• Nenhum resultado encontrado

CONCLUSÃO E PERSPECTIVAS FUTURAS

No documento Chapter Details - Blucher Open Access (páginas 32-46)

AGROINDUSTRIAIS DE NANOPARTÍCULAS METÁLICAS

26.11 CONCLUSÃO E PERSPECTIVAS FUTURAS

Nanopartículas têm despertado fascínio desde muito antes do advento da nanotecnologia, ocorrido há não muito mais do que 20 a 30 anos. De fato, pigmentos utilizados há milhares de anos em grafismos rupestres foram ela- borados à base de óxidos de ferro misturados a extratos ou óleos/gorduras de origem animal e vegetal, os quais em suma poderiam ser denominados atualmente de rotas de síntese verde de NPMs. Nesse contexto, o reconheci- mento de que os organismos biológicos, sejam eles procariontes ou eucarion- tes, são importantes fontes biológicas que podem contribuir para a inovação biotecnológica via nanotecnologia verde, não é um fenômeno recente, mas sim uma reinovação tecnológica com repercussões ainda imprevisíveis.

Apesar de relatos científicos sobre os diversos tipos de nanopartículas serem bastante recentes, esta é uma área da nanotecnologia que vem expe- rimentando crescente evolução (Figura 26.3). Após observação dos relatos encontrados na literatura científica e tecnológica sobre síntese verde, é evi- dente que os organismos biológicos estão sendo explorados com sucesso para a síntese de nanopartículas a partir de metais, de forma rápida e a taxas comparáveis às sínteses com compostos químicos clássicos. Porém, um desafio atual e essencial é de que o mecanismo de redução e estabilização para cada nova rota de síntese seja conhecido e caracterizado, no intuito de aperfeiçoar a reação de síntese e também minimizar o empirismo atual na escolha de novos componentes biológicos como agentes redutores. Além disso, uma preocupação e desafio atuais é a elaboração das rotas para a degradação ou dissolução das NPMs formadas, em uma área que busca a

mitigação dos potenciais riscos associados a essa tecnologia, de modo que se possa rotular a nanotecnologia verde como sustentável.

Figura 26.3 Número de artigos publicados sobre os diferentes tipos de nanopartículas (metálicas, poliméricas ou lipídicas), de acordo com a base de dados do ISI Web of Science. Os termos de busca foram utilizados em língua inglesa.

REFERÊNCIAS

1. Zhang L, Pornpattananangkul D, Hu CMJ, Huang CM. Development of Nanoparticles for Antimicrobial Drug Delivery. Current Medicinal Chemistry. 2010;17(6):585-94. 2. Rai M, Ingle A. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology. 2012;94(2):287-93.

3. Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. International Journal of Nanomedicine. 2012;7:4391-408.

4. Jayaseelan C, Rahuman AA. Acaricidal efficacy of synthesized silver nanoparticles using aqueous leaf extract of Ocimum canum against Hyalomma anatolicum and Hyalomma marginatum isaaci (Acari: Ixodidae). Parasitology Research. 2012;111(3):1369-78. 5. Fahmy TYA, Mobarak F. Green nanotechnology: A short cut to beneficiation of natural fibers. International Journal of Biological Macromolecules. 2011;48(1):134-6. 6. Nath D, Banerjee P. Green nanotechnology – A new hope for medical biology. Environmental Toxicology and Pharmacology. 2013;36(3):997-1014.

7. Mittal AK, Bhaumik J, Kumar S, Banerjee UC. Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. Journal of Colloid and Interface Science. 2014;415(0):39-47.

8. Zhang YX, Zheng J, Gao G, Kong YF, Zhi X, Wang K, Zhang XQ, Cui DX. Biosynthesis of gold nanoparticles using chloroplasts. International Journal of Nanomedicine. 2011;6:2899-906.

9. Narayanan KB, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid and Interface. Science. 2011;169(2):59-79.

10. Shukla VK, Yadav RS, Yadav P, Pandey AC. Green synthesis of nanosilver as a sensor for detection of hydrogen peroxide in water. Journal of Hazardous Materials. 2012;213:161-6.

11. Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: Green synthesis and their antimicrobial activities. Advances in Colloid and Interface Science. 2009;145(1-2):83-96. 12. Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine-Nanotechnology Biology and Medicine. 2010;6(2):257-62.

13. Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances. 2013;31(2):346-56.

14. Faramarzi MA, Sadighi A. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Advances in Colloid and Interface Science. 2013;189:1-20.

15. Lloyd JR, Byrne JM, Coker VS. Biotechnological synthesis of functional nanomaterials. Current Opinion in Biotechnology. 2011;22(4):509-15.

16. Sinha S, Pan I, Chanda P, Sen SK. Nanoparticles fabrication using ambient biological resources. Journal of Applied Biosciences. 2009;19:1113-30.

17. Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy. 2006;83(1-4):132-40.

18. Philip D. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2009;73(2):374-81.

19. Chauhan A, Zubair S, Tufail S, Sherwani A, Sajid M, Raman SC, Azam A, Owais M. Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. International Journal of Nanomedicine. 2011;6:2305-19.

20. Baker S, Rakshith D, Kavitha KS, Santosh P, Kavitha HU, Rao Y, Satish S. Plants: Emerging as Nanofactories towards Facile Route in Synthesis of Nanoparticles. Bioimpacts. 2013;3(3):111-7.

21. Mata YN, Torres E, Blazquez ML, Ballester A, Gonzalez F, Munoz JA. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. Journal of Hazardous Materials. 2009;166(2-3):612-8.

22. Nadkarni VD, Pervin A, Linhardt RJ. Directional immobilization of heparin onto beaded supports. Analytical Biochemistry. 1994;222(1):59-67.

23. Kemp MM, Kumar A, Mousa S, Park T-J, Ajayan P, Kubotera N, Mousa SA, Linhardt RJ. Synthesis of Gold and Silver Nanoparticles Stabilized with Glycosaminoglycans Having Distinctive Biological Activities. Biomacromolecules. 2009;10(3):589-95. 24. Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. Iet Nanobiotechnology. 2011;5(3):69-78.

25. Doughty MJ, Glavin S. Efficacy of different dry eye treatments with artificial tears or ocular lubricants: a systematic review. Ophthalmic and Physiological Optics. 2009;29(6):573-83.

26. Kemp MM, Kumar A, Mousa S, Dyskin E, Yalcin M, Ajayan P, Linhardt RJ, Mousa SA. Gold and silver nanoparticles conjugated with heparin derivative possess anti- angiogenesis properties. Nanotechnology. 2009;20(45).

27. Kemp MM, Kumar A, Clement D, Ajayan P, Mousa S, Linhardt RJ. Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties. Nanomedicine. 2009;4(4):421-9.

28. Huang HZ, Yang XR. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydrate Research. 2004;339(15):2627-31.

29. Onishi H, Machida Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials. 1999;20(2):175-82.

30. Joshi JM, Sinha VK. Ceric ammonium nitrate induced grafting of polyacrylamide onto carboxymethyl chitosan. Carbohydrate Polymers. 2007;67(3):427-35.

31. Venkatesham M, Ayodhya D, Madhusudhan A, Babu NV, Veerabhadram G. A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies. Applied Nanoscience. 2012:1-7.

32. Goswami N, Saha R, Pal SK. Protein-assisted synthesis route of metal nanoparticles: exploration of key chemistry of the biomolecule. Journal of Nanoparticle Research. 2011;13(10):5485-95.

33. Tan YN, Lee JY, Wang DIC. Uncovering the Design Rules for Peptide Synthesis of Metal Nanoparticles. Journal of the American Chemical Society. 2010;132(16):5677-86. 34. Galloway JM, Staniland SS. Protein and peptide biotemplated metal and metal oxide nanoparticles and their patterning onto surfaces. Journal of Materials Chemistry. 2012;22(25):12423-34.

35. Shao Y, Jin YD, Dong SJ. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chemical Communications. 2004;(9):1104-5.

