• Nenhum resultado encontrado

A síntese dos copolímeros propostos nessa dissertação foi satisfatória no meio aquoso, por catálise radicalar, tornando-se menos nocivo ao meio ambiente (por não usar solventes tóxicos e orgânicos). O rendimento de cada material bruto sintetizado foi de 90 % para a PNIPAAm e para os copolímeros contendo 7 e 13 mol% de LV foi de 70 e 55 %, respectivamente, alcançando bons rendimentos.

O procedimento para a polimerização visto no item 4.2 mostrou-se um método mais eficaz do que os métodos convencionais de polimerização em solução, que utilizam balões de três bocas, em atmosfera inerte.

A metodologia de purificação para a PNIPAAm por acetona à quente e em seguida o uso da diálise foi eficiente, visto que, na caracterização estrutural por FT-IR e RMN, não foram detectados picos das duplas ligações do monômero. Para o copolímero com 7 mol% de LV, a purificação também foi bastante eficiente por filtração seguida de diálise. Quanto ao copolímero com 13 mol% de LV, seria necessário uma purificação mais adequada, pois de acordo com as análises de RMN, picos das duplas ligações dos dois monômeros (NIPAAm e LV) foram detectados.

Os métodos de caracterização estrutural por FT-IR, 1H RMN e 13C RMN foram bem representativos, indicando os picos de formação dos polímeros sintetizados.

As análises térmicas mostraram que os copolímeros apresentaram boas estabilidades térmicas quando submetidos ao aquecimento.

Apesar de os polímeros não terem apresentados valores de viscosidade elevadas, eles mostraram um comportamento termoresponsivo em uma temperatura crítica, em que a viscosidade teve um súbito aumento, indicando uma LCST para cada polímero obtido e, à medida que a temperatura foi aumentada, acima da LCST, a viscosidade foi reduzida. Para a PNIPAAm foi identificada uma LCST em torno de 34 ºC e para os copolímeros contendo 7 e 13 mol% de LV a LCST foi identificada aproximadamente em 26 e 21 ºC, respectivamente.

Os resultados obtidos por DLS mostraram que o processo de agregação é afetado quando a solução de polímero é filtrada, apresentando valores e quantidades menores de agregados após a filtração. Ao avaliar o comportamento dos agregados com a variação da temperatura observou-se que os polímeros responderam sensivelmente às mudanças na temperatura apresentando mudanças na conformação da macromolécula para valores de Rh menores, indicando uma transição de fase em uma dada faixa de temperatura.

REFERÊNCIAS

BAO, Hongqian et al. Thermo-Responsive Association of Chitosan- graft -Poly( N -

isopropylacrylamide) in Aqueous Solutions.The Journal Of Physical Chemistry B, [s.l.], v. 114, n. 32, p.10666-10673, 19 ago. 2010. American Chemical Society (ACS). DOI:

10.1021/jp105041z.

BARKER, I. C. et al. Studies of the "Smart" Thermoresponsive Behavior of Copolymers of N-Isopropylacrulamide and N,N-Dimethyiacrylamide in Dilute Aqueous

solution. Macromolecules. Uk, p. 7765-7770. 9 nov. 2003.

BARSZCZEWSKA-RYBAREK, Izabela M.. Quantitative determination of degree of conversion in photocured poly(urethane-dimethacrylate)s by Fourier transform infrared spectroscopy. Journal Of Applied Polymer Science, [s.l.], v. 123, n. 3, p.1604-1611, 19 ago. 2011. Wiley-Blackwell. http://dx.doi.org/10.1002/app.34553.

BENEE, L. S.; SNOWDEN, M. J.; CHOWDHRY, B. Z.. Novel Gelling Behavior of Poly( N -isopropylacrylamide- co -vinyl laurate) Microgel Dispersions. Langmuir, [s.l.], v. 18, n. 16, p.6025-6030, ago. 2002. American Chemical Society (ACS). DOI: 10.1021/la025660r.

BOKIAS, G.; MYLONAS, Y.. Association of Positively Charged Copolymers Based on N - Isopropylacrylamide with Hydrophobically Modified Poly(sodium acrylate) in

Water. Macromolecules, [s.l.], v. 34, n. 4, p.885-889, fev. 2001. American Chemical Society (ACS). DOI: 10.1021/ma001423o.

BORGES, Maurício Rodrigues. SÍNTESE ENZIMÁTICA DE ÉSTERES DE AÇÚCAR:

SURFACTANTES E POLÍMEROS COMO NOVOS MATERIAIS

AMBIENTALMENTE SEGUROS. 2007. 207 f. Tese (Doutorado) - Curso de Ciência e

Engenharia dos Materiais, Universidade Federal do Rio Grande do Norte, Natal, 2007.

