• Nenhum resultado encontrado

7.1. CONCLUSÃO GERAL

As melhores razões C:N para atingir as melhores produções de ácido succínico utilizando-se glicose como fonte de carbono foram de: 1:12,5; 1:15; 1:20 e 1:25. Quando utilizou-se xilose ou sacarose como fonte de carbono pode-se utilizar uma faixa mais ampla de razões C:N.

As variáveis que mais influenciaram o processo de produção de ácido succínico foram: pH, temperatura e concentração de extrato de levedura. As melhores condições para produção de ácido succínico foram temperatura na faixa de 37-41°C, concentração de extrato de levedura acima de 14 g.L-1 e pH ao redor de 7.

REFERÊNCIAS BIBLIOGRÁFICAS

AGARWAL, L.; ISAR, J.; MEGHWANSHI, G.K.; SAXENA, R.K. A cost effective fermentative production of succinic acid from cane molasses and corn steep liquor by Escherichia coli. Journal of Applied Microbiology, v.100, p.1348–1354, 2006. AGARWAL, L.; ISAR, J.; MEGHWANSHI, G.K.; SAXENA, R.K. Influence of environmental and nutritional factors on succinic acid production and enzymes of reverse tricarboxylic acid cycle from Enterococcus flavescens. Enzyme Microbiology Technology, v.40, p.629–636, 2007.

ALVARADO-MORALES, M.; GUNNARSSON, I. B.; FOTIDIS, I.A.; VASILAKOU, E.; LYBERATOS, G.; ANGELIDAKI, I. Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Research, p.126–132, 2015.

ALVARADO-MORALES, M.; TERRA, J.; GERNAEY, K.V.; WOODLEY, J.M.; GANI, R. Biorefining: computer aided tools for sustainable design and analysis of bioethanol production. Chemical Engineering Research and Design, v.87, p.1171–1183, 2009.

ANDERSSON, C.; HELMERIUS, J.; HODGE, D.; BERGLUND, K.A.; ROVA, U. Inhibition of succinic acid production in metabolically engineered Escherichia coli by neutralizing agent, organic acids and osmolarity. Biotechnology Progress, v.25, p.116–123, 2009.

BEAUPREZ, J.J.; DE MEY, M.; SOETAERT, W.K. Microbial succinic acid production: Natural versus metabolic engineered producers. Process Biochemistry, v.45, p.1103–1114, 2010.

BECHTHOLD, I.; BRETZ, K.; KABASCI, S.; KOPITZKY, R.; SPRINGER, A. Succinic Acid: A new platform chemical for biobased polymers from renewable resources. Chemical Engineering Technology, v.31:5, p.647–654, 2008.

BOMTEMPO, J.V.; ALVES, F.C.; OROSKI, F.A. Developing new platform chemicals: what is required for a new bio-based molecule to become a platform chemical in the bioeconomy?. Faraday Discussion, v. 202, p.213-225, 2017.

BOZELL, J.J.; PETERSEN, G.R. Technology development for the production of biobased products from biorefinery carbohydrates - The US Department of Energy’s “Top 10” revisited. Green Chemistry, v.12, p.539–554, 2010.

BRETZ, K.; KABASCI, S. Feed-control development for succinic acid production with Anaerobiospirillum succiniciproducens. Biotechnology Bioengineering, v.109, p.1187–1192, 2012.

CHEN, K.Q.; JIANG, M.; WEI, P.; YAO, J.M.; WU, H. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes. Applied Biochemical Biotechnoly, v.160, p.477–485, 2010.

CHEN, K.; ZHANG, H.; MIAO, Y.; WEI, P.; CHEN, J. Simultaneous saccharification and fermentation of acid-pretreated rapeseed meal for succinic acid production using Actinobacillus succinogenes. Enzyme and Microbial Technology, v. 48, n. 4-5, p.339-344, 2011.

CHENG, K.K.; ZHAO, X.B.; ZENG, J.; ZHANG, J.A. Biotechnological production of succinic acid: current state and perspectives. Biofuels, Bioproducts Biorefining, v.6, p.302–318, 2012.

CIMINI, Donatella et al. Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate. Bioresource Technology, [s.l.], v. 222, p.355-360, 2016.

CLARK, D.P. The fermentation pathways of Escherichia coli. FEMS Microbiology Reviews, v.63, p. 223–234, 1989.