36. Daima HK, Selvakannan P, Bhargava SK, Bansal V. Threonine amino acid mediated photochemical synthesis of Au, Ag and Bimetallic Au-Ag nanoparticles with antibacterial activity. Chemeca 2011: Engineering a Better World. Sydney, Australia; 2011. p. 365. 37. Ho J-aA, Chang H-C, Su W-T. DOPA-Mediated Reduction Allows the Facile Synthesis of Fluorescent Gold Nanoclusters for Use as Sensing Probes for Ferric Ions. Analytical Chemistry. 2012;84(7):3246-53.

38. Wang Z, Zhu H, Wang X, Yang F, Yang X. One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles. Nanotechnology. 2009;20(46).

39. Dickerson MB, Sandhage KH, Naik RR. Protein- and Peptide-Directed Syntheses of Inorganic Materials. Chemical Reviews. 2008;108(11):4935-78.

40. Berti L, Burley GA. Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat Nanotechnol. 2008;3(2):81-7.

41. Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature. 2005;437(7059):664-70.

42. Wang Z, Zhang J, Ekman JM, Kenis PJA, Lu Y. DNA-Mediated Control of Metal Nanoparticle Shape: One-Pot Synthesis and Cellular Uptake of Highly Stable and Functional Gold Nanoflowers. Nano Letters. 2010;10(5):1886-91.

43. Gugliotti LA, Feldheim DL, Eaton BE. RNA-mediated metal-metal bond formation in the synthesis of hexagonal palladium nanoparticles. Science. 2004;304(5672):850-2. 44. Tyagi H, Kushwaha A, Kumar A, Aslam M. pH-dependent synthesis of stabilized gold nanoparticles using ascorbic acid. International Journal of Nanoscience. 2011;10(04n05):857-60.

45. Nadagouda MN, Varma RS. Green and controlled synthesis of gold and platinum nanomaterials using vitamin B-2: density-assisted self-assembly of nanospheres, wires and rods. Green Chemistry. 2006;8(6):516-8.

46. Nadagouda MN, Varma RS. Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin B(2): Catalytic polymerisation of aniline and pyrrole. Journal of Nanomaterials. 2008.

47. Zhou W, Zhang Y, Ding X, Liu Y, Shen F, Zhang X, Deng S, Xiao H, Yang G, Peng H. Magnetotactic bacteria: promising biosorbents for heavy metals. Applied Microbiology and Biotechnology. 2012;95(5):1097-104.

48. Cai F, Li J, Sun J, Ji Y. Biosynthesis of gold nanoparticles by biosorption using Magnetospirillum gryphiswaldense MSR-1. Chemical Engineering Journal. 2011;175:70-5.

49. Tanaka M, Arakaki A, Staniland SS, Matsunaga T. Simultaneously Discrete Biomineralization of Magnetite and Tellurium Nanocrystals in Magnetotactic Bacteria. Applied and Environmental Microbiology. 2010;76(16):5526-32.

50. Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, Chopade BA. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. International Journal of Nanomedicine. 2013;8:4277-89.

51. Jayaseelan C, Rahuman AA, Roopan SM, Kirthi AV, Venkatesan J, Kim S-K, Iyappan M, Siva C. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013;107:82-9.

52. Brayner R, Yepremian C, Djediat C, Coradin T, Herbst F, Livage J, Fievet F, Coute A. Photosynthetic Microorganism-Mediated Synthesis of Akaganeite (beta-FeOOH) Nanorods. Langmuir. 2009;25(17):10062-7.

53. Wei X, Luo M, Li W, Yang L, Liang X, Xu L, Kong P, Liu H. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresource Technology. 2012;103(1):273-8.

54. Gurunathan S, Han JW, Eppakayala V, Jeyaraj M, Kim J-H. Cytotoxicity of Biologically Synthesized Silver Nanoparticles in MDA-MB-231 Human Breast Cancer Cells. Biomed Research International. 2013.

55. Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M. Microbial synthesis of silver nanoparticles by Bacillus sp. Journal of Nanoparticle Research. 2009;11(7):1811-5.

56. Zhang H, Yu X, Guo D, Qu B, Zhang M, Li Q, Wang T. Synthesis of Bacteria Promoted Reduced Graphene Oxide-Nickel Sulfide Networks for Advanced Supercapacitors. Acs Applied Materials & Interfaces. 2013;5(15):7335-40.

