• Nenhum resultado encontrado

CAPITULO 1 INTRODUÇÃO GERAL

2.4 Conclusão

Este estudo demonstrou que:

- O movimento das marés não influenciou o fluxo de CO2 e CH4 no solo nas duas

topografias e nas duas estações. Portanto, é possível comparar o influxo dos dois gases estudados quando amostrados em diferentes momentos do dia.

- A topografia é uma variação ambiental importante para o fluxo de gás nos manguezais. O CH4 atmosférico foi consumido e a produção de CO2 foi menor durante o

período seco nas altas topografias. Assim, o fluxo dos dois gases nas duas topografias deve ser analisado para tornar o estudo mais preciso.

- C e N orgânicos totais foram fundamentais para o fluxo de CO2, mas não

influenciaram o fluxo de CH4.

- Um maior fluxo de CO2 foi registrado no período seco e o CH4 não mostrou diferenças

- Não foi encontrada correlação entre os fatores microclimáticos e o fluxo de gás nas duas estações.

Agradecimentos

Ao Programa de alianças para Educação e a Capacitação da Organização dos Estados Americanos e o Grupo Coimbra de Universidades Brasileiras (PAEC-OEA-GCUB). À Universidade Federal do Pará, Programa de Pós-Graduação em Ciências Ambientais (UFPA-PPGCA). Museu Paraense Emílio Goeldi (MPEG) pela oportunidade de viabilizar este trabalho. Ao técnico em laboratório Paulo Sarmento, ao motorista Lucivaldo da Silva e a MSc. Maridalva Ribeiro pela colaboração nos trabalhos de campo.

Referências

ABICHOU, T. et al. Methane flux and oxidation at two types of intermediate landfill covers. Waste Management, v. 26, n. 11, p. 1305–1312, 2006.

ALLEN, D. et al. Seasonal variation in nitrous oxide and methane emissions from subtropical estuary and coastal mangrove sediments, Australia. Plant biology (Stuttgart,

Germany), v. 13, n. 1, p. 126–33, jan. 2011.

ALLEN, D. E. et al. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biology and

Biochemistry, v. 39, n. 2, p. 622–631, 2007.

BARNES, J. et al. Tidal dynamics and rainfall control N2O and CH4 emissions from a

pristine mangrove creek. Geophysical Research Letters, v. 33, n. 15, p. 4–9, 2006. BORGES, A. V.; ABRIL, G. Carbon Dioxide and Methane Dynamics in Estuaries.

Treatise on Estuarine and Coastal Science, v. 5, n. 1980, p. 119–161, 2011.

BOUILLON, S. et al. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, v. 22, n. 2, p. 1–12, 2008.

BRASIL. Marinha do Brasil. Centro de Hidrografia da Marinha. Tábuas de maré. Disponível em : https://www.marinha.mil.br 2018. Acesso em: 10 de maio 2018a

BREITHAUPT, J. L. et al. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Global Biogeochemical Cycles, v. 26, n. 3, p. 1–11, 2012.

BROOKES, P. C. et al. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and

BULMER, R. H.; LUNDQUIST, C. J.; SCHWENDENMANN, L. Sediment properties and CO2 efflux from intact and cleared temperate mangrove forests. Biogeosciences, v. 12, n. 20, p. 6169–6180, 2015.

CALL, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochimica et

Cosmochimica Acta, v. 150, p. 211–225, 2015.

CALL, M. et al. High pore-water derived CO 2 and CH 4 emissions from a macro-tidal mangrove creek in the Amazon region. Geochimica et Cosmochimica Acta, v. 247, p. 106–120, 2019.

CARVALHO, E. A. DE; JARDIM, M. A. G. Composição e estrutura florística em bosques de manguezais Paraenses, Brasil. Ciência Floresta, v. 27, n. 3, p. 923–930, 31 ago. 2017. CHANDA, A. et al. Measuring daytime CO2 fluxes from the inter-tidal mangrove soils of Indian Sundarbans. Environmental Earth Sciences, v. 72, n. 2, p. 417–427, 2014.

CHAUHAN, R. et al. Factors influencing spatio-temporal variation of methane and nitrous oxide emission from a tropical mangrove of eastern coast of India. Atmospheric

Environment, v. 107, p. 95–106, 2015.

CHEN-TUNG, A. C.; BORGES, ALBERTO V. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Research Part II: Topical Studies in

Oceanography, v. 56, n. 8–10, p. 578–590, 2009.

CHEN, G. C.; TAM, N. F. Y.; YE, Y. Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China. Science of the Total

Environment, v. 408, n. 13, p. 2761–2767, 2010.

CHEN, G. C.; TAM, N. F. Y.; YE, Y. Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil

characteristics. Soil Biology and Biochemistry, v. 48, p. 175–181, 2012.

DAI, M. et al. Spatial distribution of riverine DOC inputs to the ocean: An updated global synthesis. Current Opinion in Environmental Sustainability, v. 4, n. 2, p. 170–178, 2012. DALAL, R. C. et al. Magnitude and biophysical regulators of methane emission and consumption in the Australian agricultural, forest, and submerged landscapes. Plant and

Soil, v. 309, n. 1–2, p. 43–76, 2008.

