• Nenhum resultado encontrado

1) Não houve identificação de Candida dubliniensis entre as cepas veterinárias estocadas como Candida albicans resistentes a derivados azólicos na micoteca do CEMM.

2) A combinação de testes fenotípicos de identificação (ágar girassol e em ágar Tween

80™) representa estratégia confiável ao diagnóstico laboratorial de Candida albicans.

3) O perfil de resistência a derivados azólicos apresentado pelos isolados de C. albicans

estudados representa um fenômeno multifatorial, no qual estão inseridos, ao menos, aumento da atividade de bombas de efluxo e superexpressão gênica.

REFERÊNCIAS

AGRAWAL, M. et al. Comparative study of GeneXpert with ZN stain and culture in samples of suspected pulmonary tuberculosis. Journal of Clinical and Diagnostic Research, v. 10, n. 5, p. 10–13, 2016.

AHMAD, S.; KHAN, Z.; ASADZADEH, M.; THEYYATHEL , A.; RACHEL CHANDY, R. Performance comparison of phenotypic and molecular methods for detection and

differentiation of Candida albicans and Candida dubliniensis. BMC Infectious Diseases, v. 12, n. 1, p. 230–234, 2012.

AKINS, R. A. An update on antifungal targets and mechanisms of resistance in Candida albicans. Medical Mycology, v. 43, n. 4, p. 285–318, 2005.

ALENCAR, L. P. Atividade de Moringa oleifera in vitro contra fungos associados à carcinicultura Macrobrachium amazonicum e envolvimento de bombas de efluxo no fenômeno de resistência a derivado azólicos em Candida spp. Tese. UECE, 2015.

AMIN, S.; GUPTA, A.; ROTHMAN, E. Evaluation of the Xpert flu rapid PCR assay in high- risk emergency department patients. Journal of Clinical Microbiology, v. 52, n. 12, p. 4353– 4355, 2014.

AMINNEJAD, M. et al. Identification and characterization of VNI / VNII and novel VNII / VNIV hybrids and impact of hybridization on virulence and antifungal susceptibility within the C . neoformans/C . gattii species complex. PLoS ONE, v. 11, n. 10, p. 1–28, 2016. ANVISA. Microbiologia clínica para o controle de infecção relacionada à assistência à saúde, 2013.

ANVISA. Relatos de surtos de Candida auris em serviços de saúde da América Latina, 2017.

BARBERINO, M. G. et al. Direct identification from positive blood broth culture by matrix- assisted laser desorption-ionization time-of-flight mass. Brazilian Journal of Infectious Diseases, v. 21, n. 3, p. 339–342, 2017.

BERKOW, E. L. et al. Multidrug transporters and alterations in sterol biosynthesis contribute to azole antifungal resistance in Candida parapsilosis. Antimicrobial Agents and

Chemotherapy, v. 59, n. 10, p. 5942–5950, 2015.

BERTOLETTI, A. et al. Use of the VITEK 2 system to identify and test the antifungal susceptibility of clinically relevant yeast species. Brazilian Journal of Microbiology, v. 44, n. 4, p. 1257–1266, 2013.

BHAI, N. et al. Paediatric oropharyngeal and cutaneous candidiasis with special reference to

Candida dubliniensis. Journal of Medical Microbiology, v. 63, n. 4, p. 518–521, 2014. BHATTACHARYA, S.; SOBEL, J. D.; WHITE, C. A combination fluorescence assay demontrates increased pump activity as a resistance mechanism in azole-resistant vaginal

Candida albicans isolates. Antimicrobial Agents and Chemotherapy, v. 60, n. 10, p. 5858– 5866, 2016.

BICKFORD, D. et al. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, v. 22, n. 3, p. 148–155, 2007.

BRILHANTE, R. et al. Detection of Candida species resistant to azoles in the microbiota of rheas (Rhea americana): possible implications for human and animal health. Journal of Medical Microbiology, v. 62, n. 6, p. 889–895, 2013.

BRILHANTE, R. S. N. et al. Yeast microbiota of raptors: a possible tool for environmental monitoring. Environmental Microbiology Reports, v. 4, n. 2, p. 189–193, 2012.

BRILHANTE, R. S. N. et al. Antifungal susceptibility and virulence attributes of animal- derived isolates of Candida parapsilosis complex. Journal of Medical Microbiology, v. 63, p. 1568–1572, 2014.

BRILHANTE, R. S. N. et al. Emergence of azole-resistant Candida albicans in small ruminants. Mycopathologia, v. 180, n. 3, p. 277–280, 2015.

BRITO, E. H. S. et al. The anatomical distribution and antimicrobial susceptibility of yeast species isolated from healthy dogs. The Veterinary Journal, v. 182, n. 2, p. 320–326, 2009. CABAÑES, F. Yeast pathogens of domestic animals. In: Pathogenic Yeasts, the Yeast Handbook. p. 253–279, 2010.

CAFARCHIA, C. et al. Occurrence of yeasts in cloacae of migratory birds. Mycopathologia, v. 161, p. 229–234, 2006.

CANNON, R. D. et al. Mini-review Candida albicans drug resistance – another way to cope with stress. Microbiology, v. 153, p. 3211–3217, 2007.

CANNON, R. D. et al. Efflux-mediated antifungal drug resistance. Clinical Microbiology Reviews, v. 22, n. 2, p. 291–321, 2009.

CASTELO-BRANCO, D. S. C. M. et al. Azole-resistant Candida albicans from a wild Brazilian porcupine (Coendou prehensilis): a sign of an environmental imbalance? Medical Mycology, v. 51, n. 5, p. 555–560, 2013.

CHEN, L.M.; XU, Y.H.; ZHOU, C.L.; ZHAO, J.; LI, C.Y.; WANG, R. Overexpression of

CDR1 and CDR2 genes plays an important role in fluconazole resistance in Candida albicans

with G487T and T916C mutations. Journal of International Medical Research, v. 38, n. 2, p. 536–545, 2010.

CHOWDHARY, A. et al. Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. Plos Pathogens, v. 9, n. 10, p. 1–5, 2013.

CHOWDHARY, A.; SHARMA, C.; MEIS, J. F. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. Plos Pathogens, v. 13, n. 5, p. 1–10, 2017.

CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard – third edition Document 27 – A3, 2008.

CORDEIRO, R. D. A. et al. Synthesis and antifungal activity in vitro of isoniazid derivatives against Histoplasma capsulatum var. capsulatum. Antimicrobial Agents and

Chemotherapy, v. 58, n. 5, p. 2504–2511, 2014.

COSTE, A. et al. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in

Candida albicans. Genetics, v. 172, n. 4, p. 2139–2156, 2006.

COSTE, A. et al. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell, v. 6, n. 10, p. 1889–1904, 2007.

COSTE, A. T. et al. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters. Eukaryot Cell, v. 3, n. 6, p. 1639–1652, 2004.

EDDOUZI, J. et al. Molecular mechanisms of drug resistance in clinical Candida species isolated from tunisian hospitals. Antimicrobial Agents and Chemotherapy, v. 57, n. 7, p. 3182–3193, 2013.

FARIA-RAMOS, I. et al. Development of cross-resistance by Aspergillus fumigatus to clinical azoles following exposure to prochloraz, an agricultural azole. BMC Microbiology, v. 14, p. 155, 2014.

FLOWERS, S. A. et al. Gain-of-function mutations in UP C2 are a frequent cause of ERG11

upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot Cell, v. 11, n. 10, p. 1289–1299, 2012.

FRICKE, S. et al. A real-time PCR assay for the differentiation of Candida species. Journal of Applied Microbiology, v. 109, n. 4, p. 1150–1158, 2010.

GAMARRA, S. et al. Candida dubliniensis and Candida albicans differentiation by colony morphotype in Sabouraud-triphenyltetrazolium agar. Revista Iberoamericana de Micologia, v. 32, n. 2, p. 126–128, 2015.

GIACOMAZZI, J. et al. The burden of serious human fungal infections in Brazil. Mycoses, v. 59, n. 3, p. 145–150, 2016.

GIULIERI, S. G. et al. Rapid detection of enterovirus in cerebrospinal fluid by a fully-

automated PCR assay is associated with improved management of aseptic meningitis in adult patients. Journal of Clinical Virology, v. 62, p. 58–62, 2015.

GONÇALVES, S. et al. Epidemiology and molecular mechanisms of antifungal resistance in

Candida and Aspergillus. Mycoses, v. 59, n. 4, p. 198–219, 2016.

HOLMES, A. R. et al. Heterozygosity and functional allelic variation in the Candida albicans

efflux pump genes CDR1 and CDR2. Molecular Microbiology, v. 62, n. 1, p. 170–186, 2006. HOLMES, A. R. et al. ABC transporter Cdr1p contributes more than Cdr2p does to

fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrobial Agents and Chemotherapy, v. 52, n. 11, p. 3851–3862, 2008.

HUI G, XIAO-LI Z, LAI-QIANG G, SHUI-XIU L, YAN-JUN S, H. Z. Alcohol

dehydrogenase I expression correlates with CDR1, CDR2 and F LU1 expression in Candida albicans from patients with vulvovaginal candidiasis. Chinese Medical Journal, v. 126, n. 11, p. 2098–2102, 2013.

KASSIM A, PFLÜGER V, PREMJI Z, DAUBENBERGER C, R. G. Comparison of

biomarker based matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiology, v. 17, n. 1, p. 128–135, 2017.

KATHURIA, S. et al. Multidrug-resistant Candida auris misidentified as Candida

haemulonii : characterization by matrix-assisted laser desorption ionization – time of flight

mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability. Journal of Clinical Microbiology, v. 53, n. 6, p. 1823–1830, 2015.

KHAN, Z. et al. Candida dubliniensis: an appraisal of its clinical significance as a bloodstream pathogen. PLoS ONE, v. 7, n. 3, 2012.

KHAN, Z. U. et al. Sunflower seed husk agar: a new medium for the differentiation of

Candida dubliniensis from Candida albicans. Indian journal of medical microbiology, v. 23, n. 3, p. 182–185, 2005.

KIRAZ, N. et al. The usefulness of DNA sequencing after extraction by Whatman FTA filter matrix technology and phenotypic tests for differentiation of Candida albicans and Candida dubliniensis. Mycopathologia, v. 177, n. 1, p. 81–86, 2014.

KO, J. R.; CASADEVALL, A.; PERFECT, J. The spectrum of fungi that infects humans. Cold Spring Harbor Perspectives in Medicine , v. 5, p. 1–22, 2015.

KURTZMAN, C.; FELL, J. W.; BOEKHOUT, T. The yeasts: a taxonomic study. 5a. ed., 2011.

LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of relative gene expression data using real- time quantitative PCR and the 2-CT method. Methods, v. 25, n. 4, p. 402–408, 2001. LV, Q.; YAN, L.; JIANG, Y. The synthesis, regulation, and functions of sterols in Candida albicans: well-known but still lots to learn. Virulence, v. 7, n. 6, p. 649–659, 2016.

MAROT-LEBLOND, A. et al. Evaluation of a rapid immunochromatographic assay for identification of Candida albicans and Candida dubliniensis. Journal of Clinical Microbiology, v. 42, n. 11, p. 4956–4960, 2004.

MAROT-LEBLOND, A. et al. Development and evaluation of a rapid latex agglutination test using a monoclonal antibody to identify Candida dubliniensis colonies. Journal of Clinical Microbiology, v. 44, n. 1, p. 138–142, 2006.

MARR, K. A. et al. Inducible azole resistance associated with a heterogeneous phenotype in

Candida albicans. Antimicrobial Agents and Chemotherapy, v. 45, n. 1, p. 52–59, 2001. MCMANUS, B. A. et al. Genetic differences between avian and human isolates of Candida dubliniensis. Emerging Infectious Diseases, v. 15, n. 9, p. 1467–1470, 2009.

MORAN, G. P. et al. Analysis of drug resistance in pathogenic fungi. In: Medical Mycology: Cellular and molecular Techniques. p. 93–113, 2013.

MORAN, G. P.; COLEMAN, D. C.; SULLIVAN, D. J. Candida albicans versus Candida dubliniensis: why is C. albicans more pathogenic? International Journal of Microbiology, v. 2012, p. 1–7, 2012.

MORSCHHAUSER, J. et al. The transcription factor Mrr1p controls expression of the MDR1

efflux pump and mediates multidrug resistance in Candida albicans. Plos Pathogens, v. 3, n. 11, p. 1603–1616, 2007.

MULLER, F. C. et al. Cross-resistance to medical and agricultural azole drugs in yeasts from the oropharynx of human immunodeficiency virus patients and from environmental bavarian vine grapes. Antimicrobial Agents and Chemotherapy, v. 51, n. 8, p. 3014–3016, 2007. NG, K. et al. Candida species epidemiology 2000 – 2013: a laboratory-based report. Tropical Medicine & International Health, v. 20, n. 11, p. 1447–1453, 2015.

NUNN, M. A. et al. Environmental source of Candida dubliniensis. Emerging Infectious Diseases, v. 13, n. 5, p. 747–750, 2007.

PANDEY, P. et al. Diagnostic accuracy of GeneXpert MTB / RIF assay in comparison to conventional drug susceptibility testing method for the diagnosis of multidrug-resistant tuberculosis. PLoS ONE, v. 12, n. 1, p. 8–13, 2017.

PFALLER, M. A. et al. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. Journal of Clinical Microbiology, v. 50, n. 4, p. 1199–1203, 2012.

PFALLER, M. A.; DIEKEMA, D. J. Epidemiology of invasive mycoses in North America. Critical Reviews in Microbiology, v. 36, n. 1, p. 1–53, 2010.

PFALLER, M.; HOUSTON, A.; COFFMANN, S. Application of CHROMagar Candida for rapid screening of clinical specimens for Candida albicans, Candida tropicalis, Candida krusei and Candida ( Torulopsis ) glabrata. Journal of Clinical Microbiology, v. 34, n. 1, p. 58–61, 1996.

RABAAN, A. A.; BAZZI, A. M. Variation in MRSA identification results from different generations of Xpert MRSA real-time PCR testing kits from nasal swabs. Journal of Infection and Public Health, p. 10–13, 2017.

RIBEIRO, P. M. et al. Research on Candida dubliniensis in a Brazilian yeast collection obtained from cardiac transplant, tuberculosis, and HIV-positive patients, and evaluation of phenotypic tests using agar screening methods. Diagnostic Microbiology and Infectious Disease, v. 71, n. 1, p. 81–86, 2011.

RICARDO, E.; COSTA-DE-OLIVEIRA, S.; DIAS, A. S. Ibuprofen reverts antifungal resistance on Candida albicans showing overexpression of CDR genes. FEMS Yeast Research, v. 9, n. 4, p. 618–625, 2009.

RIZZATO, C. et al. Pushing the limits of MALDI-TOF mass spectrometry: beyond fungal species identification. Journal of Fungi, v. 1, n. 3, p. 367–383, 2015.

ROCHA M.F., ALENCAR .LP., P. M. et al. Cross-resistance to fluconazole induced by exposure to the agricultural azole tetraconazole: an environmental resistance school? Mycoses, v. 59, n. 5, p. 281–190, 2016.

RODRIGUES, C. et al. Detection of P neumocystis jirovecii by nested PCR in HIV-negative patients with pulmonary disease. Revista Iberoamericana de Micologia, v. 34, n. 2, p. 83– 88, 2017.

SAMSON, R. A. et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Studies in Micology, v. 78, n. 1, p. 141–173, 2014.

SANGLARD, D. et al. Cloning of Candida albicans genes conferring resistance to azole

antifungal agents : characterization of CDR2 , a new multidrug ABC transporter gene. Microbiology, v. 143, n. 1, p. 405–416, 1997.

SANGLARD, D. et al. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrobial Agents and Chemotherapy, v. 47, n. 8, p. 2404–2412, 2003.

SANGUINETTI, M.; POSTERARO, B.; LASS-FLÖRL, C. Antifungal drug resistance

among Candida species: mechanisms and clinical impact. Mycoses, v. 58, n. 2, p. 2–13, 2015. SATOH, K. et al. Candida auris sp . nov ., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiology and Immunology, v. 53, n. 1, p. 41–44, 2009.

SCORZONI, L. et al. Antifungal therapy : new advances in the understanding and treatment

of mycosis. Frontiers in Microbiology, v. 8, n. 36, p. 1–23, 2017.

SHIVAS, R. G.; CAI, L. Cryptic fungal species unmasked. Microbiology Australia, v. 33, n. 1, p. 35–26, 2012.

SIDRIM, J.J.C.; ROCHA, M. F. G. Micologia médica à luz de autores contemporâneos, 2004.

SIDRIM, J. et al. Antifungal resistance and virulence among Candida spp . from captive amazonian manatees and west indian manatees : potential impacts on animal and

environmental health. EcoHealth, v. 13, n. 2, p. 328–338, 2016.

SIDRIM, J. et al. Candida species isolated from the gastrointestinal tract of cockatiels

(Nymphicus hollandicus ): In vitro antifungal susceptibility profile and phospholipase activity. Veterinary Microbiology, v. 145, n. 3, p. 324–328, 2010.

SIDRIM, J.; MOREIRA, J. Fundamentos clínicos e laboratoriais da Micologia Médica, 1999.

SLIFKIN, M. Tween 80 opacity test responses of various Candida species. Journal of Clinical Microbiology, v. 38, n. 12, p. 4626–4628, 2000.

SOUZA A., FUCHS B., P. H. et al. Candida parapsilosis resistance to fluconazole: molecular mechanisms and in vivo impact in infected Galleria mellonella larvae. