• Nenhum resultado encontrado

Os animais que receberam a dieta de cafeteria chegaram ao perfil metabólico da obesidade, a administração da liraglutida por 10 dias apresentou redução do consumo alimentar dos animais obesos no final do experimento. A intervenção do exercício físico foi eficaz na redução dos estoques de gordura mesentérica, epididimal e retroperitoneal, também reduziu parâmetros bioquímicos como glicose, o índice de Lee, ganho de peso e aumentou o peso da glândula adrenal em animais obesos. Nos animais do grupo controle reduziu o peso do pâncreas, índice de Lee e colesterol total. A associação do exercício físico com a liraglutida apresentou melhores resultados na redução do peso corporal no final do experimento, redução do consumo dos 80-90 dias de vida, peso do fígado, níveis circulantes de triglicerídeos e insulina, índice HOMA-IR, nos animais obesos, porém aumentou o TNF-α em ambos os grupos, obeso e controle. A intervenção do exercício físico é eficaz na redução de alguns parâmetros relacionados ao desenvolvimento da obesidade, porém a sua associação com a liraglutida por 10 dias apresentou melhores resultados na redução do peso corporal, consumo alimentar e parâmetros bioquímicos, de animais obesos obtidos por dieta de cafeteria.

REFERÊNCIAS

ACCIOLY, M. F. et al. Effects of physical training and statins therapy in the lipidic profile of. Revista Brasileira de Ciência e Movimento, v. 24, n. 1, p. 108–117, 2016. AHMED, R. H. et al. Altered circulating concentrations of active glucagon-like peptide (GLP-1) and dipeptidyl peptidase 4 (DPP4) in obese subjects and their association with insulin resistance. Clinical Biochemistry, v. 50, n. 13–14, p. 746–749, 2017.

ALMEIDA, M. E. F. DE; SANTOS, V. S. Cafeteria diet with chocolate, peanut and cookie: effectiveness in induction of overweight and dyslipidemia in rats. SaBios-

Revista de Saúde e Biologia, v. 10, n. 3, p. 15–24, 2015.

APPEL, M. C. et al. Adrenal Gland Involvement in Mice with Hereditary Obesity and Diabetes Mellitus. Diabetologia, v. 16, p. 391–398, 1979.

BAGGIO, L. L.; DRUCKER, D. J. Biology of Incretins: GLP-1 and GIP.

Gastroenterology, v. 132, n. 6, p. 2131–2157, 2007.

BALDWIN, K. M. Skeletal Muscle Plasticity: Cellular and molecular responses to altered physical activity paradigms. American jornal of Physical Medicine &

Rehabilitation. v. 81, n. 11, p. 40-51, 2002.

BARRETO-VIANNA, A. R. C.; AGUILA, M. B.; MANDARIM-DE-LACERDA, C. A. Beneficial effects of liraglutide (GLP1 analog) in the hippocampal inflammation.

Metabolic Brain Disease, p. 1–11, 2017.

BAYS, H. E. Current and investigational antiobesity agents and obesity therapeutic treatment targets. Obesity Research, v. 12, n. 8, p. 1197–1211, 2004.

BERNARDIS, L.L, PATTERSON, B.D. Correlation between “Lee Index” and Carcass Fat Content in Weanling and Adult Female Rats with Hypothalamic Lesions. Journal

of Endocrinology, v.40, p. 527-528, 1968.

BHARATHA, A. et al. Pathophysiological changes in liver tissues of hypercalorie diet- induced obese rats. Asian Journal of Pharmaceutical and Clinical Research, v. 10, n. 1, p. 338–340, 2017.

BIDAR, A. W. et al. In vivo imaging of lipid storage and regression in diet-induced obesity during nutrition manipulation. American Journal of Physiology-

Endocrinology and Metabolism, v. 303, n. 11, p. E1287–E1295, 2012.

BRAGA, L. et al. Continuous and intermittent exercise: effects of training and detraining on body fat in obese rats. Revista Portugues de Ciências do Desporto, v. 6, n. 2, p. 160–9, 2006.

