• Nenhum resultado encontrado

Salmonella Minnesota e Salmonella Schwarzegrund foram identificados em vísceras comestíveis de frangos. O sorovar de maior frequência foi Minnesota. Identificou-se resistência em todos os isolados para ciprofloxacina, enrofloxacina, gentamicina e florfenicol. Os genes de virulência (invA) e resistência (blaTEM) foram identificados em 100% dos isolados.

Salmonella Schwarzengrund não apresentou genes de virulência (spvC) e resistência (sul1).

Salmonella Minnesota apresentou os dois genes de virulência e os dois genes de resistência investigados. Os isolados configuram risco para doença em humanos.

REFERÊNCIAS BIBLIOGRÁFICAS

1. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, Jones TF, Fazil A, Hoekstra RM. The global burden of nontyphoidal Salmonella gastroenteritis. International Collaboration on Enteric Disease 'Burden of Illness' Studies. Clin Infect Dis. 2010;50(6):882-9.

2. Evangelista J. Tecnologia de alimentos. São Paulo, Atheneu. 2002;2.

3. CDC. Centers for Disease Control and Prevention. Eight Multistate Outbreaks of Human Salmonella Infections Linked to Live Poultry in Backyard Flocks (Final Update). Salmonella homepage. Outbreaks. 2016. Acesso em 05 de jun 2017. Disponível em:

https://www.cdc.gov/salmonella/live-poultry-05-16/index.html

4. Brasil. Ministério da Saúde. Secretaria de Vigilância Sanitária. Doenças transmitidas por alimentos. Brasília: Ministério da saúde, 2015. [acesso em: 01 nov. 2016]. Disponível em:

http://u.saude.gov.br/images/pdf/2015/novembro/09/Apresenta----o-dados-gerais-DTA- 2015.pdf

5.Tiwari R, Singh SP, Singh R. Study on prevalence of Salmonella serotypes among poultry and cattle in and around Patnagar. J Vet Pub HIth. 2014;12(2):85-88.

6. Bhunia AK. Foodborne microbial pathogens: Mechanisms and pathogenesis. United States of America: Springer Science + Business Media, LLC. 2008;201-215.

7. Berndt A. Chicken cécum imunneresponse to Salmonella enterica serovars of diferente levels of invasiveness. Infection and Immunity. 2007;75(12):5993-6007.

8. D’Aoust JY, Maurer J. Salmonella species. Food Microbiology. Fundamentals and Fontiers.Washington. ASM Press. 2007;(3):187-188.

9. Iseenhuth-Jeanjean S, Roggentin P, Mikoleit M, Guibourdenche M, DE Pinna E, Nair S, Fileds PI, Weill FX. Supplement 2008-2010 (n° 48) to the White-Kauffman-Le Minor scheme.

Res Microbiol. 2014;165(7):526-30.

10. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature. J Clin Microbiol. 2000;38(7):2465-2467.

11. Hu L, Kopecko DJ. Typhoid Salmonella. In Millotis, M. D. and Bier, J. W. (Eds.).

International handbook of foodborne pathogens, 2003:151-165.

12. Gomes AVS, Quinteiro-Filho WM, Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Baskeville E, Akamine AT, Astolfi-Ferreira CS, Ferreira AJP, Palermo-Neto J.Overcrowding stress decreases macrophage activity and increases Salmonella Enteritidis invasion in broiler chickens. Avian Pathol. 2014;43(1):82-90.

13. Quinteiro Filho WM, Gomes AVS, Pinheiro ML, Ribeiro A, Ferrazde-Paula V, Astolfi-Ferreira CS, Astolfi-Ferreira AJP, Palermo-Neto J. Heat stress impairs performance and induces intestinal inflammation in broiler chickens infected with Salmonella Enteritidis. Avian Pathol.

2012;41(5):421-427.

14. Chappell L, Kaiser P, Barrow P, Jones BMA, Johnston C, Wigley P. The immunobiology of avian systemic salmonellosis, Veterinary. Immunology and Immunopathology, Amsterdam.

2009.128(1-3):53-59.

15. Terzolo H. Bacteriological study of avian salmonellosis S. pullorum, S. gallinarum, S.

enteritidis and S. typhimurium in Latin America. International Seminar on Avian Salmonellosis. Alberto R. Rio Janeiro. Brazil. 2011:28-30.

16. Zamora-Sanabria R, Alvarado AM. Preharvest Salmonella Risk Contamination and the Control Strategies. Current Topics in Salmonella and Salmonellosis. Mihai Mares. InTech.

2017. Disponível em: https://www.intechopen.com/books/current-topics-in-salmonella-and-salmonellosis/preharvest-salmonella-risk-contamination-and-the-control-strategies. Acesso:

25 de junho de 2017.

17. Bailey J.S., Stern, N.J., Fedorka-Cray P., Craven S.E., Cox N.A., Cosby D.E., Ladely S., Musgrove T.M. Sources and movement of Salmonella through integrated poultry operations: A multistate epidemiological investigation. Journal of Food Protection. 2001;64(11):1690-1697.

18. Poppe C, Johnson R, Forsberg C, Irwin R. Salmonella enteritidis and other Salmonella in laying hens and eggs from flocks with Salmonella in their environment. Canadian Journal of Veterinary Research. 1992;56:226-232.

19. Capita R, Alonso-Calleja C. Antibiotic-resistant bactéria: a challenge for the food industry.

Critical Reviews in Food Science and Nutrition. 2013;53:11-48.

20. Rosenblatt-Farrell N. The landscape of antibiotic resistance. Environ. Health Persp.

2009;117(6): A245–A250).

21. WHO.World Health Organization. Antimicrobial resistance. Fact sheet N◦ 194. 2016.

Disponível em: http://www.who.int/mediacentre/factsheets/fs194/en/. Data de acesso: 12 de maio de 2017.

22. Mulvey MR, Simor AE. Antimicrobial resistance in hospitals: How concerned should we be? Can. Med. Assoc. J. 2009;180(4): 408–415.

23. Alanis AJ. Resistance to antibiotics: are we in the post-antibiotic era? Arch. Med. Res.

2005;36(6): 697–705.

24. SCENIHR. Assessment of the Antibiotic Resistance Effects of Biocides. Scientific Committee on Emerging and Newly Identi- fied Health Risks. 2009. Disponível em:

http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf

25. Threlfall EJ. Antimicrobial drug resistance in Salmonella: problems and perspectives in food and water-borne infection. FEMS Microbiol Reviews. 2002;26:141-148.

26. Bai AJ, Rai VR. Bacterial Quorum Sensing and Food Industry. Comprehensive Reviews in Food Science and Food Safety. 2011;10(3):183-193.

27. Singh BN, Singh BR, Singh RL, Prakash D, Sarma BK, Singh HB. Antioxidant and anti-quorum sensing activities of green pod of Acacia nilotica L. Food Chem Toxicol. 2009;47:778-786.

28. Rocha-Estrada J, Aceves-Diez A, Guarneros G, de la Torre M. The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Appl Microbiol Biotechnol. 2010;87:913-923.

29. May AL, Eisenhauer ME, Coulston KS, Campagna SR. Detection and Quantitation of Bacterial Acylhomoserine Lactone Quorum Sensing Molecules via Liquid Chromatography-Isotope Dilution Tandem Mass Spectrometry. Anal Chem. 2011;84:1243-1252.

30. Ng WL, Bassler BL. Bacterial quorum-sensing network architectures. Annu Rev Genet.

2009;43: 197–222.

31. Parsek MR, Val DL, Hanzelka BL, Cronan JE, Jr, Greenberg EP. Acylhomoserine-lactone quorum-sensing signal generation. Proc.Natl. Acad. Sci. 1999;96:4360–4365.

32. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 2001;55:165–

99.

33. Shompole S, Henon KT, Liou LE, Dziewanowska K, Bohach GA, Bayles KW. Biphasic intra cellular expression of Staphylococcus aureus virulence factors and evidence for agr-mediated diffusion sensing. Mol Microbiol 2003;49:919–27.

34. Jefferson KK. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett.

2004;236:163–173.

35. Chorianopoulos NG, Giaouris ED, Kourkoutas I, Nychas G-JE. Inhibition of the early stage of Salmonella enterica serovar Enteritidis biofilm development on stainless steel by cell-free supernatant of a Hafnia alveiculture. Appl. Environ. Microbiol.2010;76:2018–2022.

36.Sifri CD. Quorum Sensing: Bacteria Talk Sense. Clinical Infectious Diseases.

2008;47(8):1070–1076.

37. Worthington RJ, Richards JJ, Melander C. Non-Microbicidal Control of Bacterial Biofilms with Small Molecules. Bentham Sci. 2014;12(1);120-138.

38. Merighi MA, Carroll-Portillo A, Septer N, Bhatiya A, Gunn JS. Role of Salmonella enterica serovar Typhimurium two-component system PreA/PreB in modulating PmrA-regulated gene transcription. J. Bacteriol. 2006;188:141-149.

39. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB. Bacteria host communication: the language of hormones. Proc. Natl. Acad. Sci. 2003;100:8951-56.

40. Clarke MB, Sperandio V. Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorrhagic Escherichia coli. Mol. Microbiol. 2005;57:1734–1749.

41. Rasko DA, Moreira CG, Li R, Reading NC, Ritchie JM, Waldor MK, Williams N, Taussig R, Wei S, Roth M, Hughes DT, Huntley JF, Fina MW, Falck JR, Sperandio V. Targeting QseC signaling and virulence for antibiotic development. Science. 2008;321:1078-1080.

42. Amini K, Salehi TZ, Nikbahkht G, Ranjbar R, Amini J, Ashrafganjooei SB. Molecular detection of invA and spcV virulence genes in Salmonella Enteritidis isolated from human and animals in Iran. African Journal of Microbiology Research. 2010;21(4);2202-2210.

43. Pignato S, Coniglio MA, Faro G, Lefevre M, Weill FX, Giammanco G. Molecular Epidemiology of Ampicillin Resistance in Salmonella spp. and Escherichia coli from Wastewater and Clinical Specimens. Foodborne Pathogens and Disease. 2010;7(8):945-951.

44. Antunes P, Machado J, Sousa JC, Peixe L. Dissemination of sulfonamide resistance genes (sul1, sul2, and sul3) in portuguese Salmonella enterica strains and relation with integrons. Am Soc Microbiol. 2005; 49(2): 836–839.

45. Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa N°62 de 26 de agosto de 2003. Anexo I, Capítulo XV.

46.NCCLS- National Committee for Clinical Laboratory Standards. Bacterial from Animal.

2002:81.

47. CLSI- Clinical And Laboratory Standards Institute. Permance standards for antimicrobial susceptibility testing. M100. 2017:32.

48.Bugarel M, Granier AS, Weill FX, Fach P, Brisabois A. A multiplex real-time PCR assay targeting virulence and resistence genes in Salmonella enterica serotype Typhimurium. BMC Microbiol. 2011;(11)151:1-11.

49. FSIS/USDA. Compliance guideline for controlling Salmonella and Campylobacter in poultry. Department of Agriculture, Food Safety and Inspection Service. 2010;3.

50. Abd-elghany SM, Sallam KI, Abd-elkhalek A, Tamura T. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets. Epidemiol. Infect. 2015;143;997–1003.

51. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. Foodborne illness acquired in the United States – major pathogens. Emerg Infect Dis.

2011;17: 7–15.

52. Defra.UK National Control Programme for Salmonella in chickens (Gallus gallus) reared

for meat (broilers) Disponível

em:https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/183080/sal monella-broilers.pdf Acesso em: 26 de maio de 2017.

53. Jaowapa J, Koowatananukul C, Daengprom K, Saitanu K.Occurrence of salmonellae in raw broilers and their products in Thailand. Journal of Food Protection 1994; 57: 808–810.

54. Molla B, Mesfin A. A survey of Salmonella contamination in chicken carcass and giblets in central Ethiopia. Revue de Medecine Veterinaire 2003; 154: 267–270.

55. Favier GI, Cecilia SM, Estrada L, Otero VL, Escudero ME. Prevalence, antimicrobial susceptibility and molecular characterization by PCR and pulsed field gel electrophoresis (PFGE) of Salmonella spp. isolated from foods of animal origin in San Luis, Argentina. Food Control 2013; 29: 49 –54.].

56. Acar S, Bulut E, Uner I, Kur M, Avsaroglu MD, Kirmarci HA, Tel YO, Zeyrek FY, Soyer Y. Phenotyping and genetic characterization of Salmonella enterica isolates from Turkey revealing arise of different features specific to geography. International Jounal of Food Microbiology. 2017; 98:107.

57. Yildirim Y, Gonulalan Z, Pamuk S, Ertas N. Incidence and antibiotic resistance of Salmonella spp. on raw chicken carcasses. Food Research International 2011; 44: 725–728.

58. Minharro S, Nascimento CA, Galleti JP, Merisse TJ, Feitosa ACF, Santos HD, Dias FEF, Santana ES, Baldani CD, Andrade MA. Susceptibilidade antimicrobiana de sorovares de Salmonella sp. isolados de vísceras comestíveis e carcaças de aves abatidas no estado do Tocantins, Brasil. Semina Ciências Agrárias. 2015;36(4):2661-2670.

59. Hendriksen RS, Vieira AR, Karlsmose S, Wong DML, Jensen AB, Wegener HC, Aarestrup FM. Global monitoring of Salmonella serovar distribution from the World Heath Organization global foodborne infections network country data bank: Results of quality assured laboratories from 2001 to 2007. Foodborne Pathog Dis. 2011;8:887-900.

60. Mezal EH, Stefanova R, Khan AA. Isolation and molecular characterization of Salmonella entérica serovar Javiana from food, environmental and clinical samples. International Journal of food Microbiology. 2013.164(1):113-118.

61. Voss-Rech D, Vaz, CSL, Alves L, Coldebella A, Leão JA, Rodrigues DP, Back A. A temporal study of Salmonella enterica serotypes from broiler farms in Brazil. Poult Sci.

2015;94(3):433-41.

62. Pandini JA, Pinto FGS, Muller JM, Weber LD, Moura AC. Ocorrência e perfil de resistência antimicrobiana de sorotipos de Salmonella spp. Isolados de aviários do Paraná, Brasil. Arq.

Inst. Biol. 2014;20(4):1-6.

63. CODA-CERVA. Salmonella serotypes analysed at the CODA-CERVA 2013. Federal Public Service Health. Food Chain Security and Environment, Brussels, Belgium.

64. Lianou A, Nychas GJE, Koutsoumanis. Variability in the adaptive acid tolerance response phenotype of Salmonella enterica strains. Food Microbiol. 2017;62:99-105.

65. Cox NA, Richardson LJ, Buhr RJ, Northcutt JK, Bailey JS, Cray PF, Hiett KL. 2007.

Recovery of Campylobacter and Salmonella serovars from the spleen, liver and gallbladder, and ceca of six- and eight-week-old commercial broilers. J Appl Poult Res 16:477–480.

66. Zou M, Keelara S, Thakur S. Molecular characterization of Salmonella enterica serotype Enteritidis isolates from humans by antimicrobial resistance, virulence genes and pulsed field gel electrophoresis. Foodborne Pathog Dis. 2012;9:232-238.

