encontrado

Com base nos resultados obtidos pode-se concluir que o procedimento de fosforilação de dextranas pode ser realizado de forma simples, utilizando um procedimento de baixo custo, além de não alterar a massa molecular das dextranas após a modificação, e assim como as dextranas nativas, apresentam- se livres de contaminantes de origem proteica ou fenólica. Nota-se também, que independente da massa molecular ou da presença da fosforilação, nenhuma das dextranas avaliadas possui potencial anticoagulante como uma possível efeito indesejado ligado a hemorragia. Quanto ao potencial antioxidante, verificou-se que a atividade das dextranas aumenta com o aumento da massa molecular ou presença de fosforilação, como observado nos ensaios de sequestro de radicais, inibição da peroxidação lipídica e quelação de metais. Porém em outro ela pode diminuir ou não ter correlação com a massa da dextrana ou com a fosforilação, como observado nos teste que avaliam a capacidade doadoras de elétrons. O destaque entre as dextranas nativas foi D40, que apresentou atividade antioxidante na maioria dos testes e mostrou maior atividade inibitória da peroxidação lipídica por ter uma maior capacidade de sequestrar o peroxido de hidrogênio em comparação com as demais dextranas, bem como, foi a única dextrana nativa com atividade imunomoduladora. Dentre as dextranas fosforiladas, P147 provou ser quelante de íons ferro e cobre, além de aumentar o triplo da liberação de NO na ausência e na presença de LPS. Os dados indicam que dextranas com massa aproximada de 40 kDa são as ideais para serem utilizadas como antioxidantes, pois além de não serem citotóxicas, possuem a capacidade de neutralizar várias espécies reativas em diferentes ambientes químicos, passíveis ainda de serem facilmente fosforiladas em vista de potencializar uma de suas atividades, surgindo como possíveis substituintes dos antioxidantes sintéticos utilizados comercialmente. Contudo, estudos futuros com D40 e outras dextranas de massa semelhante confirmarão esta hipótese.

Referências

ALMEIDA-LIMA, J. et al. Evaluating the possible genotoxic, mutagenic and tumor cell proliferation-inhibition effects of a non-anticoagulant, but antithrombotic algal heterofucan. Journal of Applied Toxicology, v. 30, n. 7, p. 708–715, 2010. ALVES, M. G. C. F. et al. Antioxidant, cytotoxic and hemolytic effects of sulfated galactans from edible red alga Hypnea musciformis. Journal of Applied

Phycology, v. 24, n. 1967, p. 1217–1227, 2012.

ALVES, M. G. DAS C. F. et al. Extraction process optimization of sulfated galactan-rich fractions from Hypnea musciformis in order to obtain antioxidant, anticoagulant, or immunomodulatory polysaccharides. Journal of Applied

Phycology, 2015.

AMAN, A.; SIDDIQUI, N. N.; QADER, S. A. U. Characterization and potential applications of high molecular weight dextran produced by Leuconostoc

mesenteroides AA1. Carbohydrate Polymers, v. 87, n. 1, p. 910–915, 2012. BADEL, S.; BERNARDI, T.; MICHAUD, P. New perspectives for Lactobacilli exopolysaccharides. Biotechnology Advances, v. 29, n. 1, p. 54–66, 2011. BARDAGE, S. L.; BJURMAN, J. Isolation of an Aureobasidium pullulans polysaccharide that promotes adhesion of blastospores to water-borne paints.

Canadian Journal of Microbiology, v. 44, p. 954–958, 1998.

BARTOSZ, G. Total antioxidant capacity. ADVANCES IN CLINICAL

CHEMISTRY, v. 37, p. 2423, 2003.

BEHRAVAN, J.; BAZZAZ, B. S. F.; SALIMI, Z. Optimization of dextran production by Leuconostoc mesenteroides NRRL B-512 using cheap and local sources of carbohydrate and nitrogen. Biotechnology and applied biochemistry, v. 38, n. Pt 3, p. 267–9, 2003.

BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.

Analytical biochemistry, v. 72, p. 248–254, 1976.

BROWN, G. D.; GORDON, S. Fungal beta-glucans and mammalian immunity.

Immunity, v. 19, n. 3, p. 311–315, 2003.

CAMARA, R. B. G. et al. Heterofucans from the brown seaweed Canistrocarpus

cervicornis with anticoagulant and antioxidant activities. Marine Drugs, v. 9, n. 1, p. 124–138, 2011.