BRANDT, N. et al. Cafeteria diet-induced insulin resistance is not associated with decreased insulin signaling or AMPK activity and is alleviated by physical training in rats. American Journal of Physiology - Endocrinology and metabolism, v. 299, n. 2, p. E215-24, 2010.

BUYSSCHAERT, M.; D’HOOGE, D.; PREUMONT, V. ROOTS: A multicenter study in Belgium to evaluate the effectiveness and safety of liraglutide (Victoza®) in type 2 diabetic patients. Diabetes and Metabolic Syndrome: Clinical Research and

CALEGARI, V. et al. Endurance Training Activates Pancreatic Islets Amp-Activated Kinase-Uncoupling Protein 2 Pathway and Reduces Insulin Secretion. Journal of

Endocrinology, v.6, n.35, p 242-253, 2011.

CAMERON, I. et al. Endurance exercise in a rat model of metabolic syndrome.

Canadian Journal of Physiology and Pharmacology, v. 90, n. 11, p. 1490–1497,

2012.

CANI, P. D. et al. Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. British Journal of Nutrition, v. 98, n. 1, p. 32–37, 2007. CARILLON, J. et al. Cafeteria diet induces obesity and insulin resistance associated with oxidative stress but not with inflammation: Improvement by dietary supplementation with a melon superoxide dismutase. Free Radical Biology and

Medicine, v. 65, p. 254–261, 2013.

CARVALHEIRA, J. B. C.; ZECCHIN, H. G.; SAAD, M. J. A. Vias de Sinalização da Insulina. Arquivos Brasileiros de Endocrionologia e Metabologia, v. 46, n. 4, p. 419–425, 2002.

CASTOLDI, R. C. et al. Effects of 14 Weeks Resistance Training on Muscle Tissue in Wistar Rats. International Journal of Morphology, v. 33, n. 2, p. 446–451, 2015. CASTRO, G. et al. Diet-induced obesity induces endoplasmic reticulum stress and insulin resistance in the amygdala of rats. FEBS Open Bio, v. 3, p. 443–449, 2013. CEFALU, W. T. et al. Advances in the science, treatment, and prevention of the disease of obesity: Ref lections from a diabetes care editors’ expert forum. Diabetes

Care, v. 38, n. 8, p. 1567–1582, 2015.

CHACRA, A. R. Efeito fisiológico das incretinas —. Johns Hopkins Advanced

Studies in Medicine, v. 6, n. 7B, p. S613–S617, 2006.

CHEIK, N. C. et al. Efeito de diferentes freqüências de exercício físico na prevenção da dislipidemia e da obesidade em ratos normo e hipercolesterolêmicos. Revista

Brasileira de Educação Física e Esporte, v. 20, n. 2, p. 121–129, 2006.

CHEN, H. et al. Long-term high animal protein diet reduces body weight gain and insulin secretion in diet-induced obese rats. Journal of the Science of Food and

Agriculture, v. 92, n. 13, p. 2638–2643, 2012.

CIGARROA, I. et al. Treadmill intervention attenuates the cafeteria diet-induced impairment of stress-coping strategies in young adult female rats. PLoS ONE, v. 11, n. 4, p. 1–17, 2016.

CONTE, S. C.; CAMPOS, S. B. DE. Perspectives of Weight Loss with the Use of Liraglutide: Literature review. Brazilian Journal of Surgery and Clinical Research, v. 9, n. 1, p. 84–90, 2015.

DA SILVA, A. S. R. et al. Exercise intensity, inflammatory signaling, and insulin resistance in obese rats. Medicine and Science in Sports and Exercise, v. 42, n. 12, p. 2180–2188, 2010.

DRUCKER, D. J.; NAUCK, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, v. 368, n.

9548, p. 1696–1705, 2006.

ECKEL, R. H.; GRUNDY, S. M.; ZIMMET, P. Z. The metabolic syndrome. Lancet, v. 365, n. 9468, p. 1415–1428, 2005.