67. Frye JG, Jackson CR. Genetic mechanisms of antimicrobial resistance identified in Salmonella entérica, Escherichia coli and Enterococus spp. Isolated from U.S. food animals.

Front Microbiol. 2013;(4)135:1-22.

68. Hassan Abdel-Rahim HA, Salam HSH, Abdel-Latef GK. Serological identification and antimicrobial resistance of Salmonella isolates broiler carcasses and humans stools in Beni-Suef, Egypt. Beni-Suef University. J Basic Apll Sci. 2016;(5)2:202-207.

69. Wang Y, Cao W, Alali WQ, Cui S, Li F, Zhu J, Wang X, Meng J, Yang B. Distribution and antimicrobial suscetibility os foodborne Salmonella serovars in eight provinces in China from 2007 to 2012 (except 2009). Foodborne Patho Dis. 2017;20(20).

70. Muhammad M, Muhammad LU, Ambali AG, Mani AU, Azard S, Barco L. Prevalence of Salmonella associated with chick mortality at hatching and their suceptibility to antimicrobial agents. Vet Microbiol. 2010;140:131-135.

71. Lai J, Wu Co., Wu CH, Qi J, Wang Y, Wang H, Liu Y, Shen J. Serotype distribution and antibiotic resistance of Salmonella in food-producing animals in Shandong province of China, 2009-2012. Int J Food Micobiol. 2014;180:30-38.

72. Capuano F, Mancusi A, Capparelli R, Espesito S, Proroga YT. Characterization of drug resistance and virulotypes of Salmonella strains isolated from food and humans. Foodborne Pathog Dis. 2013;10:963-968.

73. Porwollik S, Boyd EF, Choy C, Cheng P, Florea L, Proctor E, McClelland M.

Characterization of Salmonella enterica subsespecies I genovars by use of microarrays. J Bacteriol. 2004;186:5883-5898.

74. ADB-Elghany, Sallam KI, ABD-Elkhalek, Tamura T. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets. Epidemiol Infect. 2015;143:997-1003.

75. Gulig PA, Danbara H, Guiney DG, Lax AJ, Norel F, Rhen M. Molecular analysis os spv virulence genes of the Salmonella virulence plasmids. Molecular Microbiology. 1993;7:823-830.

76. Heithoff DM, Shimp WR, Lau, PW, Badie G, Enioutina EY, Daynes RA, Byrne BA, House JK, Mahan MJ. Human Salmonella clinical isolates distinct from those of animal origin. J App Environ Microbiol. 2008.(74)6:1757-1766.

77. Ling JML. Rapid detection of food-borne pathogens in clinical specimens, food and environmental samples. Hong Kong Med J. 2009.(15)1:26-29.

78. Randall LP, Cooles SW, Osborn MK, Piddock IJ, Woodward MJ. Antibiotic resistence genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J Antimicrob Chemother. 2004;53:208-216.

79. Moraes D. Investigação bacteriológica e molecular de salmonella sp. em granjas de postura comercial. Tese (Doutorado em Ciência Animal). Escola de Medicina Veterinária e Zootecnia.

Universidade Federal de Goiás. 2014.

80. Zishiri OT, Mkhike N, Mukaratirwa S. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. Isolated from commercil chickens and human clinical isolates from South Africa and Brazil. Onderstepoort J Vet Res. 2016;83(1).

81.Kilroy S, Raspoet R, Martel A, Bosseler L, Appia-Ayme C, Thompson A, Haesebrouck F, Ducatelle R, Immerseel FV. Salmonella Enteritidis flagelar mutants have a colonization benefit in the chicken ovidut. Comp Immunol Microbiol Infect Dis. 2017;50:23-28.

82. Zou QH, Li RQ, Liu GR, Liu SL. Genotyping of Salmonella with lineage-specific genes:

correlation with serotying. Int J Infect Dis. 2016;49:134-140.

Documentos relacionados