57. Pandian SRK, Deepak V, Kalishwaralal K, Gurunathan S. Biologically synthesized fluorescent CdS NPs encapsulated by PHB. Enzyme and Microbial Technology. 2011;48(4-5):319-25.

58. Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces B: Biointerfaces. 2010;77(2):257-62. 59. Srivastava SK, Yamada R, Ogino C, Kondo A. Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Research Letters. 2013;8.

60. Monras JP, Diaz V, Bravo D, Montes RA, Chasteen TG, Osorio-Roman IO, Vasquez CC, Perez-Donoso JM. Enhanced Glutathione Content Allows the In Vivo Synthesis of Fluorescent CdTe Nanoparticles by Escherichia coli. Plos One. 2012;7(11).

61. Correa-Llanten DN, Munoz-Ibacache SA, Castro ME, Munoz PA, Blamey JM. Gold nanoparticles synthesized by Geobacillus sp strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microbial Cell Factories. 2013;12.

62. Tuo Y, Liu G, Zhou J, Wang A, Wang J, Jin R, Lv H. Microbial formation of palladium nanoparticles by Geobacter sulfurreducens for chromate reduction. Bioresource Technology. 2013;133:606-11.

63. Srivastava S, Constanti M. Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt, Co, and Li) by Pseudomonas aeruginosa SM1. Journal of Nanoparticle Research. 2012;14(4):1-10.

64. Varshney R, Bhadauria S, Gaur MS, Pasricha R. Characterization of Copper Nanoparticles Synthesized by a Novel Microbiological Method. Jom. 2010;62(12):102-4. 65. Oves M, Khan MS, Zaidi A, Ahmed AS, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A. Antibacterial and Cytotoxic Efficacy of Extracellular Silver Nanoparticles Biofabricated from Chromium Reducing Novel OS4 Strain of Stenotrophomonas maltophilia. Plos One. 2013;8(3).

66. Prakasham RS, Kumar BS, Kumar YS, Shankar GG. Characterization of Silver Nanoparticles Synthesized by Using Marine Isolate Streptomyces albidoflavus. Journal of Microbiology and Biotechnology. 2012;22(5):614-21.

67. Manikprabhu D, Lingappa K. Microwave Assisted Rapid and Green Synthesis of Silver Nanoparticles Using a Pigment Produced by Streptomyces coelicolor klmp33. Bioinorganic Chemistry and Applications. 2013.

68. Deplanche K, Macaskie LE. Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnology and Bioengineering. 2008;99(5):1055-64.

69. Sawosz E, Chwalibog A, Szeliga J, Sawosz F, Grodzik M, Rupiewicz M, Niemiec T, Kacprzyk K. Visualization of gold and platinum nanoparticles interacting with Salmonella enteritidis and Listeria monocytogenes. International Journal of Nanomedicine. 2010;5:631-7.

70. Asmathunisha N, Kathiresan K. A review on biosynthesis of nanoparticles by marine organisms. Colloids and Surfaces B: Biointerfaces. 2013;103:283-7.

71. Stengel DB, Connan S, Popper ZA. Algal chemodiversity and bioactivity: Sources of natural variability and implications for commercial application. Biotechnology Advances. 2011;29(5):483-501.

72. Barwal I, Ranjan P, Kateriya S, Yadav SC. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. Journal of Nanobiotechnology. 2011;9.

73. Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D. Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. Bioimpacts. 2011;1(3):149-52.

74. Lirdprapamongkol K, Warisnoicharoen W, Soisuwan S, Svasti J. Eco-friendly synthesis of fucoidan-stabilized gold nanoparticles. American Journal of Applied Sciences. 2010;7(8):1038.

75. Schroefel A, Kratosova G, Bohunicka M, Dobrocka E, Vavra I. Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation. Journal of Nanoparticle Research. 2011;13(8):3207-16.

76. Vivek M, Kumar PS, Steffi S, Sudha S. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna Journal of Medical Biotechnology. 2011;3(3):143.

77. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces. 2007;57(1):97-101.

78. Mahdavi M, Namvar F, Ahmad M, Mohamad R. Green Biosynthesis and Characterization of Magnetic Iron Oxide (Fe3O4) Nanoparticles Using Seaweed (Sargassum muticum) Aqueous Extract. Molecules. 2013;18(5):5954-64.