ESTADELLA, D. et al. Effect of Palatable Hyperlipidic Diet on Lipid Metabolism of Sedentary and Exercised Rats. Nutrition, v. 20, n. 2, p. 218–224, 2004.

FARIA, A. M. et al. Progressos recentes e novas perspectivas em farmacoterapia da obesidade. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 54, n. 6, p. 516–529, 2010.

FARIAS, J. M. DE. Effects of physical exercise in molecular parameters of the route of obesity and insulin signaling. Revista Brasilera de Cineantropometria e

Desenpenho Humano. v 16, n. 5, p. 588–596, March. 2014.

FONSECA-ALANIZ, M. H. O Tecido Adiposo Como Centro Regulador do Metabolismo. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 50, n. 2, p. 216–229, 2006.

FREITAS, M. C.; CESCHINI, F. L.; RAMALLO, B. T. Resistência à insulina associada à obesidade : Efeitos anti-inflamatórios do exercício físico. Revista Brasileira de

Ciência e Movimento, v. 22, n. 3, p. 139–147, 2014.

FUJII, N. et al. Ablation of AMP-Activated Protein Kinase 2 Activity Feeding of Mice.

Diabetes, v. 57, p. 2958–66, 2008.

GIL-CARDOSO, K. et al. A cafeteria diet triggers intestinal inflammation and oxidative stress in obese rats. British Journal of Nutrition, v. 117, n. 2, p. 218–229, 2017. GOMES, R. M. et al. Efeito de um programa de exerc??cio f??sico moderado em ratos de diferentes modelos de obesidade. Revista da Educacao Fisica, v. 23, n. 2, p. 285– 294, 2012.

HABER, E. P. et al. Secreção da Insulina: Efeito Autócrino da Insulina e Modulação por Ácidos Graxos. Arquivos Brasileiros de Endocrinologia & Metabologia, v. 45, n. 3, p. 219–227, 2001.

HE, M. et al. Reversal of obesity and insulin resistance by a non- peptidic glucagon- like peptide-1 receptor agonist in diet-induced obese mice. PLoS ONE, v. 5, n. 12, 2010.

HEPPNER, K. M. et al. Contribution of brown adipose tissue activity to the control of energy balance by GLP-1 receptor signalling in mice. Diabetologia, v. 58, n. 9, p. 2124–2132, 2015.

HERMANSEN, K. et al. Liraglutide suppresses postprandial triglyceride and apolipoprotein B48 elevations after a fat-rich meal in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled, cross-over trial. Diabetes, Obesity and

Metabolism, v. 15, n. 11, p. 1040–1048, 2013.

HYDE, K. M. et al. Liraglutide suppression of caloric intake competes with the intake- promoting effects of a palatable cafeteria diet, but does not impact food or macronutrient selection. Physiology and Behavior, v. 177, n. March, p. 4–12, 2017. JACOBS, S. et al. The impact of maternal consumption of cafeteria diet on reproductive

function in the offspring. Physiology and Behavior, v. 129, p. 280–286, 2014. JUNG, U.; CHOI, M.-S. Obesity and Its Metabolic Complications: The Role of Adipokines and the Relationship between Obesity, Inflammation, Insulin Resistance, Dyslipidemia and Nonalcoholic Fatty Liver Disease. International Journal of

Molecular Sciences, v. 15, n. 4, p. 6184–6223, 2014.

KAMALAKKANNAN, S. et al. Emu oil decreases atherogenic plaque formation in cafeteria diet-induced obese rats. Journal of the Science of Food and Agriculture, v. 96, n. 9, p. 3063–3068, 2016.

KANCZKOWSKI, W.; SUE, M.; BORNSTEIN, S. R. The adrenal gland microenvironment in health, disease and during regeneration. Hormones, v. 16, n. 3, p. 251–265, 2017.

KAUR, J. A comprehensive review on metabolic syndrome. Cardiology Research

and Practice, v. 2014, p.1-21, March. 2014.