CLARK, J.H; DESWARTE, E.I.F.; FARMER, J.T. The integration of green chemistry into future biorefineries. Biofuel Bioproducts Biorefining, v.3, p.72–90, 2009.

CORONA-GONZALEZ, R.I.; BORIES, A.; GONZALEZ-ALVAREZ, V.; PELAYO- ORTIZ, C. Kinetic study of succinic acid production by Actinobacillus succinogenes ZT-130. Process Biochemistry, v.43, p.1047–1053, 2008.

CUI, Z.; GAO, C.; LI, J.; HOU, J.; LIN, C.S.K.; QI, Q. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metabolic Engineering, v.42, p.126-133, 2017.

CUKALOVIC, A.; STEVENS, C.V. Feasibility of production methods for succinic acid derivatives: a marriage of renewable resources and chemical technology. Biofuel Bioproducts Biorefining, v.2, p.505–529, 2008.

DAVIS, C.P.; CLEVEN, D.; BROWN, J.; BALISH E. Anaerobiospirillum, a new genus of spiral-shaped bacteria. International Journal Systematic Bacteriology, v.26, p. 498-504, 1976.

DAVISON, B.H.; NGHIEM, N.P.; RICHARDSON, G.L. Succinic acid adsorption from fermentation broth and regeneration. Applied Biochemistry and Biotechnology, v.113, p. 653–669, 2004.

DE JONG, E., HIGSON, A., WALSH, P., WELLISCH, M. Product developments in the biobased chemicals arena. Biofuels, Bioproducts Biorefining, v.6, p.606–624, 2012.

DELHOMME, C.; WEUSTER-BOTZ, D.; KUHN, F.E. Succinic acid from renewable resources as a C4 building-block chemical - a review of the catalytic possibilities in aqueous media. Green Chemistry, v.11, p.13–26, 2009.

DESSIE, W., ZHANG, W., XIN, F., DONG, W., ZHANG, M., MA, J., JIANG, M. Succinic acid production from fruit and vegetable wastes hydrolyzed by on site enzyme mixtures through solid state fermentation. Bioresource Technology, v.247, p.1177–1180, 2018a.

DESSIE, Wubliker et al. Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Applied Microbiology and Biotechnology, [s.l.], v.102, n.23, p.9893-9910, 2018b.

DU, C.; LIN, S.K.C.; KOUTINAS, A.; WANG, R.; WEBB, C. Succinic acid production from wheat using a biorefining strategy. Applied Microbiology Biotechnology, v.76, p.1263–1270, 2007.

DU, C.; LIN, S.K.C.; KOUTINAS, A.; WANG, R.; DORADO, M. P.; WEBB, C. A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Bioresource Technology, v.99, n.17, p. 8310–8315, 2008.

GALACTION, A.I.; POŞTARU, M.; CAŞCAVAL, D.; KLOETZER, L. Selective separation of carboxylic acids obtained by succinic acid fermentation using facilitated pertraction, Solvent Extraction and Ion Exchange, v.31, n.2, p.171-183 (2013) GAO, C.; YANG, X.; WANG, H.; RIVERO, C.P.; LI, C.; CUI, Z.; QI, Q.; E LIN, C.S.K. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnology Biofuels, v.9, p.179, 2016.

GIACOMELLI, F.C.; GIACOMELLI, C.; AMADORI, M.F., SCHMIDT, V. E SPINELLI, A. Inhibitor effect of succinic acid on the corrosion resistance of mild steel: electrochemical, gravimetric and optical microscopic studies. Materials Chemistry and Physics, v.83, p.124-128, 2004.

GLASSNER, D.A.; ELANKOVAN, P.; BEACOM, D.R.; BERGLUND, K.A. Purification Process for succinic acid produced by fermentation. Applied Biochemistry Biotechnology, v.51/52, p.73-82, 1995.

GUETTLER, M.V., JAIN, M.K., SONI, B.K. (1996) Process for making succinic acid, microorganisms for use in the process and methods of obtaining the microorganisms. US Patent 5,504,004.

GLUETTLER, M.V.; RUMLER, D.; JAIN, M.K. Actinobacillus succinogenes sp. Nov., a novel succinic acid producing strain from the bovine rumen. International Journal Systematic Bacteriology, v.49, p.207-216, 1999.

