• Nenhum resultado encontrado

Em plantas a AASADH é codificada pelo gene Aldh7a1 e o gene é bastante conservado entre plantas e animais.

Ensaios de western-blot em condições denaturantes mostraram que a AASADH de milho possui aproximadamente 54 kDa, mas na forma ativa se apresenta na forma de tetrâmero.

Como previsto no modelo da via da sacaropina, o AASA foi transformado em AAA mediante a redução do cofator NAD a NADH. Além disso, a enzima foi seletiva quanto ao cofator, não apresentando atividade na presença de NADP.

A enzima de endosperma de milho pode efetivamente transformar AASA em AAA; Estudos cinéticos com a AASADH de milho mostraram que a enzima é capaz de metabolizar diversos outros aldeídos além do AASA;

LKR/SDH e AASADH são co-expressas no endosperma em desenvolvimento, mas não em embriões e tecidos vegetativos, onde só AASADH é detectada;

Em coleóptilos, AASADH e LKR/SDH são induzidas por estresse salino, osmótico e oxidativo ao nível da transcrição, mas apenas AASADH produz proteína traduzida – AASADH pode estar envolvida em processos de detoxificação de aldeídos produzidos em condição de estresse;

Níveis de sacaropina e ácido aminoadípico aumentan no endosperma tratado com lisina, mas diminuem com NaCl. Pipecolato e prolina diminuem com lisina, sugerindo inibição da P5CR. Ao nível da transcrição não há mudanças significativas, possivelmente porque o ambiente na semente já está estressado e a via está totalmente ativa;

O nível de pipecolato é muito inferior que prolina e esta pode ser usada como osmoprotetor em endosperma de milho. O pipecolato pode estar envolvido em resposta a estresse biótico (resposta contra patógenos e herbívoros).

Referências Bibliográficas

Anderson O.D., Coleman-Derr D., Gu Y.Q. & Heath S. (2010) Structural and transcriptional analysis of plant genes encoding the bifunctional lysine ketoglutarate reductase saccharopine dehydrogenase enzyme. BMC Plant Biology 10, 113.

Arruda, P., Kemper, E.L., Papes, F. & Leite, A. (2000). Regulation of lysine catabolism in higher plants. Trends in Plant Science 5, 324–330.

Arruda, P., Sodek, L. & da Silva, W.J. (1982). Lysine-ketoglutarate reductase activity in developing maize endosperm. Plant Physiology 69, 988–989.

Aspen, A.J. & Meister, A. (1962). The Preparation and Some Properties of a-Aminoadipic- 6- Semialdehyde. Biochemistry 1, 600–605.

Azevedo, R.A. & Lea, P.J. (2001). Lysine metabolism in higher plants. Amino Acids 20, 261–279.

Battur, B., Boldbaatar, D., Umemiya-Shirafuji, R., Liao, M., Battsetseg, B., Taylor, D., Baymbaa, B. & Fujisaki, K. (2009). LKR/SDH plays important roles throughout the tick life cycle including a long starvation period. PloS One 4, e7136.

Bhattacharjee, J.K. (1985). alpha-Aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes. Critical Reviews in Microbiology 12, 131–51.

Brandt, A.B. (1975). In vivo incorporation of 14C lysine into the endosperm proteins of wild type and high-lysine barley. FEBS Letters 52, 288–291.

Brochetto-Braga, M.R., Leite, A. & Arruda, P. (1992). Partial purification and characterization of Lysine-Ketoglutarate Reductase in normal and Opaque-2 maize endosperms. Plant Physiology 98, 1139–1147.

Brocker, C., Cantore, M., Failli, P. & Vasiliou, V. (2011). Aldehyde dehydrogenase 7A1 (ALDH7A1) attenuates reactive aldehyde and oxidative stress induced cytotoxicity.

Chemico-Biological Interactions 191, 269–277.

Brocker, C., Lassen, N., Estey, T., Pappa, A., Cantore, M., Orlova, V. V, Chavakis, T., Kavanagh, K.L., Oppermann, U. & Vasiliou, V. (2010). Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. The Journal of Biological Chemistry 285, 18452–18463.

Buchanan, C.D., Lim, S., Salzman, R.A., Kagiampakis, I., Morishige, D.T., Weers, B.D., Klein, R.R., Pratt, L.H., Cordonnier-Pratt, M.-M., Klein, P.E. & Mullet, J.E. (2005). Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA.

Plant Molecular Biology 58, 699–720.

Chan, W.-M., Tang, W.-K., Cheng, C.H.K. & Fong, W.-P. (2003). Purification, N-terminal sequence determination and enzymatic characterization of antiquitin from the liver of grass carp. Comparative Biochemistry and Physiology Part B: Biochemistry and

Molecular Biology 136, 443–450.