79. Rajesh S, Raja DP, Rathi J, Sahayaraj K. Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. Journal of Biopesticides. 2012;5(119):2012.

80. Govindaraju K, Kiruthiga V, Kumar VG, Singaravelu G. Extracellular Synthesis of Silver Nanoparticles by a Marine Alga, Sargassum Wightii Grevilli and Their Antibacterial Effects. Journal of Nanoscience and Nanotechnology. 2009;9(9):5497-501. 81. El-Rafie HM, El-Rafie MH, Zahran MK. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydrate Polymers. 2013;96(2):403-10.

82. Kaminskyj S, Jilkine K, Szeghalmi A, Gough K. High spatial resolution analysis of fungal cell biochemistry – bridging the analytical gap using synchrotron FTIR spectromicroscopy. FEMS Microbiol Lett. 2008;284(1):1-8.

83. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni S, Paknikar K. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and Bioengineering. 2002;78(5):583-8. 84. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces. 2003;28(4):313-8.

85. Bhainsa KC, D’Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces. 2006;47(2):160-4. 86. Kashyap PL, Kumar S, Srivastava AK, Sharma AK. Myconanotechnology in agriculture: a perspective. World Journal of Microbiology & Biotechnology. 2013;29(2):191-207.

87. Dameron C, Reese R, Mehra R, Kortan A, Carroll P, Steigerwald M, Brus L, Winge D. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature. 1989;338:596-7.

88. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology. 2003;14(1):95-100.

89. Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science. 2010;156(1-2):1-13.

90. Jha AK, Prasad K, Prasad K. A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochemical Engineering Journal. 2009;43(3):303-6.

91. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Materials Letters. 2009;63(15):1231-4.

92. Mirzadeh S, Darezereshki E, Bakhtiari F, Fazaelipoor MH, Hosseini MR. Characterization of zinc sulfide (ZnS) nanoparticles Biosynthesized by Fusarium oxysporum. Materials Science in Semiconductor Processing. 2013;16(2):374-8.

93. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M. Fungus- mediated biosynthesis of silica and titania particles. Journal of Materials Chemistry. 2005;15(26):2583-9.

94. Riddin TL, Gericke M, Whiteley CG. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 2006;17(14):3482-9.

95. Al-Askar A, Hafez E, Kabeil S, Meghad A. Bioproduction of silver-nano particles by Fusarium oxysporum and their antimicrobial activity against some plant pathogenic bacteria and fungi. Life Science Journal. 2013;10(3):2470-6.

96. Gherbawy Y, Shalaby I, El-sadek M, Elhariry H, Banaja A: The Anti-Fasciolasis Properties of Silver Nanoparticles Produced by Trichoderma harzianum and Their

Improvement of the Anti-Fasciolasis Drug Triclabendazole. International Journal of Molecular Sciences. 2013;14(11):21887-98.

97. Sanghi R, Verma P: Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource Technology. 2009;100(1):501-4.

98. Duran N, Marcato PD, Duran M, Yadav A, Gade A, Rai M. Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Applied Microbiology and Biotechnology. 2011;90(5):1609-24.

99. Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology. 2005;3(8):1-7.

100. Walker GM. Yeast Physiology and Biotechnology. New York: Wiley; 1998. 362p. 101. Lin L, Wu W, Huang J, Sun D, Waithera NuM, Zhou Y, Wang H, Li Q. Catalytic gold nanoparticles immobilized on yeast: From biosorption to bioreduction. Chemical Engineering Journal. 2013;225:857-64.

102. Breierova E, Vajczikova I, Sasinkova V, Stratilova E, Fisera I, Gregor T, Sajbidor J. Biosorption of cadmium ions by different yeast species. Zeitschrift für Naturforschung C. 2002;57(7-8):634-9.

103. Gade A, Ingle A, Whiteley C, Rai M. Mycogenic metal nanoparticles: progress and applications. Biotechnology Letters. 2010;32(5):593-600.