CHAN, G. C.-F.; CHAN, W. K.; SZE, D. M.-Y. The effects of beta-glucan on human immune and cancer cells. Journal of hematology & oncology, v. 2, p. 25, 2009.

CHANDLER, S. F.; DODDS, J. H. The effect of phosphate, nitrogen and sucrose on the production of phenolic and solasodine in callus cultures of Solanum

laciniatum. Plant Cell Reports, v. 2, p. 205–208, 1983.

CHANG, Y. J. et al. Structural and biological characterization of sulfated- derivatized oat beta-glucan. Journal of agricultural and food chemistry, v. 54, n. 11, p. 3815–8, 2006.

CHEN, T. et al. Synthesis and antioxidant activity of phosphorylated polysaccharide from Portulaca oleracea L. with H3PW12O40 immobilized on polyamine functionalized polystyrene bead as catalyst. Journal of Molecular

Catalysis A: Chemical, v. 342-343, p. 74–82, 2011.

CHEN, X. et al. Chain conformation and anti-tumor activities of phosphorylated (1- 3)-beta-d-glucan from Poria cocos. Carbohydrate Polymers, v. 78, n. 3, p. 581–587, 2009.

CHOMA, A.; KOMANIECKA, I. Characterization of cyclic β-glucans of Bradyrhizobium by MALDI-TOF mass spectrometry. Carbohydrate Research, v. 346, n. 13, p. 1945–1950, 2011.

DACE, R. et al. Comparison of the anticoagulant action of sulfated and phosphorylated polysaccharides. Thrombosis Research, v. 87, n. 1, p. 113– 121, 1997.

DAPKEVICIUS, A. et al. Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania. Journal of

the Science of Food and Agriculture, v. 77, p. 140–146, 1998.

DENG, C. et al. Chemical analysis and antioxidant activity in vitro of a ??-d- glucan isolated from Dictyophora indusiata. International Journal of Biological

Macromolecules, v. 51, n. 1-2, p. 70–75, 2012.

DENG, C. et al. Physiochemical and biological properties of phosphorylated polysaccharides from Dictyophora indusiata. International journal of biological

macromolecules, v. 72C, p. 894–899, 2014.

DEVI, K. S. P. et al. Characterization and lectin microarray of an immunomodulatory heteroglucan from Pleurotus ostreatus mycelia.

Carbohydrate Polymers, v. 94, n. 2, p. 857–865, 2013.

DUBOIS, M. et al. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, v. 28, p. 350–356, 1956.

ESA, F.; TASIRIN, S. M.; RAHMAN, N. A. Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia, v. 2, p. 113–119, 2014.

FALCONER, D. J.; MUKERJEA, R.; ROBYT, J. F. Biosynthesis of dextrans with different molecular weights by selecting the concentration of Leuconostoc

mesenteroides B-512FMC dextransucrase, the sucrose concentration, and the temperature. Carbohydrate Research, v. 346, n. 2, p. 280–284, 2011.

FERNANDES QUEIROZ, M. et al. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Marine Drugs, v. 13, n. 1, p. 141–158, 2014. FERREIRA, I. C. F. R. et al. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry, v. 114, p. 38–55, 2014.

FREITAS, F.; ALVES, V. D.; REIS, M. A M. Advances in bacterial exopolysaccharides: From production to biotechnological applications. Trends in

Biotechnology, v. 29, n. 8, p. 388–398, 2011.

GAO, T. et al. Antioxidant and immunological activities of water-soluble polysaccharides from Aconitum kusnezoffii Reichb. International Journal of

Biological Macromolecules, v. 49, n. 4, p. 580–586, 2011.

GIAVASIS, I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Current Opinion in Biotechnology, v. 26, p. 162– 173, 2014.

GIESE, E. C. et al. Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-D-glucans. International journal of

biological macromolecules, v. 72, p. 125–30, 2015.

HAN-DAN, R.; CHUAN-REN, D.; HONG, L. The Effects of Normovolemic

Hemodilution with Dextran-40 on Acute Myocardial Ischemia / Reperfusion Injury in Rabbits. Journal of Tongji Medical University, v. 12, n. 1, p. 23–27, 1992. HASSAN, S. et al. Improvement of lipid profile and antioxidant of hypercholesterolemic albino rats by polysaccharides extracted from the green alga Ulva lactuca Linnaeus. Saudi Journal of Biological Sciences, v. 18, n. 4, p. 333–340, 2011.

HONG, J.-H.; JUNG, H. K. Antioxidant and antitumor activities of β-glucan-rich exopolysaccharides with different molecular weight from Paenibacillus polymyxa JB115. Journal of the Korean Society for Applied Biological Chemistry, v. 57, n. 1, p. 105–112, 2014.

HONG, L. et al. Antioxidant and immunomodulatory effects of a α-glucan from fruit body of maitake (Grifola frondosa ). Food and Agricultural Immunology, v. 24, n. 4, p. 409–418, 2013.

INOUE, K. et al. Chemical Modification And Antitumor Activity Of A D-manno-α- D-glucan from Microellobosporiaa grisea. Carbohydrate Research, v. 115, p. 199–208, 1983.

ITO, N.; FUKUSHIMA, S.; TSUDA, H. Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Critical reviews in

toxicology, v. 15, n. 2, p. 109–50, 1985.

KADAM, S. U. et al. Laminarin from Irish Brown Seaweeds Ascophyllum

nodosum and Laminaria hyperborea: Ultrasound Assisted Extraction, Characterization and Bioactivity. Marine Drugs, v. 13, p. 4270–4280, 2015. KAGIMURA, F. Y. et al. Biological activities of derivatized d-glucans: A review.

International journal of biological macromolecules, v. 72C, p. 588–598, 2014. KANNER, J. et al. Initiation of lipid peroxidation in biological systems. C R C

Critical Reviews in Food Science and Nutrition, v. 25, n. 4, p. 317–364, 1987. KATO, T. Solution properties and chain flexibility of pullulan in aqueous solution.

Biopolymers, v. 21, n. 8, p. 1623–1633, 1982.

KAYALI, H. et al. The antioxidant effect of beta-Glucan on oxidative stress status in experimental spinal cord injury in rats. Neurosurgical review, v. 28, n. 4, p. 298–302, 2005.

KESHK, S. M. Bacterial Cellulose Production and its Industrial Applications.

Journal of Bioprocessing & Biotechniques, v. 04, n. 02, p. 1–10, 2014. KIHO, T. et al. (1→3)-α-D-glucan from an alkaline extract of Agrocybe

cyfindrucea, and antitumor activity of its O-(carboxymethyl)ated derivatives.

Carbohydrate research, v. 189, p. 273–279, 1989.

KIM, D.; ROBYT, J. F. Properties of Leuconostoc mesenteroides B-512FMC constitutive dextransucrase. Enzyme and microbial technology, v. 16, n. 12, p. 1010–5, 1994.

KIM, S. K.; WIJESEKARA, I. Development and biological activities of marine- derived bioactive peptides: A review. Journal of Functional Foods, v. 2, n. 1, p. 1–9, 2010.

KOZARSKI, M. et al. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus

brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chemistry, v. 129, n. 4, p. 1667–1675, 2011.

KUMAR, S.; PANDEY, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. Hindawi Publishing Corporation, v. 2013, p. 1–16, 2013.

LEE, K. B. et al. Anticoagulant activity of sulfoalkyl derivatives of curdlan. Arch

Pharm Res, v. 24, n. 2, p. 109–113, 2001.

LI, S. et al. Molecular modification of polysaccharides and resulting bioactivities.

Comprehensive Reviews in Food Science and Food Safety, v. 0, p. n/a–n/a, 2015.

LIN, S.-P. P. et al. Biosynthesis, production and applications of bacterial cellulose. Cellulose, v. 20, n. 5, p. 2191–2219, 2013.

LIU, W. et al. Characterization and antioxidant activity of two low-molecular- weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum.

International Journal of Biological Macromolecules, v. 46, n. 4, p. 451–457, 2010.

MA, L. et al. Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus. Carbohydrate Polymers, v. 89, n. 2, p. 371– 378, 2012.

MAGALHAES, K. D. et al. Anticoagulant, Antioxidant and Antitumor Activities of Heterofucans from the Seaweed Dictyopteris delicatula. International Journal

of Molecular Sciences, v. 12, n. 12, p. 3352–3365, 2011.

MAITY, P. et al. Structural, immunological, and antioxidant studies of β-glucan from edible mushroom Entoloma lividoalbum. Carbohydrate Polymers, v. 123, p. 350–358, 2015.

MANDAL, E. K. et al. Chemical analysis of an immunostimulating (1→4)-, (1→6)- branched glucan from an edible mushroom, Calocybe indica. Carbohydrate

research, v. 347, n. 1, p. 172–7, 2012.

