• Nenhum resultado encontrado

A peritonite infecciosa felina é uma doença grave que, apesar dos avanços terapêuticos, ainda apresenta alta letalidade, sendo uma das maiores preocupações na clínica médica de felinos. Ainda há dificuldade de compreensão da patogênese da PIF, bem como sobre a mutabilidade do genoma do FCoV e sobre as características genéticas do hospedeiro que possam influenciar no desenvolvimento da PIF. Contudo, há avanços em relação à detecção do FIPV e possibilidades diagnósticas, demonstrando a importância da realização de mais estudos sobre o genoma e técnicas de biologia molecular para entender a patogenia da doença e assim fornecer ferramentas que facilitem o diagnóstico e tratamento precoce, diminuindo a letalidade da doença.

REFERÊNCIAS

ABINPET. Dados do Mercado. Associação Brasileira da Indústria de Produtos para Animais de Estimação. 2019. Disponível em: http://abinpet.org.br/mercado/. Acesso em 22 de janeiro de 2021.

ADDIE, D. et al. Rapid Resolution of Non-Effusive Feline Infectious Peritonitis Uveitis with an Oral Adenosine Nucleoside Analogue and Feline Interferon Omega. Viruses. v. 12, n.11, p. 1216. 2020.

ADDIE, D. et al. Feline Coronavirus Infections. In: Greene. Infectous Diseases of the Dog and Cat, Elsevier. St. Louis. USA. v. 4, p. 102–108, 2012.

ADDIE, D. et al. Feline infectious peritonitis. Abcd guidelines on prevention and management. Journal of Feline Medicine and Surgery. v. 11, p. 594–604, 2009.

ADDIE, D. et al. Persistence and transmission of natural type I feline coronavirus infection.

Journal of General Virology. v. 84, p. 2735–2744, 2003.

BANK-WOLF, B. R. et al. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis. Veterinary Microbiology. v. 173, n. 3-4, p. 177–

188, 2014.

BARKER, E. N. et al. Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis. Veterinary Research. v. 48, p. 60, 2017.

BATTILANI, M. et al. Quasispecies composition and phylogenetic analysis of feline coronaviruses (FCoVs) in naturally infected cats. FEMS immunology and medical microbiology. v. 39, n. 2, p. 141–147. 2003.

BELOUZARD, S. et al. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. v. 4, n. 6, p. 1011-33, 2012.

BENAVIDES, F. J.; GUÉNET, J. L. Mouse genomics In H. J. HEDRICH. The laboratory mouse. Elsevier. v.2, p. 57–90, 2012.

BOSCH, B. J.; ROTTIER, P. J. Nidovirus Entry into Cells. In Perlman; S. Gallagher T.;

BREST, P. et al. Host polymorphisms may impact SARS-CoV-2 infectivity. Trends in Genetics. v. 36, p. 813–815, 2008.

BROWN, M. A. et al. Genetics and pathogenesis of feline infectious peritonitis virus.

Emerging Infectious Disease. v.15, n.9, p.1445–1452, 2009.

BUBENIKOVA, J. et al. Candidate Gene Markers Associated with Fecal Shedding of the Feline Enteric Coronavirus (FECV). Pathogens. v. 9, n. 11, p. 958, 2020.

BUBENIKOVA, J. et al. The Population Diversity of Candidate Genes for

Resistance/Susceptibility to Coronavirus Infection in Domestic Cats: An Inter-Breed Comparison. Pathogens. v. 10, n. 6, p- 778. 21. 2021.

CHANG, H. W. et al. Spike protein fusion peptide and feline coronavirus virulence. Emerging infectious diseases. v. 18, n.7, p. 1089–1095, 2012.

CHANG, H. W. et al. Feline infectious peritonitis: insights into feline coronavirus

pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene. Journal Of General Virology. v. 91, p. 415–420, 2010.

DECARO, N. et al. Mutation analysis of the spike protein in Italian feline infectious

peritonitis virus and feline enteric coronavirus sequences. Research in Veterinary Science.

v. 135, p. 15-19, 2021.

DEDEURWAERDER, A. et al. ORF7-encoded accessory protein 7a of feline infectious peritonitis virus as a counteragent against IFN-α-induced antiviral response. Journal of General Virology. v. 95, c. 2, p. 393-402, 2014.

DEWERCHIN, H. L.; CORNELISSEN, E.; NAUWYNCK, H. J. Replication of feline coronaviruses in peripheral blood monocytes. Archives of Virology. v. 150, n. 12, p. 2483-500, 2005.

DRECHSLER, Y. et al. Feline coronavirus in multicat environments. Veterinary Clinical North America Small Animal Practice. v 41, p. 1133–69, 2011.