KOEHLER, J. A. et al. Glucagon-Like Peptide-1 Receptor Activation Modulates Pancreatitis-Associated Gene Expression But Does Not Modify the Susceptibility to Experimental Pancreatitis in Mice. DIABETES, v. 58, p. 2148–2161, September. 2009. LANA, A. D. C.; PAULINO, C. A.; GONÇALVES, I. D. Influência dos exercícios físicos de baixa e alta intensidade sobre o limiar de hipernocicepção e outros paarmetros em ratos. Revista Brasileira de Medicna do Esporte, v. 12, n. 5, p. 248-254, 2006. LEAN, M. E. J. et al. Tolerability of nausea and vomiting and associations with weight loss in a randomized trial of liraglutide in obese, non-diabetic adults. International

Journal of Obesity, v. 38, n. 5, p. 689–697, 2014.

LEHRSKOV-SCHMIDT, L. et al. The effects of TNF-α on GLP-1-stimulated plasma glucose kinetics. Journal of Clinical Endocrinology and Metabolism, v. 100, n. 4, p. E616–E622, 2015.

LI, L. et al. Liraglutide Prevents Hypoadiponectinemia-Induced Insulin Resistance and Alterations of Gene Expression Involved in Glucose and Lipid Metabolism. Molecular

Medicine, v. 17, n. 11–12, p. 1, 2011.

LOTFY, M. et al. The effect of glucagon-like peptide-1 in the management of diabetes mellitus: cellular and molecular mechanisms. Cell and Tissue Research, v. 358, n. 2, p. 343–358, 2014.

LOUZADA, S. M. et al. Efeito Da Obesidade Induzida Pela Dieta Da Cafeteria. Revista

da Sociedade Brasileira de Ciência em Animais de Laboratório, v. 2, n. 2, p. 92-

102, 2013.

MACEDO, I. C. et al. Cafeteria diet-induced obesity plus chronic stress alter serum leptin levels. Peptides, v. 38, n. 1, p. 189–196, 2012.

MALAFAIA, A. B. et al. Indução de obesidade com sacarose em ratos. ABCD.

Arquivos Brasileiros de Cirurgia Digestiva (São Paulo), v. 26, n. Suplemento 1, p.

17–21, 2013.

MANSOUR, A. et al. Nutrients related to GLP1 secretory responses. Nutrition, v. 29, n. 6, p. 813–820, 2013.

MARINHO, R. et al. Effects of different intensities of physical exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice. Einstein

(São Paulo), v. 12, n. 1, p. 82–89, 2014.

MARTIRE, S. I. et al. Altered Feeding Patterns in Rats Exposed to a Palatable Cafeteria Diet: Increased Snacking and Its Implications for Development of Obesity.

PLoS ONE, v. 8, n. 4, 2013.

MONSEY, M. S.; GERHARD, D. M. Obesity. Yale Journal of Biology and Medicine, v. 87, p. 97–98, 2014.

NAVARRO, MARIA EUGENIA LOPES et al. Renal inflammatory and oxidative and metabolic changes after 6 weeks of cafeteria diet in rats. Jornal Brasileiro de

Nefrologia, v. 38, n. 1, p. 9–14, 2016.

NEUSCHWANDER-TETRI, B. A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: The central role of nontriglyceride fatty acid metabolites.

Hepatology, v. 52, n. 2, p. 774–788, 2010.

NG, M. et al. Global, regional and national prevalence of overweight and obesity in children and adults 1980-2013: A systematic analysis. Lancet, v. 384, n. 9945, p. 766– 781, 2014.

OLIVEIRA, D. R. et al. Efeito da natação associada a diferentes tratamentos sobre o músculo sóleo de ratos: Estudo histológico e morfométrico. Revista Brasileira de

Medicina do Esporte, v. 20, n. 1, p. 74–77, 2014.