Chou, P.Y. & Fasman, G.D. (1978). Prediction of the secondary structure of proteins from their amino acid sequence. Advances in Enzymology and Related Areas of Molecular

Biology 47, 45–148.

Dancis, J., Hutzler, J., Cox, R.P. & Woody, N.C. (1969). Familial hyperlysinemia with lysine-ketoglutarate reductase insufficiency. The Journal of Clinical Investigation 48, 1447–1452.

Deleu, C., Coustaut, M., Niogret, M. & Larher, F. (1999). Three new osmotic stress- regulated cDNAs identified by differential display polymerase chain reaction in rapeseed leaf discs. Plant, Cell and Environment 22, 979–988.

Epelbaum, S., McDevitt, R. & Falco, S.C. (1997). Lysine-ketoglutarate reductase and saccharopine dehydrogenase from Arabidopsis thaliana: nucleotide sequence and characterization. Plant Molecular Biology 35, 735–748.

Fellows, F.C. (1973). Biosynthesis and degradation of saccharopine, an intermediate of lysine metabolism. The Biochemical Journal 136, 321–327.

Fjellstedt, T.A. & Robinson, J.C. (1975). Purification and properties reductase of placenta.

Archives of Biochemistry and Biophysics 168, 536–548.

Fong, W.-P., Cheng, C.H.K. & Tang, W.-K. (2006). Antiquitin, a relatively unexplored member in the superfamily of aldehyde dehydrogenases with diversified physiological functions. Cellular and Molecular Life Sciences 63, 2881–2885.

Frizzi, A., Huang, S., Gilbertson, L.A., Armstrong, T.A., Luethy, M.H. & Malvar, T.M. (2008). Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. Plant Biotechnology Journal 6, 13–21.

Galili, G. (2002). New insights into the regulation and functional significance of lysine metabolism in plants. Annual Review of Plant Biology 53, 27–43.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D. & Bairoch, A. (2005). Protein Identification and Analysis Tools on the ExPASy Server (J.M. Walker, Ed.). The Proteomics Protocols Handbook, Humana Press.

Gaziola, S.A., Alessi, E.S., Guimaraes, P.E.O., Damerval, C. & Azevedo, R.A. (1999). Quality Protein Maize : a biochemical study of enzymes involved in lysine metabolism.

Journal of Agricultural and Food Chemistry 47, 1268–1275.

Gaziola, S.A., Teixeira, C.M.G., Lugli, J., Sodek, L. & Azevedo, R.A. (1997). The enzymology of lysine catabolism in rice seeds. Isolation , characterization , and regulatory properties of a lysine 2-oxoglutarate reductase/saccharopine dehydrogenase bifunction polypeptide. European Journal of Biochemistry 371, 364–371.

Gonçalves-Butruille, M., Szajner, P., Torigoi, E., Leite, A. & Arruda, P. (1996). Purification and characterization of the bifunctional enzyme Lysine-Ketoglutarate Reductase-Saccharopine Dehydrogenase from mayze. Plant Physiology 110, 765–771. Grove, J. & Henderson, L.M. (1968). The metabolism of D- and L-lysine in the intact rat,

Guerrero, F.D., Jones, J.T. & Mullet, J.E. (1990). Turgor-responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes. Plant Molecular Biology 15, 11–26.

Higashino, K., Fujioka, M., Aoki, T. & Yamamura, Y. (1967). Metabolism of lysine in rat liver. Biochemical And Biophysical Research Communications 29, 95–100.

Higashino, K., Tsukada, K. & Lieberman, I. (1965). Saccharopine, a product of lysine breakdown by mammalian liver. Biochemical And Biophysical Research

Communications 20, 285–290.

Houmard, N.M., Mainville, J.L., Bonin, C.P., Huang, S., Luethy, M.H. & Malvar, T.M. (2007). High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. Plant Biotechnology Journal 5, 605–614.

Hutzler, J. & Dancis, J. (1968). Conversion of lysine to saccharopine by human tissues.

Biochimica et Biophysica Acta 158, 62–69.

Jones, E.E. & Broquist, H.P. (1966). Saccharopine , an intermediate of the aminoadipic acid pathway of lysine biosynthesis. III. Aminoadipic semialdehyde-glutamate reductase. The Journal of Biological Chemistry 241, 3430–3434.

Kemper, E.L., Cordeiro-Neto, G., Papes, F., Moraes, K.C., Leite, A. & Arruda, P. (1999). The role of opaque2 in the control of lysine-degrading activities in developing maize endosperm. The Plant Cell 11, 1981–1993.

