• Nenhum resultado encontrado

Cada vez mais evidências apontam para um papel importante do estresse oxidativo no desenvolvimento da hipertensão arterial. Neste trabalho pudemos fornecer novas informações a respeito dos mecanismos envolvidos no desenvolvimento desta patologia, caracterizando as possíveis fontes do aumento da geração de EROs na vasculatura, como a Nox1, bem como diferenciando alterações importantes em arteríolas de resistência e artérias de condutância. Entendemos que o controle eficiente do aumento da PA através de diferentes terapias antihipertensivas em animais SHR, foi importante para inibir o aumento da geração de EROs e de Nox4 mesmo que, curiosamente, somente o tratamento com Losartan, antagonista de receptor AT1, tenha promovido uma diminuição na expressão de Nox1 em animais SHR. Adicionalmente o presente estudo abre a perspectiva da participação da PDI na modulação da geração de EROs pela Nox1 e sua contribuição para alterações na estrutura e função vascular mediadas pela Ang II em artérias de resistência durante o desenvolvimento da hipertensão arterial. Neste âmbito, tais resultados figuram-se importantes e abrem uma nova frente para investigação de um novo papel para a PDI, uma proteína com uma função primária no enovelamento proteico no retículo endoplasmático, na regulação de um fenômeno tão diferenciado como o aumento da geração de EROs e na disfunção vascular associada a patologias como hipertensão arterial.

REFERÊNCIAS

Adler S. Oxidant stress leads to impaired regulation of renal cortical oxygen consumption by nitric oxide in the aging kidney. J Am Soc Nephrol. 2004;15(1):52- 60.

Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem. 2004;279(44):45935-41.

Babior BM, JD Lambeth, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys. 2002;397(2):342-4.

Beswick RA. NADH/NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension. 2001;38(5):1107-11.

Brandes RP, Schröder K. Composition and functions of vascular nicotinamide adenine dinucleotide phosphate oxidases. Trends Cardiovasc Med. 2008;18(1):15-9. Brandes RP, Viedt C, Nguyen K, Beer S, Kreuzer J, Busse R, et al. Thrombin- induced MCP-1 expression involves activation of the p22phox- containing NADPH oxidase in human vascular smooth muscle cells. Thromb Haemost. 2001;85:1104– 10.

Cave AC. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal. 2006;8(5-6):691-728.

Chabrashvili T, Tojo A, Onozato ML, Kitiyakara C, Quinn MT. Expression and cellular localization of classic NADPH oxidase subunits in the spontaneously hypertensive rat kidney. Hypertension. 2002;39;269–74.

Clempus RE, Griendling KK. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res. 2006;71(2):216-25.

DeKeulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK. Tumor necrosis factor alpha activates a p22phoxbased NADH oxidase in vascular smooth muscle cells. J Biochem. 1998;329:653– 7.

DeKeulenaer GW, Chappell DC, Ishizaka N, Nerem RM, Alexander KK, Griendling KK. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a superoxide-producing NADH oxidase. Circ Res. 1998;82:1094–101.

De acordo com:

International Committee International Committee of Medical Journal Editors. [Internet]. Uniform requirements for manuscripts submitted to Biomedical Journal: sample references. [updated 2011 Jul 15]. Available from: http://www.icmje.org.

DeMarco VG. Oxidative stress contributes to pulmonary hypertension in the transgenic (mRen2)27 rat. Am J Physiol Heart Circ Physiol. 2008;294(6):H2659-68. Dikalova A. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice. Circulation. 2005; 112(17):2668-76.

Diniz C. Immunohistochemical localization of angiotensin II receptor types 1 and 2 in the mesenteric artery from spontaneously hypertensive rats. Microsc Res Tech. 2007;70(8):677-81.

Ellmark SH, Dusting GJ, Fui MN, Guzzo-Pernell N, Drummond GR. The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc Res. 2005;65(2):495-504.

Fernandes DC. Protein disulfide isomerase overexpression in vascular smooth muscle cells induces spontaneous preemptive NADPH oxidase activation and Nox1 mRNA expression: effects of nitrosothiol exposure. Arch Biochem Biophys. 2009;484(2):197-204.