OLIVEIRA, P. O.; SOUZA, M. L. A.; LIMA, M. D. A. Indice HOMA( homeostasis modela assessment) na pratica clínica: uma revisão. Jornal Brasileiro de Patologia e

Medicina Laboratorial, v. 41, n. 4, p. 237–243, 2005.

ORGANIZAÇÃO MUNDIAL DA SAÚDE. Obesidade e excesso de peso. Assembléia Mundial da Saúde, 2016. Atualizado em outubro de 2017. Disponível em:< http://www.who.int/mediacentre/factsheets/fs311/en/>. Acesso em: 31 Jan. 2018. PEREIRA, L. O.; FRANCISCHI, R. P. DE; LANCHA JR., A. H. Obesidade: hábitos nutricionais, sedentarismo e resistência à insulina. Arquivos Brasileiros de

Endocrinologia & Metabologia, v. 47, n. 2, p. 111–127, 2003.

PERUZZO, G. M. Análise Dos Níveis de Glp-1 nos Estados de Jejum e Pós-

prandial durante a Gestação em Mulheres não Diabéticas. 2010. Dissertação

(Mestrado em Saúde e Desenvolvimento na Região Centro-oeste),Universidade Federal de Mato Grosso do Sul, Campo Grande , 2010.

PI-SUNYER, X. et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. New England Journal of Medicine, v. 373, n. 1, p. 11–22, 2015. PINTO JÚNIOR, D. A. C.; SERAPHIM, P. M. Cafeteria diet intake for fourteen weeks can cause obesity and insulin resistance in wistar rats. Revista de Nutricao, v. 25, n. 3, p. 313–319, 2012.

PORTHA, B.; TOURREL-CUZIN, C.; MOVASSAT, J. Activation of the glp-1 receptor signalling pathway: A relevant strategy to repair a deficient beta-cell mass.

PRADA, P. O. et al. Western diet modulates insulin signaling, c-jun N-terminal kinase activity, and insulin receptor substrate-1ser307 phosphorylation in a tissue-specific fashion. Endocrinology, v. 146, n. 3, p. 1576–1587, 2005.

PRATLEY, R. E. et al. Liraglutide versus sitagliptin for patients with type 2 diabetes who did not have adequate glycaemic control with metformin: A 26-week, randomised, parallel-group, open-label trial. Lancet, v. 375, n. 9724, p. 1447–1456, 2010.

RAUN, K. et al. Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not. Diabetes, v. 56, n. 1, p. 8–15, 2007.

REIS, A. F.; VELHO, G. Patologia molecular do receptor de sulfoniluréia (SUR1).

Arquivos Brasileiros de Endocrinologia & Metabologia, v. 44, n. 6, p. 382, 2000.

RIBEIRO, C. et al. Effects of physical training with different intensities of effort on lipid metabolism in rats submitted to the neonatal application of alloxan. Lipids in health

and disease, v. 11, p. 138, 2012.

RICHTER, E. A.; RUDERMAN, N. B. AMPK and the biochemistry of exercise: implications for human health and disease. The Biochemical journal, v. 418, n. 2, p. 261–75, 2009.

RONG, X. et al. Angiotensin II type 1 receptor-independent beneficial effects of telmisartan on dietary-induced obesity, insulin resistance and fatty liver in mice.

Diabetologia, v. 53, n. 8, p. 1727–1731, 2010.

ROSINI, T. C.; SILVA, A. S. R. DA; MORAES, C. DE. Obesidade induzida por consumo de dieta : modelo em roedores para o estudo dos distúrbios relacionados com a obesidade. Revista da Associação Medica Brasileira, v. 58, n. 3, p. 383–387, 2012.

ROTHWELL, N. J.; STOCK, M. J. A role for brown adipose tissue in diet-induced thermogenesis. Obesity research, v. 5, n. 6, p. 650–656, 1997.

SAGAE, S. C. et al. Prevention of metabolic disorders and reproductive performance deficits by the blockade of Angiotensin II AT1 receptor in female rats fed with cafeteria diet. Physiology and Behavior, v. 119, p. 1–8, 2013.