104. Krumov N, Perner-Nochta I, Oder S, Gotchev V, Angelov A, Posten C. Production of Inorganic Nanoparticles by Microorganisms. Chemical Engineering & Technology. 2009;32(7):1026-35.

105. Kumari A, Kumar V, Yadav SK. Plant Extract Synthesized PLA Nanoparticles for Controlled and Sustained Release of Quercetin: A Green Approach. Plos One. 2012;7(7). 106. Akhtar MS, Panwar J, Yun Y-S. Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts. ACS Sustainable Chemistry & Engineering. 2013;1(6):591-602.

107. Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology & Biotechnology. 2009;84(2):151-7. 108. Gardea-Torresdey JL, Tiemann KJ, Parsons JG, Gamez G, Yacaman MJ. Characterization of trace level Au(III) binding to alfalfa biomass (Medicago sativa) by GFAAS. Advances in Environmental Research. 2002;6(3):313-23.

109. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnology Progress. 2006;22(2):577-83.

110. Shukla R, Nune SK, Chanda N, Katti K, Mekapothula S, Kulkarni RR, Welshons WV, Kannan R, Katti KV. Soybeans as a phytochemical reservoir for the production and stabilization of biocompatible gold nanoparticles. Small. 2008;4(9):1425-36.

111. Nune SK, Chanda N, Shukla R, Katti K, Kulkarni RR, Thilakavathy S, Mekapothula S, Kannan R, Katti KV. Green nanotechnology from tea: phytochemicals in tea as

building blocks for production of biocompatible gold nanoparticles. Journal of Materials Chemistry. 2009;19(19):2912-20.

112. Das J, Das MP, Velusamy P. Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2013;104:265-70.

113. Patil RS, Kokate MR, Kolekar SS. Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;91:234-8. 114. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A. Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B: Biointerfaces. 2010;81(1):81-6.

115. Maensiri S, Laokul P, Klinkaewnarong J, Phokha S, Promarak V, Seraphin S. Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: Synthesis and optical properties. Journal of Optoelectronics and Advanced Materials. 2008;10(3):161-5. 116. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids and Surfaces B: Biointerfaces. 2010;76(1):50-6.

117. Quelemes PV, Araruna FB, de Faria BEF, Kuckelhaus SAS, da Silva DA, Mendonca RZ, Eiras C, Soares MJdS, Leite JRSA. Development and Antibacterial Activity of Cashew Gum-Based Silver Nanoparticles. International Journal of Molecular Sciences. 2013;14(3):4969-81.

118. Shameli K, Bin Ahmad M, Jaffar Al-Mulla EA, Ibrahim NA, Shabanzadeh P, Rustaiyan A, Abdollahi Y, Bagheri S, Abdolmohammadi S, Usman MS, Zidan M. Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules. 2012;17(7):8506-17.

119. Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry. 2007;9(8):852. 120. Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Sun D, Su Y, Opiyo JB, Hong L, Wang Y, He N, Jia L. Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. Journal of Nanoparticle Research. 2009;12(5):1589-98. 121. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007;18(10):105104.

122. Smitha SL, Philip D, Gopchandran KG. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2009;74(3):735-9.

123. Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B: Biointerfaces. 2009;73(2):332-8. 124. Babu PJ, Das RK, Kumar A, Bora U. Microwave-mediated synthesis of gold nanoparticles using coconut water. International Journal of Green Nanotechnology. 2011;3(1):13-21.

125. Narayanan KB, Sakthivel N. Coriander leaf mediated biosynthesis of gold nanoparticles. Materials Letters. 2008;62(30):4588-90.

126. Sneha K, Sathishkumar M, Lee SY, Bae MA, Yun Y-S. Biosynthesis of Au nanoparticles using cumin seed powder extract. Journal of Nanoscience and Nanotechnology. 2011;11(2):1811-4.

127. Song JY, Kwon EY, Kim BS. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess and Biosystems Engineering. 2010;33(1):159-64. 128. Jia L, Zhang Q, Li Q, Song H. The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology. 2009;20(38):385601.

129. Kumar PR. Soybean (Glycine max) Leaf Extract Based Green Synthesis of Palladium

No documento Chapter Details - Blucher Open Access (páginas 32-46)

Documentos relacionados