Fernandes DC. Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am J Physiol Cell Physiol. 2007;292(1):C413-22.

Folkow B. "Structural factor" in primary and secondary hypertension. Hypertension. 1990;16(1):89-101.

Freedman RB, Gane PJ, Hawkins HC, Hlodan R, McLaughlin SH, Parry JW. Experimental and theoretical analyses of the domain architecture of mammalian protein disulphide-isomerase. Biol Chem. 1998;379(3):321-8.

Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med. 2008;264(3):224-36.

Garrido AM, Griendling KK. NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol. 2009;302(2):148-58.

Gavazzi G. Decreased blood pressure in NOX1-deficient mice. FEBS Lett, 2006; 580(2):497-504.

Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86(5):494-501.

Guzik TJ, Harrison DG. Vascular NADPH oxidases as drug targets for novel antioxidant strategies. Drug Discov Today. 2006;11(11-12):524-33.

Hale TM, Okabe H, Bushfield TL, Heaton JP, Adams MA. Recovery of erectile function after brief aggressive antihypertensive therapy. J Urol. 2002;168:348–54.

Hale TM, Shoichet MJ, Bushfield TL, Adams MA. Time course of vascular structural changes during and after short-term antihypertensive treatment. Hypertension. 2003;42:171-6.

Hatahet F, Ruddock LW, Ahn K, Benham A, Craik D, Ellgaard L, Ferrari D, Ventura S. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal. 2009;11(11):2807-50.

He Q, LaPointe MC. Src and Rac mediate endothelin-1 and lysophosphatidic acid stimulation of the human brain natriuretic peptide promoter. Hypertension. 2001;37:478– 84.

Heitzer T. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. Kidney Int. 1999;55(1):252-60.

Hilenski LL, Clempus RE, Quinn MT, Lambeth JD, Griendling KK. Distinct subcellular localizations of Nox 1 and Nox 4 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2004;24(4):677-83.

Janiszewski M, Lopes LR, Carmo AO, Pedro MA, Brandes RP, Santos CX, Laurindo FR. Regulation of NAD(P)H oxidase by associated protein disulfide isomerase in vascular smooth muscle cells. J Biol Chem. 2005;280(49):40813-9.

Jiang XM. Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase. J Biol Chem. 1999;274(4):2416-23.

Jimenez-Altayo F. Increased superoxide anion production by interleukin-1beta impairs nitric oxide-mediated relaxation in resistance arteries. J Pharmacol Exp Ther. 2006;316(1):42-52.

Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006;8(9-10):1865-79. Karala AR, Ruddock LW. Bacitracin is not a specific inhibitor of protein disulfide isomerase. FEBS J. 2010;277(11):2454-62.

Kitamoto S. Chronic inhibition of nitric oxide synthesis in rats increases aortic superoxide anion production via the action of angiotensin II. J Hypertens. 2000;18(12):1795-800.

Koprdová R. Cebová M. Kristek F. Long-term effect of losartan administration on blood pressure, heart and structure of coronary artery of young spontaneously hypertensive rats. Physiol Res. 2009;58:327-35.

Korner PI, Bobik A. Cardiovascular development after enalapril in spontaneously hypertensive and Wistar-Kyoto rats. Hypertension. 1995;25:610–9.

Lacy F, O'Connor DT, Schmid-Schonbein GW. Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension. J Hypertens. 1998;16(3):291-303.

Lahav J. Enzymatically catalyzed disulfide exchange is required for platelet adhesion to collagen via integrin alpha2beta1. Blood. 2003;102(6):2085-92.

Lassegue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2003;285(2):R277-97.

Laurindo FR. Novel role of protein disulfide isomerase in the regulation of NADPH oxidase activity: pathophysiological implications in vascular diseases. Antioxid Redox Signal. 2008;10(6):1101-13.

Lee VM. NADPH oxidase activity in preeclampsia with immortalized lymphoblasts used as models. Hypertension. 2003;41(4):925-31.