DURAN, C. et al. Molecular Genetic Markers: Discovery, Applications, Data Storage and Visualisation. Current Bioinformatics. v. 4, n. 1, p. 16–27, 2009.

DYE C., SIDDELL S. G. Genomic Rna Sequence of Feline Coronavirus Strain Fcov.

Journal of Feline Medicine and Surgery. v. 9. p. 202–213. 2007.

ECHETO, O. A. et al. Peritonitis infecciosa felina, gastroenteritis y colangiohepatitis parasitaria (platinosomiasis) con colangiocarcinoma hepático: estudio clínico y anatomopatológico de tres casos. Revista Científica De La Facultad De Ciencias Veterinarias De La Universidad Del Zulia. v. 15, n. 3, p. 195–203, 2005.

EMMLER, L. et al. Feline coronavirus with and without spike gene mutations detected by real-time RT-PCRs in cats with feline infectious peritonitis. Journal of Feline Medicine and Surgery. v. 22, n. 8, p. 791–799, 2020.

FELTEN, S. et al. Sensitivity and specificity of a realtime reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis. BMC Veterinary Reserach. v. 13, p. 228, 2017.

FISCHER, Y.; SAUTER-LOUIS, C.; HARTMANN, K. Diagnostic accuracy of the Rivalta test for feline infectious peritonitis. Veterinary Clinical Pathology. v. 41, n.4, p. 558–567, 2012.

GIORI, L. et al. Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases. Journal of Small Animal Practice. v. 52, p. 152–157, 2011.

HAIJEMA, B. J.; VOLDERS, H.; ROTTIER, P. J. Live, attenuated coronavirus vaccines through the directed deletion of group-specific genes provide protection against feline infectious peritonitis. Journal of Virology. v. 78, p. 3863–387, 2004.

HARTMANN, K. et al. Comparison of different tests to diagnose feline infectious peritonitis.

Journal of Veterinary Internal Medicine. v. 17, n. 6, p. 781-90, 2003.

HARTMANN, K. Feline Infectious Peritonitis. Veterinary Clinics of North America Small Animal Practice. v. 35, p. 39–79, 2005.

HERREWEGH, A. et al. Feline coronavirus type ii strains 79- 1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus.

Journal of Virology. v. 72, p. 4508–14, 1998.

HORA, A. S. et al. Diversidade gênica do coronavírus felino em populações virais entéricas e sistêmicas intra e inter-hospedeiros. 72 p. 2014. Tese de Doutorado em Medicina Veterinária - Universidade de São Paulo, Faculdade de Medicina Veterinária. São Paulo. 2014.

HORA, A. S. et al. Feline coronavirus 3c protein: a candidate for a virulence marker?

BioMed Research International. v 16, p. 1-9, 2016.

JAIMES, J. A. et al. A Tale of Two Viruses: the distinct spike glycoproteins of feline Coronaviruses. Viruses. v. 10, n.12, p. 83. 2020.

JEFFERY, U.; DEITZ, K.; HOSTETTER, S. Positive predictive value of albumin: globulin ratio for feline infectious peritonitis in a mid-western referral hospital population. Journal of Feline Medicine and Surgery. v. 14, e. 12, p- 903-905, 2012.

KENNEDY, M. A. Feline Infectious Peritonitis. Veterinary Clinics of North America:

Small Animal Practice. V. 50, n. 5, p. 1001–1011, 2020.

KENNEDY, M. A. et al. Evaluation of antibodies against feline coronavirus 7b protein for diagnosis of feline infectious peritonitis in cats. American Journal of Veterinary Research.

v. 69, n. 9, p. 1179-1782, 2008.

LEWIS, C. S. et al. Genotyping coronaviruses associated with feline infectious peritonitis.

The Journal of general virology. v. 96, p. 1358–1368, 2015.

LONGSTAFF, L. et al. Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis. Journal of Feline Medicine Surgery. v. 19., n. 2, p. 240-245, 2017.

LOVATO, L. T.; DEZENGRINI, R. Coronaviridae In: FLORES, E. F. Virologia

Veterinária. Virologia Geral e Doenças Víricas. Santa Maria: UFSM. v. 3, e. 3, c. 25, p.

624-626, 2017.

LOWE, J. W. E., BRUCE, A. Genetics without genes? The centrality of genetic markers in livestock genetics and genomics. History and Philosophy of the Life Sciences. v. 41, n. 50, p 1-29, 2019.

MASTERS, P. S.; PERLMAN, S. Coronaviridae In: Fields Virology. KNIPE, D. M.,

HOWLEY, P. M., EDS.; LIPPINCOT WILLIAMS; WILKINS. Philadelphia, USA. v. 1, n.6, p. 825–858. 2013.

MELI, M. et al. High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats. Journal of Feline Medicine and Surgery. v. 6, n. 2, p. 69–81, 2004.

MURPHY, B. G. et al. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Veterinary Microbiology. v. 219, p. 226-233, 2018.

MYRRHA, L. et al. Feline coronavirus isolates from a part of Brazil: insights into molecular epidemiology 5 and phylogeny inferred from the 7b gene. The Journal of Veterinary Medical Science. 2019.

PALTRINIERI, S. et al. Laboratory Profiles in Cats with Different Pathological and

Immunohistochemical Findings Due to Feline Infectious Peritonitis (FIP). Journal of Feline Medicine and Surgery. v.3, n.3, p. 149-159. 2001.

Pedersen, N. C. An update on feline infectious peritonitis: Virology and immunopathogenesis.

The Veterinary Journal. v. 201, n. 2, p. 123–132. 2014.

PEDERSEN, N. C. et al. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. Journal of Feline Medicine and Surgery. v. 21, n. 4, p. 271-281, 2019.

PEDERSEN, N. C. et al. Natural resistance to experimental feline infectious peritonitis virus infection is decreased rather than increased by positive genetic selection. Veterinary

Immunology and Immunopathology. v. 171, p. 17–20, 2016.

PEDERSEN, N. C. et al. Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis. Viruses. v. 1, n. 2, p. 166–184, 2009.

PRATELLI, A. Comparison of serologic techniques for the detection of antibodies against feline coronaviruses. Journal of Veterinary Diagnostic and Investigation. v. 20, n. 1, p.

45–50, 2008.

RHEINBERGER, H.-J.; MÜLLER-WILLE, S. The gene: From genetics to postgenomics.

Chicago, IL.The University of Chicago Press. 2017.

RIEMER, F. et al. Clinical and laboratory features of cats with feline infectious peritonitis – a retrospective study of 231 confirmed cases (2000–2010). Journal of Feline Medicine and Surgery. v. 18, n. 4, p. 348–356, 2016.

ROTTIER, P. J. M. et al. Acquisition of Macrophage Tropism during the Pathogenesis of Feline Infectious Peritonitis Is Determined by Mutations in the Feline Coronavirus Spike Protein. Journal of Virology. v. 79, n. 22, p. 14122–14130, 2005.

SCAGNOLARI, C. et al. Consolidation of molecular testing in clinical virology. Expert Review of Anti-Infective Therapy. Taylor and Francis Ltd. v. 15, e. 4, p. 387–400, 2017.

SHERDING, R. G. Peritonite Infecciosa Felina. In: BIRCHARD, S. J; SHERDING, R. G.

Manual Saunders: clínica de pequenos animais. 2. ed. São Paulo: Roca, 2003. p.101 - 107.

SIMONS, F. A. et al. A mRNA PCR for the diagnosis of feline infectious peritonitis. Journal of Virological Methods. v. 124, n. 1–2, p. 111–116, 2005.

STRANIERI, A. et al. Concordance between Histology, Immunohistochemistry, and RT-PCR in the Diagnosis of Feline Infectious Peritonitis. Pathogens. V. 9, n. 10, p. 852, 2020.

TAKANO, T. et al. A “possible” involvement of TNF-alpha in apoptosis induction in peripheral blood lymphocytes of cats with feline infectious peritonitis. Veterinary Microbiology. v. 119, n. 2–4, p. 121–131, 2007.

TEKES, G. et al. Genome Organization and Reverse Genetic Analysis of a Type I Feline Coronavirus. Journal of Virology. v. 82, n. 4, p. 1851–1859, 2008.

TEKES, G.; THIEL, H. J. Feline Coronaviruses: Pathogenesis of Feline Infectious Peritonitis.

In: ADVANCES IN VIRUS RESEARCH. Academic Press Inc., 2016. v. 96, p. 193–218.

THIEL, V.; THIEL, H.; TEKES, G. Tackling feline infectious peritonitis via reverse genetics.

Bioengineered Bugs. v. 5, n. 6, p. 396–400, 2015.

VAN HAMME, E. et al. Intriguing interplay between feline infectious peritonitis virus and its receptors during entry in primary feline monocytes. Virus Research. v. 160, n. 1–2, p. 32–39, 2011.

WALKER, P. J. et al. Changes to virus taxonomy and the Statutes ratified by the International Committee on Taxonomy of Viruses. Archives of Virology. v. 165, n. 11, p. 2737-2748.

2020.

WANG, Y. et al. An outbreak of feline infectious peritonitis in a Taiwanese shelter:

epidemiologic and molecular evidence for horizontal transmission of a novel type II feline coronavirus. Veterinary Research. v. 44, n. 57, 2013.

ZOIA, A. et al. A new approach to pleural effusion in cats: markers for distinguishing transudates from exudates. Journal of Feline Medicine and Surgery. v. 11, n. 10, p. 847–

855, 2009.

Documentos relacionados