Kemper, E.L., Cord-Neto, G., Capella, A.N., Gonçalves-Butruile, M., Azevedo, R.A. & Arruda, P. (1998). Structure and regulation of the bifunctional enzyme lysine- oxoglutarate reductase-saccharopine dehydrogenase in maize. European Journal of

Biochemistry 253, 720–729.

Kirch, H.-H., Bartels, D., Wei, Y., Schnable, P.S. & Wood, A.J. (2004). The ALDH gene superfamily of Arabidopsis. Trends in Plant Science 9, 371–377.

Kirch, H.-H., Schlingensiepen, S., Kotchoni, S., Sunkar, R. & Bartels, D. (2005). Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana. Plant Molecular Biology 57, 315–32.

Kotchoni, S.O., Kuhns, C., Ditzer, A., Kirch, H.H. & Bartels, D. (2006). Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to

abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant,

Cell and Environment 29, 1033–1048.

Kuo, M.H., Saunders, P.P. & Broquist, H.P. (1964). Lysine biosynthesis in yeast: a new metabolite of α -aminoadipic acid. The Journal of Biological Chemistry 239, 508–515. Kyte, J. & Doolittle, R.F. (1982). A simple method for displaying the hydropathic character

of a protein. Journal of Molecular Biology 157, 105–132.

De la Fuente, J.L., Rumbero, A., Marti, J.F. & Liras, P. (1997). Δ-1-Piperideine-6- carboxylate dehydrogenase, a new enzyme that forms α-aminoadipate in Streptomyces clavuligerus and other cephamycin C-producing actinomycetes. Biochemical Journal 64, 59–64.

Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

Less, H., Angelovici, R., Tzin, V. & Galili, G. (2011). Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. The Plant Cell 23, 1264–1271.

Long, X., Liu, Q., Chan, M., Wang, Q. & Sun, S.S.M. (2013). Metabolic engineering and profiling of rice with increased lysine. Plant Biotechnology Journal 11, 490–501.

De Marco, A., Vigh, L., Diamant, S. & Goloubinoff, P. (2005). Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress & Chaperones 10, 329–339.

Markovitzs, P.J. & Chuang, D.T. (1987). The bifunctional aminoadipic semialdehyde synthase in lysine degradation. Separation of reductase and dehydrogenase domains by limited proteolysis and column chromatography. The Journal of Biological Chemistry 262, 9353–9358.

Markovitzs, P.J., Chuang, D.T. & Cox, R.P. (1984). Familial hyperlysinemias. Purification and characterization of the bifunctional aminoadipic semialdehyde synthase with lysine-ketoglutarate reductase and saccharopine dehydrogenase activities. The Journal

of Biological Chemistry 259, 11643–11646.

Mertz, E.T., Bates, L.S. & Nelson, O.E. (1964). Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145, 279–280.

Mills, P.B., Struys, E., Jakobs, C., Baxter, P., Baumgartner, M., Willemsen, M.A.A.P., Omran, H., Tacke, U., Uhlenberg, B., Weschke, B. & Clayton, P.T. (2006). Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nature Medicine 12, 307–309.

Moller, B.L. (1976). Lysine Catabolism in Barley (Hordeum vulgare L.). Plant

Physiologyhysiology 57, 687–692.

Moulin, M., Deleu, C. & Larher, F. (2000). L-Lysine catabolism is osmo-regulated at the level of lysine- ketoglutarate reductase and saccharopine dehydrogenase in rapeseed leaf discs. Plant Physiology and Biochemistry 38, 577–585.

Moulin, M., Deleu, C., Larher, F. & Bouchereau, A. (2006). The lysine-ketoglutarate reductase-saccharopine dehydrogenase is involved in the osmo-induced synthesis of pipecolic acid in rapeseed leaf tissues. Plant Physiology and Biochemistry 44, 474– 482.

Nabeta, K. & Koyama, M. (1973). Identification of saccharopine and its lactam in buckwheat seeds (Fagopirum esculenturn Moench). Agricultural and Biological

Chemistry 37, 1401–1406.

Nanjo, T., Kobayashi, M., Yoshiba, Y., Sanada, Y., Wada, K., Tsukaya, H., Kakubari, Y., Yamaguchi-Shinozaki, K. & Shinozaki, K. (1999). Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. The Plant Journal 18, 185–193.

Neshich, I.P., Kiyota, E. & Arruda, P. (2013). Genome-wide analysis of lysine catabolism in bacteria reveals new connections with osmotic stress resistance. The ISME Journal 7, 2400–2410.

