• Nenhum resultado encontrado

O presente estudo mostrou que o peptídeo CAADIVGQCPAKLK induziu a produção e acúmulo de espécies reativas de oxigênio, que levaram a morte celular programada (apoptose) em células de Candida albicans e Sacaromices cerevisiae. A morfologia das células de Candida e Saccharomyces sugere que a superfície celular estava intacta, evidenciando que a inibição ocorreu por meio de interação com receptor não ocasionando danos à parede celular e membrana plasmática.

Os ensaios utilizando Iodeto de Propídio, SEM, DCFD-A, TUNEL e ensaios de docking molecular sugerem que PEP4 ocasiona a morte celular programada em S. cerevisiae e C. albicans ao se ligar ao receptor PHO36. Os resultados indicam que osmotinas e taumatinas, assim como peptídeos derivados estudados neste trabalho, são candidatos futuros para o desenvolvimento de ferramentas biotecnológicas contra Candida albicans. O uso de bancos de dados como o C-PamP é essencial para a predição de novos peptídeos antimicrobianos. Portanto, apesar de existir uma ampla disponibilidade de várias classes de medicamentos antifúngicos no mercado mundial, o tratamento de pacientes com infecções fúngicas ainda é um desafio considerável.

REFERÊNCIAS

AGEITOS, J. M. et al. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochemical pharmacology, 2016.

AGRAWAL, Anurag A. Induced plant defense: evolution of induction and adaptive phenotypic plasticity. Inducible plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture. American Phytopathological Society

Press, St. Paul, MN, p. 251-268, 1999.

ALTSCHUL, S. F.; GISH, W.; MILLER, W.; MYERS, E. W.; LIPMAN, D. J. Basic Local Alignment Search Tool. Journal of Molecular Biology. n. 215, p. 403–410, 1990.

AGHAZADEH, Rustam et al. Agrobacterium-mediated Transformation of the Oryza sativa Thaumatin-like Protein to Canola (R line Hyola308) for Enhancing Resistance to Sclerotiniasclerotiorum. Iranian Journal of Biotechnology, v. 15, n. 3, p. 201- 207, 2017.

ABAD, Laura R. et al. Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Science, v. 118, n. 1, p. 11-23, 1996.

ACEVEDO, Flor E. et al. Cues from chewing insects—the intersection of DAMPs,

HAMPs, MAMPs and effectors. Current Opinion in Plant Biology, v. 26, p. 80-86, 2015.

AERTS, An M. et al. The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. Journal of molecular microbiology and biotechnology, v. 13, n. 4, p. 243-247, 2007.

AHMED NU, et al. Molecular characterization of thaumatin family genes related to stresses in Brassica rapa. SciHortic (Amsterdam) 152:26–34. doi:

10.1016/j.scienta.2013.01.007. 2013.

BOMAN, H. G. Antibacterial peptides: basic facts and emerging concepts. Journal of internal medicine, v. 254, n. 3, p. 197-215, 2003.

BISHOP A,özlem tastan; TAP, de beer; JOUBERT F. Protein homology modelling and its use in South Africa. S Afr J Sci 104:2–6. 2008.

BHATTACHARJEE, et al. Molecular modelling, dynamics simulation and characterization of antifungal chitinase from Sechium edule. Gene 606: 39–46. 2017.

BOWMAN, Shaun M.; FREE, Stephen J. The structure and synthesis of the fungal cell wall. Bioessays, v. 28, n. 8, p. 799-808, 2006.

BROWN, Gordon D.; GORDON, Siamon. Immune recognition: a new receptor for β- glucans. Nature, v. 413, n. 6851, p. 36-37, 2001.

BIENERT, Stefan et al. The SWISS-MODEL Repository—new features and functionality. Nucleic acids research, v. 45, n. D1, p. D313-D319, 2016.

BROEKAERT, Willem F. et al. Anautomated quantitative assay for fungal growth inhibition. FEMS Microbiology Letters, v. 69, n. 1-2, p. 55-59, 1990.