DAVIDSON, E. A. et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazônia. Biogeochemistry, v. 48, p. 53–69, 2000.

DAVIDSON, E. A.; TRUMBORE, S. E. Gas diffusivity and production of CO2 in deep

soils of the eastern Amazon. Tellus B, v. 47, n. 5, p. 550–565, 1995.

DITTMAR, T.; LARA, R. J. Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazõnia, Brazil). Geochimica et Cosmochimica Acta, v. 65, n. 9, p. 1417–1428, 2001.

DONATO, D. C. et al. Mangroves among the most carbon-rich forests in the tropics.

Nature Geoscience, v. 4, n. 5, p. 293–297, 2011.

DUTTA, M. K. et al. Dynamics and exchange fluxes of methane in the estuarine mangrove environment of the Sundarbans, NE coast of India. Atmospheric Environment, v. 77, p. 631–639, 2013.

EARTH SYSTEM RESEARCH LABORATORY - NOAA. PRCP_CU_GAUGE_V1201. Disponível em: https://esrl.noaa.gov/gmd/ccgg/trends/global.html. Acesso em: 10 de abril. 2018a.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Manual de

Métodos de analises de solo. 3 ed. Brasília, DF: 2017. 574p.

FRANKIGNOULLE, M. Field measurements of air‐ sea CO2 exchange. Limnology and

Oceanography, v. 33, n. 3, p. 313–322, 1988.

FRIESEN, S. D.; DUNN, C.; FREEMAN, C. Decomposition as a regulator of carbon accretion in mangroves: a review. Ecological Engineering, v. 114, p. 173–178, 2018. GIRI, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, v. 20, n. 1, p. 154–159, 2011.

HAWKINS, J. E.; FREEMAN, C. Rising sea levels-potential effects upon terrestrial greenhouse gas production. Soil Biology and Biochemistry, v. 26, n. 3, p. 325–329, 1994. HAYES, D. J. et al. Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect. Environmental Research Letters, v. 11, n. 12, p. 124019, 2016.

INUBUSHI, K. et al. Factors influencing methane emission from peat soils: Comparison of tropical and temperate wetlands. Nutrient Cycling in Agroecosystems, v. 71, n. 1, p. 93–99, 2005.

ISLAM, K. R.; WEIL, R. R. Microwave irradiation of soil for routine measurement of microbial biomass carbon. Biology and Fertility of Soils, v. 27, n. 4, p. 408–416, 1998. JACOTOT, A.; MARCHAND, C.; ALLENBACH, M. Tidal variability of CO2and CH4

emissions from the water column within a Rhizophora mangrove forest (New Caledonia).

Science of the Total Environment, v. 631–632, p. 334–340, 2018.

KALEMBAS, S. J.; JENKINSON, D. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. Journal of the Science of Food

and Agriculture, v. 24, n. 9, p. 1085–1090, 1973

KAUFFMAN, J. B.; DONATO, D. C.; ADAME, M. F. Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. v. 117, p. 117, 2013.

KETTUNEN, A. et al. Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biology and Biochemistry, v. 31, n. 12, p. 1741–1749, out. 1999.

KIRUI, B. Y. K. et al. Effects of species richness, identity and environmental variables on growth in planted mangroves in Kenya. Marine Ecology Progress Series, v. 465, n. January, p. 1–10, 2012

KREUZWIESER, J.; BUCHHOLZ, J.; RENNENBERG, H. Emission of Methane and Nitrous Oxide by Australian Mangrove Ecosystems. Plant Biology, v. 5, n. 4, p. 423–431, 2003.

LARUELLE, G. G. et al. Evaluation of sinks and sources of CO2 in the global coastal

ocean using a spatially-explicit typology of estuaries and continental shelves. Geophysical

Research Letters, v. 37, n. 15, p. 1–6, 2010.

LEKPHET, S.; NITISORAVUT, S.; ADSAVAKULCHAI, S. Estimating methane emissions form mangrove area in Ranong Province, Thailand. Science Techology, v. 27, n. 1, p. 153–163, 2005.

LEOPOLD, A. et al. Influence of mangrove zonation on CO2 fluxes at the sediment-air

interface (New Caledonia). Geoderma, v. 202–203, p. 62–70, 2013.

LEOPOLD, A. et al. Temporal variability of CO2 fluxes at the sediment-air interface in

mangroves (New Caledonia). Science of the Total Environment, v. 502, p. 617–626, 2015.

LIVESLEY, S. J.; ANDRUSIAK, S. M. Temperate mangrove and salt marsh sediments are a small methane and nitrous oxide source but important carbon store. Estuarine, Coastal

and Shelf Science, v. 97, p. 19–27, 2012.

LYIMO, T. J. et al. Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain: Research Letter. Microbiology Letters, v. 291, n. 2, p. 247–253, 2009.