Papes, F., Kemper, E.L., Cord-Neto, G., Langone, F. & Arruda, P. (1999). Lysine degradation through the saccharopine pathway in mammals: involvement of both bifunctional and monofunctional lysine-degrading enzymes in mouse. Biochemical

Journal 563, 555–563.

Papes, F., Surpili, M.J., Langone, F., Trigo, J.R. & Arruda, P. (2001). The essential amino acid lysine acts as precursor of glutamate in the mammalian central nervous system.

Poole, R.C. & Halestrap, A.P. (1989). Purification of aldehyde dehydrogenase from rat liver mitochondria by alpha-cyanocinnamate affinity chromatography. The

Biochemical Journal 259, 105–110

Rao, V. V, Pan, X. & Chang, Y.F. (1992). Developmental changes of L-lysine- ketoglutarate reductase in rat brain and liver. Comparative Biochemistry and

Physiology - Part B 103, 221–224.

Reyes, A.R., Bonin, C.P., Houmard, N.M., Huang, S. & Malvar, T.M. (2009). Genetic manipulation of lysine catabolism in maize kernels. Plant Molecular Biology 69, 81– 89.

Rodrigues, S.M., Andrade, M.O., Gomes, A.P.S., Damatta, F.M., Baracat-Pereira, M.C. & Fontes, E.P.B. (2006). Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought , salinity , and oxidative stress. Journal of Experimental Botany 57, 1909–1918.

Roosens, N.H., Thu, T.T., Iskandar, H.M. & Jacobs, M. (1998). Isolation of the ornithine- delta-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiology 117, 263–271.

Saunders, P.P. & Broquist, H.P. (1966). Saccharopine, an intermediate of the aminoadipic acid pathway of lysine biosynthesis. IV. Saccharopine dehydrogenase. The Journal of

Biological Chemistry 241, 3435–3440.

Serrano, G.C.D.M., Silva Figueira, T.R., Kiyota, E., Zanata, N. & Arruda, P. (2012). Lysine degradation through the saccharopine pathway in bacteria: LKR and SDH in bacteria and its relationship to the plant and animal enzymes. FEBS Letters 586, 905– 911.

Shin, J.-H., Kim, S.-R. & An, G. (2009). Rice aldehyde dehydrogenase7 is needed for seed maturation and viability. Plant Physiology 149, 905–915.

Sodek, L. & Wilson, M. (1970). Incorporation of leucine-14C and lysine-14C into protein in the developing endosperm of normal and opaque-2 corn. Archives of Biochemistry

and Biophysics 140, 29–38.

Sodek, L., & Wilson, C. M. (1971). Amino acid composition. Journal of Agricultural and

Stroeher, V.L., Boothe, J.G. & Good, A.G. (1995). Molecular cloning and expression of a turgor-responsive gene in Brassica napus. Plant Molecular Biology 27, 541–551. Struys, E.A. & Jakobs, C. (2010). Metabolism of lysine in alpha-aminoadipic semialdehyde

dehydrogenase-deficient fibroblasts: evidence for an alternative pathway of pipecolic acid formation. FEBS Letters 584, 181–186.

Tang, W.-K., Cheng, C.H.K. & Fong, W.-P. (2002). First purification of the antiquitin protein and demonstration of its enzymatic activity. FEBS Letters 516, 183–186.

Tang, G., Miron, D., Zhu-Shimoni, J.X. & Galili, G. (1997). Regulation of lysine catabolism through lysine-ketoglutarate reductase and saccharopine dehydrogenase in Arabidopsis. The Plant Cell 9, 1305–1316.

Tang, W.K., Wong, K.B., Lam, Y.M., Cha, S.S., Cheng, C.H.K. & Fong, W.P. (2008). The crystal structure of seabream antiquitin reveals the structural basis of its substrate specificity. FEBS Letters 582, 3090–3096.

Tsai, C.-H. & Henderson, L.V.M. (1974). of O-Phosphohydroxylysine in Rat Liver. The

Journal of Biological Chemistry 249, 5790–5792.

Woody, N.C. (1974). Hyperlysinaemia. Archives of Disease in Childhood, 971.

Xu, H., Andi, B., Qian, J., West, A.H. & Cook, P.F. (2006). The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochemistry and Biophysics 46, 43–64. Yancey, P.H. (2005). Organic osmolytes as compatible, metabolic and counteracting

cytoprotectants in high osmolarity and other stresses. The Journal of Experimental

Biology 208, 2819–2830.

Zabriskie, T.M. & Jackson, M.D. (2000). Lysine biosynthesis and metabolism in fungi.

Documentos relacionados