BIASINI, Marco et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic acids research, v. 42, n. W1, p. W252-W258, 2014.

BERENS, Matthias L. et al. Evolution of hormone signaling networks in plant defense. Annual review of phytopathology, v. 55, n. 1, 2017.

COMEAU, Stephen R. et al. ClusPro: anautomated docking and discrimination

method for the prediction of protein complexes. Bioinformatics, v. 20, n. 1, p. 45-50, 2004.

CAMPOS, M.D. et al. Expression in Escherichia coli, purification, refolding and antifungal activity of an osmotin from Solanum nigrum. Microb. Cell Fact. 7: 7-17. 2008.

CHEN, Ming‐Shun. Inducible direct plant defense against insect herbivores: a review. Insect science, v. 15, n. 2, p. 101-114, 2008.

CHENG, Xiaoyan; ZHU, Lili; HE, Guangcun. Towards understanding of molecular interactions between rice and the brown planthopper. Molecular plant, v. 6, n. 3, p. 621-634, 2013.

CARMONA-GUTIERREZ, D. et al. Apoptosis in yeast: triggers, pathways, subroutines. Cell death and differentiation, v. 17, n. 5, p. 763, 2010.

DALEN, Lars Sandved et al. Freezing tolerance in Norway spruce, the potential role of pathogenesis-related proteins. Acta physiologiae plantarum, v. 37, n. 1, p. 1717, 2015.

DA SILVA, Vinicius B. Modelagem molecular de proteínas-alvo por homologia estrutural. Revista eletrônica de Farmácia, v. 4, n. 1, 2007.

DE VRIES, Sjoerd J.; VAN DIJK, Marc; BONVIN, Alexandre MJJ. The HADDOCK web server for data-driven biomolecular docking. Nature protocols, v. 5, n. 5, p. 883, 2010.

DE BRUCKER, Katrijn; CAMMUE, Bruno PA; THEVISSEN, Karin. Apoptosis-

inducing antifungal peptides and proteins.Biochemical Society Transactions, v. 39, n. 5, p. 1527-1532, 2011. Disponível em:

DELATTIN, Nicolas et al. Antimicrobial peptides as a strategy to combat fungal biofilms. Current topics in medicinal chemistry, v. 17, n. 5, p. 604-612, 2017. DA CUNHA, Nicolau B. et al. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug discovery today, v. 22, n. 2, p. 234-248, 2017.

DOS SANTOS SOARES, Alexandra Martins; MACHADO, Olga Lima Tavares. Defesa de plantas: Sinalização química e espécies reativas de oxigênio. Revista Trópica–Ciências Agrárias e Biológicas, v. 1, n. 1, p. 10, 2007.

DURAN-FLORES, Dalia; HEIL, Martin. Sources of specificity in plant damaged-self recognition. Current opinion in plant biology, v. 32, p. 77-87, 2016.

DE LORENZO, Giulia et al. Engineering plant resistance by constructing chimeric receptors that recognize damage‐associated molecular patterns (DAMPs). FEBS letters, v. 585, n. 11, p. 1521-1528, 2011.

ERBS, Gitte; NEWMAN, Mari‐Anne. The role of lipopolysaccharides in induction of plant defence responses. Molecular Plant Pathology, v. 4, n. 5, p. 421-425, 2003.

FREITAS, Cleverson DT et al. New constitutive latex osmotin-like proteins lacking antifungal activity. Plant Physiology and Biochemistry, v. 96, p. 45-52, 2015. FREITAS, CleversonDiniz Teixeira et al. Osmotin purified from the latex of

Calotropisprocera: biochemical characterization, biological activity and role in plant defense. Plant Physiology and Biochemistry, v. 49, n. 7, p. 738-743, 2011. FERREIRA, Ricardo B. et al. The role of plant defence proteins in fungal pathogenesis. Molecular Plant Pathology, v. 8, n. 5, p. 677-700, 2007.

FALCAO, Loeni L. et al.Antimicrobial properties of two novel peptides derived from Theobroma cacao osmotin. Peptides, v. 79, p. 75-82, 2016.

FARKAS, Attila et al. Comparative analysis of the bacterial membrane disruption effect of two natural plant antimicrobial peptides. Frontiers in microbiology, v. 8, 2017.

FESEL, Philipp H.; ZUCCARO, Alga. β-glucan: crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genetics and Biology, v. 90, p. 53-60, 2016.

FELIX, Georg et al. Plants have a sensitive perception system for the most

conserved domain of bacterial flagellin. The Plant Journal, v. 18, n. 3, p. 265-276, 1999.

FAN, Linlin et al. DRAMP: a comprehensive data repository of antimicrobial peptides. Scientific reports, v. 6, 2016.

GARRIGUES, Sandra et al. Mapping and identification of antifungal peptides in the putative antifungal protein AfpB from the filamentous fungus Penicillium digitatum. Frontiers in microbiology, v. 8, 2017.

GUST, Andrea A. et al. Bacteria-derived peptidoglycans constitute pathogen- associated molecular patterns triggering innate immunity in Arabidopsis. Journal of

Biological Chemistry, v. 282, n. 44, p. 32338-32348, 2007.

GUPTA, Sudheer et al. In silico approach for predicting toxicity of peptides and proteins. PLoS One, v. 8, n. 9, p. e73957, 2013.

GILARDONI, Paola A. et al. Nicotiana attenuata LECTIN RECEPTOR KINASE1 suppresses the insect-mediated inhibition of induced defense responses during Manduca sexta herbivory. The Plant Cell, v. 23, n. 9, p. 3512-3532, 2011.

GRUHLKE, Martin CH et al. Allicin disrupts the cell's electrochemical potential and induces apoptosis in yeast. Free Radical Biology and Medicine, v. 49, n. 12, p. 1916-1924, 2010.

GAVRIELI, Yael; SHERMAN, Yoav; BEN-SASSON, Shmuel A. Identification of programmed cell death in situ via specific labeling of nuclear DNA

fragmentation. The Journal of cell biology, v. 119, n. 3, p. 493-501, 1992.

GUO, Jun et al. Expression of the LePR5 gene from cherry tomato fruit induced by Cryptococcus laurentii and the analysis of LePR5 protein antifungal

activity. Postharvest Biology and Technology, v. 111, p. 337-344, 2016. GOURLAY, Campbell W.; DU, Wei; AYSCOUGH, Kathryn R. Apoptosis in yeast mechanisms and benefits to a unicellular organism. Molecular microbiology, v. 62, n. 6, p. 1515-1521, 2006.

GHOSH, R.; CHAKRABARTI, C. Crystal structure analysis of NP24-I: a thaumatin- like protein. Planta. 228: 883–890. 2008.

GUST, Andrea A. et al. Bacteria-derived peptidoglycans constitute pathogen-

associated molecular patterns triggering innate immunity in Arabidopsis. Journal of

Biological Chemistry, v. 282, n. 44, p. 32338-32348, 2007.

HANCOCK, Robert EW; CHAPPLE, Daniel S. Peptide antibiotics. Antimicrobial agents and chemotherapy, v. 43, n. 6, p. 1317-1323, 1999.

HUFFAKER, Alisa; RYAN, Clarence A. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune

response. Proceedings of the National Academy of Sciences, v. 104, n. 25, p. 10732-10736, 2007.

HIGUCHI, Naoki et al. NP24 induces apoptosis dependent on caspase-like activity in Saccharomyces cerevisiae. Journal of bioscience and bioengineering, v. 121, n. 6, p. 619-624, 2016.

HE, Rongrong et al. Overexpression of a thaumatin-like protein gene from Vitis amurensis improves downy mildew resistance in Vitis vinifera grapevine. Protoplasma, v. 254, n. 4, p. 1579-1589, 2017.

HOFFMANN-SOMMERGRUBER, K. Pathogenesis-related (PR)-proteins identified as allergens. Biochemical society transactions, v. 30, n. 6, 2002.

HASSAN, M. et al. Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. Journal of applied

microbiology, v. 113, n. 4, p. 723-736, 2012.