HEERDEN, C.D.; NICOL, W. Continuous and batch cultures of Escherichia coli KJ134 for succinic acid fermentation: metabolic flux distributions and production characteristics. Microbial Cell Factories, v.12, p.80, 2013.

HONG, Y.K., HONG, W.H., CHANG, H.N. Selective extraction of succinic acid from binary mixture of succinic acid and acetic acid. Biotechnology Letter, v.22, p.871– 874, 2000.

HONG, S.H.; LEE, S.Y. Importance of redox balance on the production of succinic acid by metabolically engineered Escherichia coli. Applied Microbioliogy Biotechnology, v.58, p.286–290, 2002.

HONG, S.H. Systems approaches to succinic acid producing microrganisms. Biotechnology and Bioprocess Engineering, v.12, p.73-79, 2007.

ISAR, J., AGARWAL, L., SARAN, S., SAXENA, R.K. (2006a) Succinic acid production from Bacteroides fragilis: Process optimization and scale up in a bioreactor. Anaerobe, v.12, p.231-237.

ISAR, J., AGARWAL, L., SARAN, S., SAXENA, R.K. (2006b) A statistical method for enhancing the production of succinic acid from Escherichia coli under anaerobic conditions. Bioresource Technology, v.97, p.1443-1448.

KIM, T.Y.; KIM,H.U.; SONG,H.; LEE, S.Y. Insilico analysis of the effects of H2 and CO2

on the metabolism of a capnophilic bacterium Mannheimia succiniciproducens. Journal Biotechnology, v.144, p.184–189, 2009.

KUHNERT, P.; SCHOLTEN, E.; HAEFNER, S.; MAYOR, D.; FREY, J. Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen. International Journal of Systematic and Evolutionary Microbiology, v.60, p.44–50, 2010.

LANDUCCI, R.; GOODMAN, B.; WYMAN, C. Methology for evaluating the economics of biologically producing chemicals and materials from alternative feedstocks. Applied Biochemistry Biotechnology, v.45/46, p.678-696, 1994.

LANE, J. The 10 green chemicals driving a disruptive new biobased industry. 2018. Disponível em: http://biofuelsdigest.com/bdigest. Acesso em: 18 ago. 2019.

LEE, P.C., LEE, W.G., LEE, S.Y., CHANG, H.N. Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production. Process Biochemistry, v.35, p.49-55, 1999a.

LEE, P.C.; LEE, W.G.; KWON, S.; LEE, S.Y.; CHANG, H.N. Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2/CO2 supply and glucose

concentration. Enzyme Microbiology Technology, v.24, p.549–554, 1999b.

LEE, P.C. et al. Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey. Applied Microbiology And Biotechnology, v.54, n.1, p.23-27, 2000.

LEE, P.C.; LEE, W.G.; LEE, S.Y.; CHANG, H.N. Kinetic study on succinic acid and acetic acid formation during continuous cultures of Anaerobiospirillum succiniproducens grown on glycerol. Bioprocess and Biosystems Engineering, v.30, p.2143–6, 2010.

LEE, P.C.; LEE, W.G.; HONG, S.H. E CHANG H.N. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Applied Microbiology Biotechnology, v.58, p.663-668, 2002. LEE, P.C.; LEE, W.G.; HONG, S.H.; CHANG H.N.; PARK, S.C. Biological conversion of wood hydrolyaste to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnology Letters, v.25, p.111-114, 2003a.

LEE, P.C., LEE, S.Y., HONG, S.H., CHANG, H.N. Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor. Bioprocess Biosystem Engineering, v.26, p.63-67, 2003b.

LI, Q.; YANG, M.H.; WANG, D.; LI, W.L.; WU, Y.; ZHANG, Y.J.; XING, J.M.; SU, Z.G. Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes. Bioresource Technology, v.101, p.3292–3294, 2010.

LI, J.; ZHENG, X.Y.; FANG, X.J.; LIU, S.W.; CHEN, K.Q.; JIANG, M.; WEI, P.; OUYANG, P.K. A complete industrial system for economical succinic acid production by Actinobacillus succinogenes. Bioresource Technology, v.102, p.6147-6152, 2011.

LIN, C.S.K.; LUQUE, R.; CLARK, J.H.; WEBB, C.; DU, C. Wheat-based biorefining strategy for fermentative production and chemical transformations of succinic acid. Biofuels Bioproducts Biorefining, v.6, p.88-104, 2012.

LIN, S.K.C.; DU, C.; KOUTINAS, A.; WANG, R.; WEBB, C. Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochemical Engineering Journal, v.41, p.128–135, 2008.

LIU, Y-P., ZHENG, P., SUN, Z-H., NI, Y., DONG, J-J., ZHU, L-L. (2008) Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresource Technology, v.99, p.1736-1742.

LIU, Y.P.; ZHENG, P.; SUN, Z.H.; NI, Y.; DONG, J.J.; WEI, P. Strategies of pH control and glucose fed-batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593. Journal of Chemical Technology Biotechnology, v.83, p.722–729, 2008b.

LU, S.Y.; EITEMAN, M.A.; ALTMAN, E. Effect of CO2 on succinate production in dual-

phase Escherichia coli fermentations. Journal Biotechnology, v.143, p.213-223, 2009.

LU, S.Y.; EITEMAN, M.A.; ALTMAN, E. Effect of flue gas components on succinate production and CO2 fixation by metabolically engineered Escherichia coli. World

Journal Microbiology Biotechnology, v.26, p.429–435, 2010.

LUQUE, R.; LIN, C.S.K.; DU, C.Y.; MACQUARRIE, D.J.; KOUTINAS, A.; WANG, R.H.; WEBB, C.; CLARK, J.H. Chemical transformations of succinic acid recovered from fermentation broths by a novel direct vacuum distillation-crystallisation method. Green Chemistry, v.11, p.193–200, 2009.

MCKINLAY, J.B.; VIEILLE, C.; ZEIKUS, J.G. Prospects for a bio-based succinate industry. Applied Microbiology Biotechnology, v.76, p.727–740, 2007.

MCKINLAY, J.B.; ZEIKUS, J.G.; VIEILLE, C. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Applied and Environmental Microbiology, v.71, n.11, p.6651-6656, 2005.

MCKINLAY, J.B.; VIEILLE, C. 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations.

Metabolic Engineering, v.10, p.55–68, 2008.

MOON, S.K.; WEE, Y.J.; YUN, J.S. E RYU, H.W. Production of fumaric acid using rice bran and subsequent conversion to succinic acid through a two-step process. Applied Biochemistry and Biotechnology, v.113/116, p.843-855, 2004.

MORALES, M.; ATAMAN, M.; BADR, S.; LINSTER, S.; KOURLIMPINIS, I.; PAPADOKONSTANTAKIS, S.; HATZIMANIKATIS, V.; HUNGERBUHLER, K. Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering. Energy Environmenayl Science, v.9, p.2794-2805, 2016. NGHIEM, N.P.; DAVISON, B.E.S.; RICHARDSON, G.R. Production of succinic acid by Anaerobiospirillum succiniciproducens. Applied Biochemistry and Biotechnology, v.63/65, p.565-576, 1997.

OH, I.J., LEE, H.W., PARK, C.H., LEE, S.Y., LEE, J. Succinic acid production by continuous fermentation process using Mannheimia succiniciproducens LPK7. Journal Microbiology Biotechnology, v.18, p.908–912, 2008.

ONG, K. L.; LI, C.; LI, X.; ZHANG, Y.; XU, J.; LIN, C.S.K. Co-fermentation of glucose and xylose from sugarcane bagasse into succinic acid by Yarrowia lipolytica. Biochemical Engineering Journal, v. 148, p.108-115, 2019.

RAAB, A.M.; LANG, C. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae. Bioengineering Bugs, v.2, p.120–123, 2011.

RYAN, C.; DORSCH, R. Commercialization of biobased products. Applied Biochemistry and Biotechnology, v.98/100, p.1209, 2002.

SAMUELOV, N.S.; DATTA, R.; JAIN, M.K.; ZEIKUS, J.G. Whey fermentation by Anaerobiospirillum succiniciproducens for production of a succinate-based animal feed additive. Applied Environmental Microbiology, v.65, p.2260–3, 1999.

SAMUELOV, N.S.; LAMED, R.; LOWE, S.; ZEIKUS, J.G. Influence of CO2-HCO3 levels

and pH on growth, succinate production and enzyme activities of Anaerobiospirillum succiniciproducens. Applied Environmental Microbiology, v.57, p.3013-3019, 1991.