SAMPEY, B. P. et al. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: Comparison to high-fat diet. Obesity, v. 19, n. 6, p. 1109–1117, 2011.

SAMPEY, B. P. et al. Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS ONE, v. 7, n. 6, p. 1–10, 2012.

SCOMPARIN, D. X. et al. Swim training applied at early age is critical to adrenal medulla catecholamine content and to attenuate monosodium l-glutamate-obesity onset in mice. Life Sciences, v. 79, n. 22, p. 2151–2156, 2006.

SHAFAT, A.; MURRAY, B.; RUMSEY, D. Energy density in cafeteria diet induced hyperphagia in the rat. Appetite, v. 52, n. 1, p. 34–38, 2009.

químicos. Química Nova, v. 32, n. 2, p. 453–469, 2009.

SOUZA, F. DE. Indução De Obesidade Em Ratos Através Do Glutamato

Monossódico. Avaliação Biométrica. 1999. Dissertação (Mestrado em clínica

cirurgica) Universidade Federal do Paraná, Curitiba, 1999.

SUÁREZ-GARCÍA, S. et al. Impact of a cafeteria diet & daily physical training on the rat serum metabolome. PLoS ONE, v. 12, n. 2, p. 1–19, 2017.

SUN, J. et al. PTP1B , A Potential Target of Type 2 Diabetes Mellitus. Molecular

Biology, v. 5, n. 4, p. 2–7, 2016.

SWIERCZYNSKA, M. M.; MATESKA I.; PEITZSCH M. et al. Changes in morphology and function of adrenal cortex in mice fed a high-fat diet. International Journal of

Obesity (Lond) v 39, p. 321-330, 2015.

TÓFOLO, L. P. et al. Short-term moderate exercise provides long-lasting protective effects against metabolic dysfunction in rats fed a high-fat diet. European Journal of

Nutrition, v. 54, n. 8, p. 1353–1362, 2015.

VAN CAN, J. et al. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non- diabetic adults. International Journal of Obesity, v. 38, n. 6, p. 784–793, 2014. VECHETTI-JUNIOR, M. A. et al. Effects of swim training on liver carcinogenesis in male Wistar rats fed a low-fat or high-fat diet. Appl. Physiol. Nutr. Metab., v. 37, n. 6, p. 1101–1109, 2012.

VRANG, N. et al. The effects of 13 wk of liraglutide treatment on endocrine and exocrine pancreas in male and female ZDF rats: a quantitative and qualitative analysis revealing no evidence of drug-induced pancreatitis. American Journal of Physiology

- Endocrinology and Metabolism, v. 303, n. 2, p. E253–E264, 2012.

WANG, J. et al. Improvement of liquid fructose-induced adipose tissue insulin resistance by ginger treatment in rats is associated with suppression of adipose macrophage-related proinflammatory cytokines. Evidence-based Complementary

and Alternative Medicine, v. 2013, 2013.

WIT, H. M. DE et al. Liraglutide reverses pronounced insulin-associated weight gain, improves glycaemic control and decreases insulin dose in patients with type 2 diabetes: A 26 week, randomised clinical trial (ELEGANT). Diabetologia, v. 57, n. 9, p. 1812–1819, 2014.

YOSHIOKA, K.; YOSHIDA, T.; KONDO, M. Reduced Brown Adipose Tissue Thermogenesis and Metabo- lic Rate in Pre-Obese Mice Treated with Monosodium-L- Glutamate subsequently. Endocrinol. Japon., v. 38, n. 1, p. 75–79, 1991.

YU, X. et al. Leptinomimetic effects of the AMP kinase activator AICAR in leptin- resistant rats: Prevention of diabetes and ectopic lipid deposition. Diabetologia, v. 47, n. 11, p. 2012–2021, 2004.

ZHENG, J. et al. Liraglutide prevents fast weight gain and βWuhan, Hubei-cell dysfunction in male catch-up growth rats. Experimental Biology and Medicine, v. 240, n. 9, p. 1165–1176, 2015.

Documentos relacionados