HUFFAKER, Alisa; RYAN, Clarence A. Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune

response. Proceedings of the National Academy of Sciences, v. 104, n. 25, p. 10732-10736, 2007.

IYENGAR, Ramanuja B. et al. The complete amino‐acid sequence of the sweet protein thaumatin I. The FEBS Journal, v. 96, n. 1, p. 193-204, 1979.

KUMAR, S. Anil et al. Osmotin: a plant sentinel and a possible agonist of mammalian adiponectin. Frontiers in plant science, v. 6, 2015.

KOIWA, Hisashi et al. Crystal structure of tobacco PR-5d protein at 1.8 Å resolution reveals a conserved acidic cleft structure in antifungal thaumatin-like

proteins. Journal of molecular biology, v. 286, n. 4, p. 1137-1145, 1999.

KOIWA, Hisashi et al. Purification and characterization of tobacco pathogenesis- related protein PR-5d, an antifungal thaumatin-like protein. Plant and cell

physiology, v. 38, n. 7, p. 783-791, 1997.

KUMAR, R. BARANI; SURESH, M. XAVIER; PRIYA, B. SHANMUGA.

Pharmacophore modeling, in silico screening, molecular docking and molecular dynamics approaches for potential alpha‐delta bungarotoxin‐4 inhibitors Discovery. Pharmacognosy Magazine. 11(42): S19-S28. 2015.

KOSIKOWSKA, Paulina; LESNER, Adam. Antimicrobial peptides (AMPs) as drug

candidates: a patent review (2003–2015). Expert opinion on therapeutic patents,

v. 26, n. 6, p. 689-702, 2016.

KOZAKOV, Dima et al. The ClusPro web server for protein-proteindocking. Nature protocols, v. 12, n. 2, p. 255-278, 2017.

KATO, Jungo; SVENSSON, Camilla I. Chapter Nine-Role of Extracellular Damage- Associated Molecular Pattern Molecules (DAMPs) as Mediators of Persistent Pain. Progress in molecular biology and translational science, v. 131, p. 251-279, 2015.

LE, Thi Thuy Trang; WILLIAMS, Brett; MUNDREE, Sagadevan. An osmotin from the resurrection plant Tripogonloliiformis (TlOsm) confers tolerance to multiple abiotic stresses in transgenic rice. Physiologia Plantarum, 2017.

LINTHORST, Huub JM; VAN LOON, L. C. Pathogenesis‐related proteins of plants. Critical reviews in plant sciences, v. 10, n. 2, p. 123-150, 1991.

LI, Dongmei et al. Enzymatic dysfunction of mitochondrial complex I of the Candida albicans goa1 mutant is associated with increased reactive oxidants and cell

death. Eukaryotic cell, v. 10, n. 5, p. 672-682, 2011.

LASKOWSKI, Roman A. PDBsum: summaries and analyses of PDB structures. Nucleicacids research, v. 29, n. 1, p. 221-222, 2001.

LIU, Chun et al. Structure–function relationship of a novel PR-5 protein with

antimicrobial activity from soy hulls. Journal of agricultural and food chemistry, v. 64, n. 4, p. 948-959, 2016.

LATA, Sneh; MISHRA, Nitish K.; RAGHAVA, Gajendra PS. AntiBP2: improved version of antibacterial peptide prediction. BMC bioinformatics, v. 11, n. 1, p. S19, 2010.

LESK, A.M. Introdução à bioinformática. Artmed, 2008. Porto Alegre, Brazil.

LIRA, Felipe et al. Synthetic peptides antimicrobial activity prediction using decision tree model. Applied and Environmental Microbiology, p. AEM. 02804-12, 2013.

MORRIS, J. Karnovsky. A formaldehyde glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal. cell Biology, 27 (1965) 1-149.

MANDAL, Santi M. et al. The attack of the phytopathogens and the trumpet solo: identification of a novel plant antifungal peptide with distinct fold and disulfide bond pattern. Biochimie, v. 95, n. 10, p. 1939-1948, 2013.

MIELE, Marco; COSTANTINI, Susan; COLONNA, Giovanni. Structural and functional similarities between osmotin from Nicotiana tabacum seeds and human

adiponectin. PLoS One, v. 6, n. 2, p. e16690, 2011.

MONTEIRO, Sara et al. Osmotin and thaumatin from grape: a putative general defense mechanism against pathogenic fungi. Phytopathology, v. 93, n. 12, p. 1505-1512, 2003.

MELO, V. M. M. et al. Antifungal Properties of Proteins (Agglutinins) from the Red Alga Hypneamusciformis (Wulfen) Lamouroux. Botanica marina, v. 40, n. 1-6, p. 281-284, 1997.

MITHÖFER, Axel; BOLAND, Wilhelm. Recognition of herbivory-associated molecular patterns. Plant Physiology, v. 146, n. 3, p. 825-831, 2008.

MANDAL, Santi M. et al. The attack of the phytopathogens and the trumpet solo: identification of a novel plant antifungal peptide with distinct fold and disulfide bond pattern.Biochimie, v. 95, n. 10, p. 1939-1948, 2013.

MISRA, Rajesh Chandra et al. A thaumatin-like protein of Ocimum basilicum confers tolerance to fungal pathogen and abiotic stress in transgenic Arabidopsis. Scientific reports, v. 6, 2016.

MIN, Kyeongsik et al. Crystal structure of osmotin, a plant antifungal protein. Proteins: Structure, Function, and Bioinformatics, v. 54, n. 1, p. 170-173, 2004. NIARCHOU, Anastasia et al. C-PAmP: large scale analysis and data base

construction containing high scoring computationally predicted antimicrobial peptides for all the available plant species. PloSone, v. 8, n. 11, p. e79728, 2013.

NARASIMHAN, M.L. et al. A plant defense response effector induces microbial apoptosis. Molecular Cell. 8:921-930. 2001.

NAWROT, Robert et al. Plant antimicrobial peptides. Folia microbiologica, v. 59, n. 3, p. 181-196, 2014.

NAWROT, Robert. Defense-related Proteins from Chelidoniummajus L. as Important Components of its Latex. Current Protein and Peptide Science, v. 18, n. 8, p. 864- 880, 2017.

NARASIMHAN, Meena L. et al. Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Molecular cell, v. 17, n. 2, p. 171-180, 2005.

PORTO, W. F.; PIRES, A. S.; FRANCO, O. L. Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnology Advances, 2017.

PREZOTO, Fábio et al. Agroecossistemas e o serviço ecológico dos insetos na sustentabilidade. Sustentabilidade: Tópicos da Zona da Mata Mineira. 1ª ed. Juiz de Fora, Real Consultoria em Negócios Ltda, p. 19-30, 2016.

RAMOS, Marcio V. et al. Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: Insights into the mechanism of action. Phytochemistry, v. 119, p. 5-18, 2015.

REGENTE, Mariana et al. A sunflower lectin with antifungal properties and putative medical mycology applications. Current microbiology, v. 69, n. 1, p. 88-95, 2014. SCHILMILLER, Anthony L.; HOWE, Gregg A. Systemic signaling in the wound response. Current opinion in plant biology, v. 8, n. 4, p. 369-377, 2005.

SELS, Jan et al. Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiology and Biochemistry, v. 46, n. 11, p. 941-950.

SINGH, Anu et al. Antifungal proteins: potent candidate for inhibition of pathogenic fungi. Current Bioactive Compounds, v. 9, n. 2, p. 101-112, 2013.

SCHWAN-ESTRADA, Kátia Regina Freitas; STANGARLIN, José Renato; CRUZ, Maria Eugênia da Silva. Uso de extratos vegetais no controle de fungos

fitopatogênicos. Floresta, v. 30, n. 12, 2000.

TONG, Zheng et al. Identification and functional characterization of HbOsmotin from Heveabrasiliensis. Plant Physiology and Biochemistry, v. 109, p. 171-180, 2016. TANG, Y. Tom et al. PAQR proteins: a novel membrane receptor family defined by an ancient7-transmembrane pass motif. Journal of molecular evolution, v. 61, n. 3, p. 372-380, 2005.

TROTT, Oleg; OLSON, Arthur J. AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, v. 31, n. 2, p. 455-461, 2010.

TRUITT, Christopher L.; WEI, Han-Xun; PARÉ, Paul W. A plasma membrane protein from Zea mays binds with the herbivore elicitor volicitin. The Plant Cell, v. 16, n. 2, p. 523-532, 2004.

THOMAS, Shaini et al. CAMP: a useful resource for research on antimicrobial peptides. Nucleic acids research, v. 38, n. suppl_1, p. D774-D780, 2009.

TRIVEDI, VR; CHORAWALA, MR; SHAH, GB. Osmotin: Anew adiponectin agonist, in TypeII diabetes and obesity. Int J Pharm Sci Rev Res. 16:70–74. 2012.

TIFFIN, Peter; MOELLER, David A. Molecular evolution of plant immune system genes. Trends in genetics, v. 22, n. 12, p. 662-670, 2006.

ULLAH, Abid et al. Osmotin: a plant defense tool against biotic and abiotic stresses. Plant Physiology and Biochemistry, 2017.

VIKTOROVA J, et al. Osmotin, a pathogenesis-relatedprotein. Curr Protein PeptSci 13:672–81. (2012).

VAN ZUNDERT, G. C. P. et al. The HADDOCK2. 2 web server: user-friendly integrative modeling of biomolecular complexes. Journal of molecular biology, v. 428, n. 4, p. 720-725, 2016.

VAN LOON, L.C.; REP, M.; PIETERSE, C.M.J. Significance of Inducible Defense related Proteins in Infected Plants. Annual Review of Phytopathology. 44:135–162. 2006.

VASILIAUSKAITÉ-BROOKS, Ieva et al. Structural insights into adiponectin receptors bsuggest ceramidase activity. Nature, v. 544, n. 7648, p. 120, 2017.

VIKTOROVA, Jitka et al. New findings in potential applications of tobacco osmotin. Protein Expression and Purification, v. 129, p. 84-93, 2017.

VELAZHAHAN, R. Samiyappan. R. and Vidhyasekaran, P. Relationship between antagonistic activities of Pseudomonas fluorescens isolates against Rhizoctonia

solani and their production of lytic enzymes. J. Plant Dis. Protec, v. 106, p. 244-250, 1999.

WANG, Guangshun; LI, Xia; WANG, Zhe. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic acids research, v. 44, n. D1, p. D1087-D1093, 2015.

WEL, Henrik; LOEVE, Kees. Isolation and characterization of thaumatin I and II, thesweet‐tasting proteins from ThaumatococcusdanielliiBenth. European Journal of Biochemistry, v. 31, n. 2, p. 221-225, 1972.

WOLOSHUK, Charles P. et al. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. The Plant Cell, v. 3, n. 6, p. 619-628, 1991.

ZOETE, VINCENT; GROSDIDIER, AURÉLIEN; MICHIELIN, OLIVIER. Docking, virtual high throughput screening and in silico fragment-based drug design. J. Cell. Mol. Med. 13(2): 238-248. 2009.

APÊNDICE A- FONTES FINANCIADORAS

O presente trabalho foi realizado com o suporte das seguintes instituições:

Universidade Federal do Ceará, por meio dos Laboratório de Biotecnologia de Proteases Vegetais, coordenado pelo professor Dr. Cleverson Diniz Teixeira de Freitas, Laboratório de Plantas Laticíferas do Departamento de Bioquímica e Biologia Molecular, coordenado pelo professor Dr. Márcio Viana Ramos, Laboratório de Toxinas e Proteínas Tóxicas de Plantas, coordenado pela professora Dra. Iika Maria Vasconselos, Labortórios de Proteínas de Defesas de Plantas, coordenado pelo professor Dr. José Tadeu Abreu de Oliveira.

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), por meio do fornecimento da bolsa de estudo.

Documentos relacionados