MAHER, D. T. et al. Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: Insights from automated in situ radioactive and stable isotope measurements.

Marine Chemistry, v. 168, p. 69–79, 2015.

MARTORANO, L. G.; PEREIRA, L. C. Estudos Climáticos do Estado do Pará: Classificação Climática (KÖPPEL) e deficiência Hídrica (Thornhtwhite, Mather). BOL.

DE GEOG. TEOR., v. 23, n. September 2017, p. 306–312, 1993.

MATTEUCCI, S. D.; COLMA, A. Metodología para el estudio de la vegetación. Universidad Nacional Experimental ―Francisco de Miranda‖, Venezuela., 2002.

MCEWING, K. R.; FISHER, J. P.; ZONA, D. Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in

MIDDELBURG, J. J. et al. Methane distribution in European tidal estuaries.

Biogeochemistry, v. 59, p. 95–119, 2002.

NÓBREGA, G. N. et al. Edaphic factors controlling summer (rainy season) greenhouse gas emissions (CO2 and CH4) from semiarid mangrove soils (NE-Brazil). Science of the

Total Environment, v. 542, p. 685–693, 2016

PEEL, M. C.; FINLAYSON, B. L.; MCMAHON, T. A. Updated world map of the K¨oppen-Geiger climate classification. Hydrology and Earth System Sciences, v. 11, n. 5, p. 439–473, 2007.

REGNIER, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean.

Nature Geoscience, v. 6, n. 8, p. 597–607, 2013.

RISK, D.; KELLMAN, L.; BELTRAMI, H. A new method for in situ soil gas diffusivity measurement and applications in the monitoring of subsurface CO2 production. Journal of

Geophysical Research: Biogeosciences, v. 113, n. 2, p. 1–9, 2008.

ROSENTRETER, J. A. et al. Factors controlling seasonal CO2 and CH4 emissions in three

tropical mangrove-dominated estuaries in Australia. Estuarine, Coastal and Shelf

Science, v. 215, p. 69–82, 2018.

ROYCHOWGHURY, T. et al. Temporal dynamics of CO2 and CH4 loss potentials in

response to rapid hydrological shifts in tidal freshwater wetland soils. Ecological

Engineering, v. 114, p. 104–114, 2018.

SILVA, S. B. E. Análise de solo para ciências agrárias. 2. ed. Belém-Pará, 2018. 174p SOUZA FILHO, P. W. M. Costa de manguezais de macromaré da Amazônia: cenários morfológicos, mapeamento e quantificação de áreas usando dados de sensores remotos.

Revista Brasileira de Geofisica, v. 23, n. 4, p. 427–435, dez. 2005.

SPARLING, G. P.; WEST, A. W. A direct extraction method to estimate soil microbial C: calibration in situ using microbial respiration and 14C labelled cells. Soil Biology and

Biochemistry, v. 20, n. 3, p. 337–343, 1988.

STOCKER, T.F., D. et al. Climate change 2013: the physical science basis. Working group i contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge; United Kingdom; New York, NY, USA, Cambridge University Press, 2013. v. 1, 1535p.

STRAGMANN, A.; BASHAN, Y.; GIANI, L. Methane in pristine and impaired mangrove soils and its possible effect on establishment of mangrove seedlings. Biol Fertil Soil, v. 44, n. July 2007, p. 511–519, 2008.

SUNDQVIST, E. et al. Short-term effects of thinning, clear-cutting and stump harvesting on methane exchange in a boreal forest. Biogeosciences, v. 11, n. 21, p. 6095–6105, 12 nov. 2014.

TEDESCO, M. J.; VOLKWEISS, S. J.; BOHNEN, H. Análises de solo, plantas e outros

materiais. Departamento de Solos. Universidade Federal do rio Grande do Sur, 1995.

174 p.

UPSTILL-GODDARD, R. C. et al. Methane in the southern North Sea: Low-salinity inputs, estuarine removal, and atmospheric flux. Global Biogeochemical Cycles, v. 14, n. 4, p. 1205–1217, 2000.

VANCE, E.; BROOKES, P.; JENKINSON, D. An extraction method for measuring soil microbial biomass c. Soil Eiol. Biochem., v. 19, n. 6, p. 703–707, 1987.

VERCHOT, L. V et al. Land-use change and biogeochemical controls of methane fluxes in soils of eastern Amazônia. Ecosystems, v. 3, n. 1, p. 41–56, 2000.

WANG, H. et al. Temporal and spatial variations of greenhouse gas fluxes from a tidal mangrove wetland in Southeast China. Environmental Science and Pollution Research, v. 23, n. 2, p. 1873–1885, jan. 2016

WANG, J. et al. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature, v. 539, n. 7629, p. 416–419, 2016.

WHALEN, S. C. Natural Wetlands and the Atmosphere. Environmental Engineering

CAPITULO 3 FLUXOS TEMPORAIS DE CH4 E CO2 NA INTERFACE ÁGUA

Documentos relacionados