SÁNCHEZ, A.M.; BENNETT, G.N.; KA-YIU S, Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnology Progress, v.21, p.358–365, 2005.

SAUER, M.; PORRO, D.; MATTANOVICH, D.; BRANDUARDI, P. Microbial production of organic acids: expanding the markets. Trends in Biotechnology, v.26, n.2, 2008. SCHOLTEN E.; DAGELE D. Succinic acid production by a newly isolated bacterium. Biotechnology Letter, v.30, p.2143–6, 2008.

SCHOLTEN, E.; RENZ, T.; THOMAS, J. Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniciproducens DD1. Biotechnology Letters, v.31, n.12, p.1947-1951, 2009.

SHELDON, R.A. Utilisation of biomass for sustainable fuels and chemicals: molecules, methods and metrics. Catalysis Today, v.167, p.3-13, 2011.

SMIDT M: A sustainable supply of succinic acid. Euro Biotech News, v.10(C), p.11– 12, 2011.

SONG, H., LEE, J.W., CHOI, S., YOU, J.K., HONG, W.H., LEE, S.Y. Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic

acid production. Biotechnology Bioengineering, v.98, p.1296–1304, 2007.

SONG, H.; LEE, S.Y. Production of succinic acid by bacterial fermentation. Enzyme and Microbial Technology, v.39, p.352–361, 2006.

TAN, Jian Ping et al. Incorporation of CO2 during the production of succinic acid from

sustainable oil palm frond juice. Journal of CO2 Utilization, v.26, p.595-601, 2018.

TAYLOR, R.; NATTRASS, L.; ALBERTS, G.; ROBSON, P.; CHUDZIAK, C.; BAUEN, A.; LIBELLI, I.M.; LOTTI, G.; PRUSSI, M.; NISTRI, R.; CHIARAMONTI, D.; CONTRERAS, A.L.; BOS, H.; EGGINK, G.; SPRINGER, J.; BAKKER, R.; REE, R.

From the Sugar Platform to Biofuels and Biochemical, Final Report for the European Commission, 2015.

TEE, W.; KORMAN, TM.; WATERS, MJ.; MACPHEE, A.; JENNEY, A.; JOYCE, L. Three cases of Anaerobiospirillum succiniciproducens bacteremia confirmed by 16S rRNA gene sequencing. Journal Clinical Microbiology, v.36, p.1209–13, 1998.

THAKKER, C.; SAN, K.Y.; BENNETT, G.N. Production of succinic acid by engineered E. coli strains using soybean carbohydrates as feedstock under aerobic fermentation conditions. Bioresource Technology, v.130, p.398–405, 2013.

URBANCE, S.E.; POMETTO III, A.L.; DISPIRITO, A.A. E DEMERCI, A. Medium evaluation and plastic composite support ingredient selection for biofilm formation and succinic acid production by Actinobacillus succinogenes. Food Biotechnology, v.17, n.1, p.53-65, 2003.

VALENTINE, B. Office of industrial technologies. Production of succinic acid from wood wastes and plants. Chemicals, www.oit.doe.gov, 1999.

VAN DER WEFF M.J.; GUETTLER, M.V.; JAIN, M.K. E ZEIKUS, J.G. Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus succinogenes sp. 130Z. Archives Microbiology, v.167, p.332-342, 1997.

VEMURI, G.N.; EITEMAN, M.A.; ALTMAN, E. Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Applied Environmental Microbiology, v.68, p.1715–1727, 2002b. VEMURI, G.N.; EITEMAN, M.A.; ALTMAN, E. Succinate production in dualphase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. Journal Industrial Microbiology Biotechnology, v.28, p.325– 332, 2002a.

WANG, C.X.; LI, Q,.;TANG, H.; YAN, D.J.; ZHOU, W.; XING, J.M.; WAN, Y.H.; Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Bioresource Technology, v.116, p.366–371, 2012.

WANG, C.; THYGESEN, A.; LIU, Y.; LI, Q.; YANG, M.; DANG, D.; WANG, Z.; WAN, Y.; LIN, W.; XING, J. Bio-oil based biorefinery strategy for the production of succinic acid. Biotechnology for Biofuels, v.6, p.74, 2013.