MARTINICHEN-HERRERO, J. C. et al. Anticoagulant and antithrombotic activity of a sulfate obtained from a glucan component of the lichen Parmotrema

mantiqueirense Hale. Carbohydrate Polymers, v. 60, p. 7–13, 2005.

MCINTOSH, M.; STONE, B. A.; STANISICH, V. A. Curdlan and other bacterial (1→3)-β-d-glucans. Applied Microbiology and Biotechnology, v. 68, n. 2, p. 163–173, 2005.

MCNAMARA, J. T.; MORGAN, J. L. W.; ZIMMER, J. A Molecular description of cellulose biosynthesis. Annual Review of Biochemistry, v. 84, n. 1, p. 895–921, 2015.

MELO-SILVEIRA, R. et al. Antioxidant and antiproliferative activities of methanolic extract from a neglected agricultural product: corn cobs. Molecules, v. 19, n. 4, p. 5360–5378, 2014.

MELO-SILVEIRA, R. F. et al. In vitro antioxidant, anticoagulant and antimicrobial activity and in inhibition of cancer cell proliferation by xylan extracted from corn cobs. International Journal of Molecular Sciences, v. 13, n. 1, p. 409–426, 2012.

NAESSENS, M. et al. Leuconostoc dextransucrase and dextran: Production, properties and applications. Journal of Chemical Technology and

NAGASAWA, C. et al. Oral administration of phosphorylated dextran regulates immune response in ovalbumin-Lmmunized mice. Asian-Australasian Journal

of Animal Sciences, v. 23, n. 1, p. 106–115, 2010.

NWORU, C. S. et al. Immunomodulatory and immunorestorative activities of β- D-glucan-rich extract and polysaccharide fraction of mushroom , Pleurutus

tuberregium. Pharmaceutical Biology, v. 00, n. 00, p. 1–12, 2015.

PASQUI, D. et al. A new phosphorylated polysaccharide for biomedical applications: generation of 3D scaffolds with osteogenic activity and coating of titanium oxide surfaces. Macromolecular Symposia, v. 266, n. 1, p. 23–29, 2008.

PEREIRA, M. S.; MELO, F. R.; MOURÃO, P. A S. Is there a correlation between structure and anticoagulant action of sulfated galactans and sulfated fucans?

Glycobiology, v. 12, n. 10, p. 573–580, 2002.

PÉREZ, S.; BERTOFT, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review.

Starch/Staerke, v. 62, n. 8, p. 389–420, 2010.

RAMANA, K. V; SRIVASTAVA, S.; SINGHAL, S. S. Lipid peroxidation products in human health and disease 2014. Oxidative Medicine and Cellular

Longevity, v. 2013, p. 3, 2013.

REHM, B. H. A. Bacterial polymers: biosynthesis, modifications and applications.

Nature Reviews Microbiology, v. 8, n. 8, p. 578–592, 2010.

ROACH, P. J. et al. Glycogen and its metabolism: some new developments and old themes. Biochemical Journal, v. 441, n. 3, p. 763–787, 2012.

ROCHA, H. A O. et al. Structural and hemostatic activities of a sulfated galactofucan from the brown alga Spagtoglossum schroederi: An ideal antithrombotic agent? Journal of Biological Chemistry, v. 280, n. 50, p. 41278– 41288, 2005.

ROUT, D. et al. Chemical analysis of a new (1→3)-, (1→6)-branched glucan from an edible mushroom, Pleurotus florida. Carbohydrate research, v. 340, n. 16, p. 2533–9, 2005.

SATO, T. et al. Dextran from Leuconostoc mesenteroides augments immunostimulatory effects by the introduction of phosphate groups. Journal of

Food Protection, v. 67, n. 8, p. 1719–1724, 2004.

SHENG, J. W. Preparation and antioxidant activity of Athyrium multidentatum ( Doll .) Ching polysaccharide derivatives. Journal of Chemical and

SHUKLA, R. et al. Structural characterization of insoluble dextran produced by

Leuconostoc mesenteroides NRRL B-1149 in the presence of maltose. Food

Technology and Biotechnology, v. 49, n. 3, p. 291–296, 2011.

SILVA, J. M. C. et al. Biological activities of the sulfated polysaccharide from the vascular plant Halodule wrightii. Revista Brasileira de Farmacognosia, v. 22, n. 1, p. 94–101, 2012.