Matsuno K. Nox1 is involved in angiotensin II-mediated hypertension: a study in Nox1-deficient mice. Circulation. 2005;112(17):2677-85.

Mulvany MJ, Aalkjaer C. Structure and function of small arteries. Physiol Rev. 1990;70(4):921-61.

Mulvany MJ. Small artery remodeling in hypertension. Curr Hypertens Rep. 2002;4(1):49-55.

Nabha L. Vascular oxidative stress precedes high blood pressure in spontaneously hypertensive rats. Clin Exp Hypertens. 2005;27(1):71-82.

Nguyen DCA, Touyz RM. Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep. 2011;13(2):122-8.

Pechanova O. Effect of chronic N-acetylcysteine treatment on the development of spontaneous hypertension. Clin Sci (Lond). 2006;110(2):235-42.

Peng Z, Arendshorst WJ. Phospholipase C expression and activity in smooth muscle cells of renal arterioles and aorta of young, spontaneously hypertensive rats during culture. AJH. 2007;20:520–6.

Piech A. Differential regulation of nitric oxide synthases and their allosteric regulators in heart and vessels of hypertensive rats. Cardiovasc Res. 2003;57(2):456-67.

Rey FE. Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O(2)(-) and systolic blood pressure in mice. Circ Res. 2001;89(5):408-14. Santos CX, Stolf BS, Takemoto PV, Amanso AM, Lopes LR, Souza EB, Goto H, Laurindo FR.Protein disulfide isomerase (PDI) associates with NADPH oxidase and is required for phagocytosis of Leishmania chagasi promastigotes by macrophages. J Leukoc Biol. 2009;86(4):989-98.

Schiffrin EL. Intracellular signal transduction for vasoactive peptides in hypertension. Can J Physiol Pharmacol. 1994;72(8):954-62.

Schiffrin EL. Reactivity of small blood vessels in hypertension: relation with structural changes. State of the art lecture. Hypertension. 1992;19(2 Suppl):II1-9.

Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res. 2002;91:406–13.

Shah AM, Channon KM. Free radicals and redox signalling in cardiovascular disease. Heart. 2004;90(5):486-7.

Sowers JR. Hypertension, angiotensin II, and oxidative stress. NEngl J Med. 2001;346:1999–2001.

Szocs K. Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler Thromb Vasc Biol. 2002;22(1):21-7.

Tabet F. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR. Circ Res. 2008;103(2):149-58.

Takac I, Schroder K, Zhang L, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox 4. J Biol Chem. 2011;286(15):13304-13.

Tian G, Xiang S, Noiva R, Lennarz WJ, Schindelin H. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell. 2006;124(1):61-73.

Tokutomi Y. Oxidation of Prx2 and phosphorylation of GRP58 by angiotensin II in human coronary smooth muscle cells identified by 2D-DIGE analysis. Biochemical and Biophysical Research Communications. 2007;364:822–30.

Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: implications in hypertension. Histochem Cell Biol. 2004;122(4):339-52.

Valente AJ, Yoshida T, Murthy SN, Sakamuri SVP, Katsuyama M, Clark RA, Delafontaine P, Chandrasekar B. Angiotensin II enhances AT1-Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT1, Nox1, and interleukin-18. Am J Physiol Heart Circ Physiol. 2012; 303:H282–H296.

Wang G, Anrather J, Glass MJ, Tarsitano J, Zhou P, Frys KA, Pickel VM, Iadecola C. Nox2, Ca2+, and Protein Kinase C Play a Role in Angiotensin II–Induced Free Radical Production in Nucleus Tractus Solitarius Hypertension. 2006;48:482-89.

Wang HD. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res. 2001;88(9):947-53.

Wendt MC. Differential effects of diabetes on the expression of the gp91phox homologues nox1 and nox4. Free Radic Biol Med. 2005;39(3):381-91.

Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med. 2008;45(5):549-61.

Woolard J, Hale TM, Bushfield TL, Adams MA. Persistent iowering of arterial pressure after continuous and intermittent therapy. J Hypertens. 2003;21:813–20.

Documentos relacionados