WEE, Y.J.; YUN, J.S.; KANG, K.H.; RYU, H.W. Continuous productions of succinic acid by a fumarate-reducing bacterium immobilized in a hollow-fiber bioreactor. Applied Biochemistry and Biotechnology, v.98/100, p.1093-1104, 2002.

WERPY, T.; PETERSEN, G. Top value added chemicals from biomass. Volume I – Results of screening for potential candidates from sugars and synthesis gas. US Department of Energy (US DOE) Oak Ridge, USA, 2004.

WERPY, T.; FRYE, J.; HOLLADAY, J. Succinic acid - A model building block for chemical production from renewable resources. In: Kamm B, Gruber PR and Kamm M. Biorefineries-Industrial Processes and Products: Status Quo and Future Directions. Wiley-VCH, p.367–379, 2010.

WILLKE, T.H.; VORLOP, K-D. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied Microbiology Biotechnology, v.66, p.131–42, 2004.

WU, H.; LI, Z.M.; ZHOU, L.; XIE, J.L.; YE, Q. Enhanced anaerobic succinic acid production by Escherichia coli NZN111 aerobically grown on gluconeogenic carbon sources. Enzyme Microbiology Technology, v.44, p.165–169, 2009.

WU, H.; LI, Z.M.; ZHOU, L.; YE, Q. Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Applied Environmental Microbiology, v.73, p.7837–7843, 2007.

WU, et al. Succinic acid production and CO2 fixation using a metabolically engineered

Escherichia coli in a bioreactor equipped with a self-inducing agitator. Bioresource Technology, v.107, p.376-384, 2012.

XU, J.; GUO, B.H. Poly(butylene succinate) and its copolymers: research, development and industrialization. Biotechnology Journal, v.5, n.1, p.1149–1163, 2010.

YU, J.; LI, Z.; YE, Q.; YANG, Y.; CHEN, S. Development of succinic acid production from corncob hydrolysate by Actinobacillus succinogenes. Journal of Industrial Microbiology and Biotechnology, v. 37, p.1033–1040, 2010.

YU, Jun-han et al. Combinatorial optimization of CO2 transport and fixation to improve

succinate production by promoter engineering. Biotechnology and Bioengineering, v.113, n.7, p.1531-1541, 2016.

YUZBASHEV, T.V.; YUZBASHEVA, E.Y.; LAPTEV, I.A.; SOBOLEVSKAYA, T.I.; VYBORNAYA, T.V.; LARINA, A.S.; GVILAVA, I.T.; ANTONOVA, S.V.; SINEOKY, S.P. Is it possible to produce succinic acid at a low pH? Bioengineered Bugs, v.2, p.115– 119, 2011.

YUZBASHEV, T.V.; YUZBASHEVA, E.Y.; SOBOLEVSKAYA, T.I.; LAPTEV, I.A.; VYBORNAYA, T.V.; LARINA, A.S.; MATSUI, K.; FUKUI, K.; SINEOKY, S.P.; Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnology Bioengineering, v.107, n.4, p.673-82, 2010.

ZEIKUS, J.G.; JAIN, M.K.; ELANKOVAN, P. Biotechnology of succinic acid production and markets for derived industrial products. Applied Microbiology Biotechnology, v.51, p.545-552, 1999.

ZHANG, Y.J.; LI, Q.; ZHANG, Y.X.; WANG, D.; XING, J.M. Optimization of succinic acid fermentation with Actinobacillus succinogenes by response surface methodology (RSM). Journal of Zhejiang University Science B, v.13, n.2, p.103-110, 2012. ZHU, J.F.;THAKKER, C.; SAN, K.Y.; BENNETT, G. Effect of culture operating conditions on succinate production in a multiphase fed-batch bioreactor using an engineered Escherichia coli strain. Applied Microbiology Biotechnology, v.92, p.499–508, 2011.

ZHU, L. W.; WANG, C.C.; LIU, R.S.; LI, H.M.; WAN, D.J.; TANG, Y.J. Actinobacillus succinogenes ATCC 55618 fermentation medium optimization for the production of succinic acid by response surface methodology, Journal of Biomedicine and Biotechnology, v. 2012, p.1-9, 2012.

ZOU, Wei et al. Significance of CO2 donor on the production of succinic acid by

Actinobacillus succinogenes ATCC 55618. Microbial Cell Factories, Whuran, v.10, n.1, p.1-10, 2011.

Documentos relacionados