SOUZA, B. W. S. et al. Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food

Hydrocolloids, v. 27, n. 2, p. 287–292, 2012.

SOUZA, N. L. et al. Functional, thermal and rheological properties of oat β-glucan modified by acetylation. Food Chemistry, v. 178, p. 243–250, 2015.

SROKA, Z.; CISOWSKI, W. Hydrogen peroxide scavenging, antioxidant and anti- radical activity of some phenolic acids. Food and Chemical Toxicology, v. 41, n. 6, p. 753–758, 2003.

STRICKLAND, J. D. H.; PARSON, T. R. A manual of sea water analysis. [s.l: s.n.].

SUÁREZ, E. R.; KRALOVEC, J. A; GRINDLEY, T. B. Isolation of phosphorylated polysaccharides from algae: the immunostimulatory principle of Chlorella

pyrenoidosa. Carbohydrate research, v. 345, n. 9, p. 1190–204, 2010.

SUFLET, D. M.; CHITANU, G. C.; DESBRIRES, J. Phosphorylated polysaccharides. 2. Synthesis and properties of phosphorylated dextran.

Carbohydrate Polymers, v. 82, n. 4, p. 1271–1277, 2010.

SUZUKI, F. et al. Effect of the Interferon Inducer, Dextran Phosphate, on Influenza Virus Infection in Mice’ (38960). PROCEEDINGS OF THE SOCIETY

FOR EXPERIMENTAL BIOLOGY AND MEDICINE, v. 149, p. 1069–1075, 1975. SYNYTSYA, A.; NOVAK, M. Structural analysis of glucans. Annals of

Translational Medicine, v. 2, n. 39, p. 1–14, 2014.

SYNYTSYA, A.; NOVÁK, M. Structural diversity of fungal glucans. Carbohydrate

Polymers, v. 92, n. 1, p. 792–809, 2013.

TAO, Y. et al. Carboxymethylated hyperbranched polysaccharide: Synthesis, solution properties, and fabrication of hydrogel. Carbohydrate Polymers, v. 128, p. 179–187, 2015.

TELLES, C. B. S. et al. Sulfation of the extracellular polysaccharide produced by the edible mushroom Pleurotus sajor-caju alters its antioxidant, anticoagulant and antiproliferative properties in vitro. Carbohydrate Polymers, v. 85, n. 3, p. 514– 521, 2011.

VASCONCELOS, A. F. D. et al. Sulfonation and anticoagulant activity of fungal exocellular β-(1→6)-D-glucan (lasiodiplodan). Carbohydrate polymers, v. 92, n. 2, p. 1908–14, 2013.

VETTORI, M. H. P. B.; FRANCHETTI, S. M. M.; CONTIERO, J. Structural characterization of a new dextran with a low degree of branching produced by

Leuconostoc mesenteroides FT045B dextransucrase. Carbohydrate Polymers, v. 88, n. 4, p. 1440–1444, 2012.

WANG, Y. et al. Structural determination and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps sinensis. The

American journal of chinese medicine, v. 37, n. 5, p. 977–989, 2009.

WEI, D. et al. Phosphorylated modification and in vitro antioxidant activity of

Radix Hedysari polysaccharide. Glycoconjugate journal, v. 29, n. 4, p. 167–72, 2012.

WILCZAK, J. et al. The effect of low or high molecular weight oat beta-glucans on the inflammatory and oxidative stress status in the colon of rats with LPS- induced enteritis. Food Funct., v. 6, n. 2, p. 590–603, 2015.

YANG, J. et al. The structure-anticoagulant activity relationships of sulfated lacquer polysaccharide: effect of carboxyl group and position of sulfation.

International journal of biological macromolecules, v. 36, n. 1-2, p. 9–15, 2005.

ZHANG, Z. et al. In vitro antioxidant activities of acetylated, phosphorylated and benzoylated derivatives of porphyran extracted from Porphyra haitanensis.

Carbohydrate Polymers, v. 78, n. 3, p. 449–453, 2009.

ZHANG, Z. et al. Extraction of the polysaccharides from five algae and their potential antioxidant activity in vitro. Carbohydrate Polymers, v. 82, n. 1, p. 118– 121, 2010.

ZHU, R. et al. Preparation and immunomodulating activities of a library of low- molecular-weight α-glucans. Carbohydrate Polymers, v. 111, p. 744–752, 2014.

Documentos relacionados