CANEVAROLO JUNIOR, Sebastião V. et al. TÉCNICAS DE CARACTERIZAÇÃO DE

CAO, Zhiqiang et al. Toward an understanding of thermoresponsive transition behavior of hydrophobically modified N-isopropylacrylamide copolymer solution. Polymer, [s.l.], v. 46, n. 14, p.5268-5277, jun. 2005. Elsevier BV. DOI: 10.1016/j.polymer.2005.04.050.

CARRILLO, F. et al. Thermal degradation of lyocell/poly-N-isopropylacrylamide graft copolymers gels. J Therm Anal Calorim, [s.l.], v. 97, n. 3, p.945-948, 10 jun. 2009. Springer Science + Business Media.

CASPER, Patrick; GLÖCKNER, Patrick; RITTER, Helmut. Cyclodextrins in Polymer Synthesis: Free Radical Copolymerization of Methylated β-Cyclodextrin Complexes of Hydrophobic Monomers with N -Isopropylacrylamide in Aqueous Medium

†.Macromolecules, [s.l.], v. 33, n. 12, p.4361-4364, jun. 2000. American Chemical Society (ACS). DOI: 10.1021/ma0001382.

CHEN, Tao et al. Synthesis and Thermosensitive Behavior of Polyacrylamide Copolymers and Their Applications in Smart Textiles. Polymers, [s.l.], v. 7, n. 5, p.909-920, 6 maio 2015. MDPI AG. DOI: 10.3390/polym7050909.

CHETTY, A.. A versatile characterization of poly(N-isopropylacrylamide-co-N,N'- methylene-bis-acrylamide) hydrogels for composition, mechanical strength, and

rheology. Expresspolymlett, [s.l.], v. 7, n. 1, p.95-105, 4 nov. 2012. Department of Polymer Engineering, Scientific Society of Mechanical Engineering.

http://dx.doi.org/10.3144/expresspolymlett.2013.9.

COTO, Baudilio et al. Determination of dn/dc values for ethylene–propylene

copolymers. Polymer Testing, [s.l.], v. 26, n. 5, p.568-575, ago. 2007. Elsevier BV. http://dx.doi.org/10.1016/j.polymertesting.2007.02.001.

DIMITROV, Ivaylo et al. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities.Progress In Polymer Science, [s.l.], v. 32, n. 11, p.1275-1343, nov. 2007. Elsevier BV. http://dx.doi.org/10.1016/j.progpolymsci.2007.07.001.

DU, Hongbo; WICKRAMASINGHE, Ranil; QIAN, Xianghong. Effects of Salt on the Lower Critical Solution Temperature of Poly ( N -Isopropylacrylamide). The Journal Of Physical

Chemistry B, [s.l.], v. 114, n. 49, p.16594-16604, 16 dez. 2010. American Chemical Society

(ACS). http://dx.doi.org/10.1021/jp105652c.

ELUMALAI, S.; SOMASUNDARAN, D.; GUHANATHAN, S.. Synthetic investigation of glycine catalyzed triarylimidazole based organophosphorous heterocyclic functionalized vinyl polymer – A green approach. Ecotoxicology And Environmental Safety,[s.l.], v. 121, p.116- 120, nov. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.ecoenv.2015.04.044.

FENG, Y., BILLON, L., GRASSL, B., BASTIAT, G., BORISOV, O., FRANÇOIS, J.Hydrophobically associating polyacrylamides and their partially hydrolyzed derivatives prepared by post-modification. 2. Properties of non-hydrolyzed polymers in pure water and brine. Polymer, v.46, p.9283-9295, 2005.

FONTANILLE, M. e GNANOU, Y., Chimie et physico-chimie des polymers, Méthodos

physiques d´étude des structures, SNEL S.A., Liège, 2002, 143-166.

GANDHI, Arijit et al. Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications.Asian Journal Of Pharmaceutical Sciences, [s.l.], v. 10, n. 2, p.99-107, abr. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.ajps.2014.08.010.

GHAZY, R. et al. Measurements of the refractive indices and refractive index increment of a synthetic PMMA solutions at 488 nm. Optics & Laser Technology, [s.l.], v. 31, n. 5, p.335- 340, jul. 1999. Elsevier BV. http://dx.doi.org/10.1016/s0030-3992(99)00065-1.

HIEMENZ, Paul C.; RAJAGOPALAN, Raj. Principles of colloid and surface chemistry. 3. ed. New York: Marceld Ekkerin, 1997. 671 p.

HOFMANN, Christian; SCHÖNHOFF, Monika. Do additives shift the LCST of poly (N- isopropylacrylamide) by solvent quality changes or by direct interactions? Colloid Polym

Sci, [s.l.], v. 287, n. 12, p.1369-1376, 17 set. 2009. Springer Science + Business Media. DOI:

HOU, Lei; WU, Peiyi. LCST transition of PNIPAM-b-PVCL in water: cooperative

aggregation of two distinct thermally responsive segments. Soft Matter, [s.l.], v. 10, n. 20, p.3578-3586, 2014. Royal Society of Chemistry (RSC).

http://dx.doi.org/10.1039/c4sm00282b.

HOU, Sen et al. Porous film fabricated by a thermoresponsive polymer poly(N-

isopropylacrylamide-co-butylmethacrylate) with enhanced hydrophobicity. Colloids And

Surfaces A: Physicochemical and Engineering Aspects, [s.l.], v. 346, n. 1-3, p.164-169,

ago. 2009. Elsevier BV. DOI: 10.1016/j.colsurfa.2009.06.010.

HRUBÝ, Martin; FILIPPOV, Sergey K.; ŀTěPÁNEK, Petr. Smart polymers in drug delivery systems on crossroads: Which way deserves following?. European Polymer Journal, [s.l.], v. 65, p.82-97, abr. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.eurpolymj.2015.01.016.

IONASHIRO, Massao. Fundamentos da Termogravimetria Análise Térmica Diferencial

Calorimetria Exploratória Diferencial. São Paulo: Giz Editorial, 2004. 96 p.

ITAKURA, Masanao et al. Molecular weight dependency of refractive index increment of polystyrene determined by uniform oligomers. Journal Of Applied Polymer Science, [s.l.], v. 94, n. 3, p.1101-1106, 2004. Wiley-Blackwell. http://dx.doi.org/10.1002/app.21006.

JAMRÓZ-PIEGZA, M. et al. Hydrophobic modification of high molar mass polyglycidol to thermosensitive polymers. European Polymer Journal. Poland, p. 2497-2506. 29 abr. 2006.

KIM, Seon Jeong et al. Thermal characteristics of interpenetrating polymer networks composed of poly(vinyl alcohol) and poly(N-isopropylacrylamide). Journal Of Applied

Polymer Science, [s.l.], v. 90, n. 3, p.881-885, 18 ago. 2003. Wiley-Blackwell.

KOKARDEKAR, Rashmi R; SHAH, Vaibhav K; MODY, Hardik R. PNIPAM Poly (N- isopropylacrylamide): A Thermoresponsive "Smart" Polymer in Novel Drug Delivery Systems. Internet Journal Of Medical Update. Usa, p. 59-62. 7 jul. 2012.

KUMAR, Ashok et al. Smart polymers: Physical forms and bioengineering

applications. Progress In Polymer Science, [s.l.], v. 32, n. 10, p.1205-1237, out. 2007. Elsevier BV.

LARA-CENICEROS, Tania E. et al. Synthesis and characterization of thermo-insensitive, water-soluble associative polymers with good thickening properties at low and high temperatures. Journal Of Polymer Research, [s.l.], v. 21, n. 7, p.1-12, 27 jun. 2014.

LARSON, R.g.; DESAI, Priyanka S.. Modeling the Rheology of Polymer Melts and

Solutions. Annu. Rev. Fluid Mech., [s.l.], v. 47, n. 1, p.47-65, 3 jan. 2015. Annual Reviews. http://dx.doi.org/10.1146/annurev-fluid-010814-014612.

LARSSON, Anders; KUCKLING, Dirk; SCHÖNHOFF, Monika. 1H NMR of

thermoreversible polymers in solution and at interfaces: the influence of charged groups on the phase transition. Colloids And Surfaces A: Physicochemical and Engineering

Aspects, [s.l.], v. 190, n. 1-2, p.185-192, set. 2001. Elsevier BV.

LAUKKANEN, Antti et al. Thermosensitive graft copolymers of an amphiphilic

macromonomer and N-vinylcaprolactam: synthesis and solution properties in dilute aqueous solutions below and above the LCST. Polymer, [s.l.], v. 46, n. 18, p.7055-7065, ago. 2005. Elsevier BV. DOI: 10.1016/j.polymer.2005.05.100.

LIMA, Bruna V. de et al. Temperature-induced thickening of sodium carboxymethylcellulose and poly(N-isopropylacrylamide) physical blends in aqueous solution. Polymer

Bulletin, [s.l.], v. 69, n. 9, p.1093-1101, 25 jul. 2012. Springer Science + Business Media.

LIMA, Bruna Vital de. Avaliação das propriedades físico-químicas de sistemas à base de

carboximetilcelulose e poli (N-isopropilacrilamida) em soluções aquosas para aplicação na indústria de petróleo. 2014. 186 f. Tese (Doutorado) - Curso de QuÍmica, Instituto de

LU, Cuige et al. Synthesis and aqueous solution properties of hydrophobically modified polyacrylamide. Journal Of Applied Polymer Science, [s.l.], v. 131, n. 18, p.40754-40754, 10 abr. 2014. Wiley-Blackwell. http://dx.doi.org/10.1002/app.40754.

LUCAS, Elizabete F.; SOARES, Bluma G.; MONTEIRO, Elizabeth E.

C.. CARACTERIZAÇÃO DE POLÍMEROS:Determinação de peso molecular e análise térmica. Rio de Janeiro: E-papers Serviços Editoriais Ltda, 2001. 366 p.

MAIA, Ana M. S. et al. Solution Properties of a Hydrophobically Associating Polyacrylamide and its Polyelectrolyte Derivatives Determined by Light Scattering, Small Angle X-ray

Scattering and Viscometry. Article, Brazil, p.489-500, 4 nov. 2010.

MEDRANO, Ricardo et al. Analysis of copolymers of styrene and methyl methacrylate using size exclusion chromatography with multiple detection. Phys. Chem. Chem. Phys., [s.l.], v. 5, n. 1, p.151-157, 26 nov. 2002. Royal Society of Chemistry (RSC).

PAMIES, Ramón et al. Thermal response of low molecular weight poly-(N-

isopropylacrylamide) polymers in aqueous solution.Polymer Bulletin, [s.l.], v. 62, n. 4, p.487-502, 17 dez. 2008. Springer Science + Business Media. DOI: 10.1007/s00289-008- 0029-4.

PARK, Jun-hwan et al. Preparation of Thermosensitive PNIPAm-Grafted Mesoporous Silica Particles. Macromol. Chem. Phys., [s.l.], v. 208, n. 22, p.2419-2427, 20 nov. 2007. Wiley- Blackwell. DOI: 10.1002/macp.200700247.

PETIT, Laurence et al. Synthesis of graft polyacrylamide with responsive self-assembling properties in aqueous media. Polymer, [s.l.], v. 48, n. 24, p.7098-7112, nov. 2007. Elsevier BV. http://dx.doi.org/10.1016/j.polymer.2007.09.040.

REJINOLD, N. Sanoj et al. Biocompatible, biodegradable and thermo-sensitive chitosan-g- poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery. International Journal

RINGSDORF, H.; VENZMER, J.; WINNIK, F. M.. Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides). Macromolecules, [s.l.], v. 24, n. 7, p.1678-1686, abr. 1991. American Chemical Society (ACS).

ROCHAS, Cyrille; GEISSLER, Erik. Measurement of Dynamic Light Scattering Intensity in Gels. Macromolecules, [s.l.], v. 47, n. 22, p.8012-8017, 25 nov. 2014. American Chemical Society (ACS).

SAKOHARA, Shuji et al. Consolidation of suspended particles by using dual ionic thermosensitive polymers with incorporated a hydrophobic component. Separation And

Purification Technology, [s.l.], v. 106, p.90-96, mar. 2013. Elsevier BV. DOI:

10.1016/j.seppur.2012.12.030.

SHAH, Sunil et al. Synthesis and characterization of thermo-responsive copolymeric nanoparticles of poly(methyl methacrylate-co-N-vinylcaprolactam). European Polymer

Journal, [s.l.], v. 46, n. 5, p.958-967, maio 2010. Elsevier BV. DOI:

10.1016/j.eurpolymj.2010.01.005.

SHIRAGA, Keiichiro et al. Hydration and Hydrogen Bond Network of Water during the Coil- to-Globule Transition in Poly( N -isopropylacrylamide) Aqueous Solution at Cloud Point Temperature. The Journal Of Physical Chemistry B, [s.l.], v. 119, n. 17, p.5576-5587, 30 abr. 2015. American Chemical Society (ACS).

SILVERSTEIN, Robert Milton; WEBSTER, Francis X.; KIEMLE, David

J.. IDENTIFICAÇÃO ESPECTROMÉTRICA DE COMPOSTOS ORGÂNICOS. 7. ed. Rio de Janeiro: Ltc Editora, 2007. 490 p.

ŚLIWA, T. et al. Stimuli-Responsive PNIPAM Based Copolymers: Modeling and Light Scattering Investigations. Acta Phys. Pol. A, [s.l.], v. 125, n. 5, p.1236-1239, maio 2014. Institute of Physics, Polish Academy of Sciences.

ŚLIWA, Tomasz; JARZęBSKI, Maciej. Dynamic Light Scattering Investigation of Pnipam- Co-Maa Microgel Solution. Current Topics In Biophysics, [s.l.], v. 37, n. 1, p.29-33, 2 jan. 2015. Walter de Gruyter GmbH.

SUN, Shujun et al. A Thermoresponsive Chitosan−NIPAAm/Vinyl Laurate Copolymer Vector for Gene Transfection.Bioconjugate Chem., [s.l.], v. 16, n. 4, p.972-980, jul. 2005. American Chemical Society (ACS). DOI: 10.1021/bc0500701.

TALELLI, Marina; HENNINK, Wim e. Thermosensitive polymeric micelles for targeted drug delivery. Nanomedicine, Utrecht, v. 33, n. 1, p.1245-1255, 6 jul. 2011.

TAN, Chan-yuan et al. Dependence of Refractive Index on Concentration and Temperature in Electrolyte Solution, Polar Solution, Nonpolar Solution, and Protein Solution. Journal Of

Chemical & Engineering Data, [s.l.], v. 60, n. 10, p.2827-2833, 8 out. 2015. American

Chemical Society (ACS). http://dx.doi.org/10.1021/acs.jced.5b00018.

VIHOLA, Henna et al. Cytotoxicity of thermosensitive polymers poly(N-

isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N- vinylcaprolactam). Biomaterials, [s.l.], v. 26, n. 16, p.3055-3064, jun. 2005. Elsevier BV. DOI: 10.1016/j.biomaterials.2004.09.008.

WINNIK, Franqoise M.; DAVIDSON, Anthony R.; HAMER, Gordon K.. Amphiphilic Poly(N4sopropylacrylamides) Prepared by Using a Lipophilic Radical Initiator: Synthesis and Solution Properties in Water. Macromolecules, Japan, p.1876-1880, 25 jan. 1992.

YANG, Hsiu-wen et al. Association of poly(N-isopropylacrylamide) containing nucleobase multiple hydrogen bonding of adenine for DNA recognition. Applied Surface Science, [s.l.], v. 271, p.60-69, abr. 2013. Elsevier BV.

YANG, Lei et al. Effect of intermolecular and intramolecular forces on hydrodynamic diameters of poly( N -isopropylacrylamide) copolymers in aqueous solutions. Journal Of

Applied Polymer Science, [s.l.], v. 127, n. 6, p.4280-4287, 31 maio 2012. Wiley-Blackwell.

YANG, Xia; LEE, Hyeon Yong; KIM, Jin-chul. Effect of hydrophobic comonomer content on assembling of poly (N-isopropylacrylamide) and thermal properties. Journal Of Applied

Polymer Science, [s.l.], v. 120, n. 4, p.2346-2353, 10 dez. 2010. Wiley-Blackwell. DOI:

10.1002/app.33439.

YU, Jing-zhen et al. Poly(N-isopropylacrylamide) grafted poly(vinylidene fluoride)

copolymers for temperature-sensitive membranes. Journal Of Membrane Science, [s.l.], v. 366, n. 1-2, p.176-183, jan. 2011. Elsevier BV.

http://dx.doi.org/10.1016/j.memsci.2010.09.055.

ZENG, Fang; ZHENG, Xu; TONG, Zhen. Network formation in poly(N-isopropyl

acrylamide)/water solutions during phase separation. Polymer, [s.l.], v. 39, n. 5, p.1249-1251, mar. 1998. Elsevier BV.

ZHANG, Xiaofei et al. Synthesis and solution properties of temperature-sensitive copolymers based on NIPAM. Journal Of Applied Polymer Science, [s.l.], v. 116, n. 2, p.1099-1105, 15 abr. 2010. Wiley-Blackwell.

ZHOU, Shuiqin et al. Light-scattering studies of poly(N-isopropylacrylamide) in

tetrahydrofuran and aqueous solution.Polymer, [s.l.], v. 36, n. 7, p.1341-1346, mar. 1995. Elsevier BV.

Documentos relacionados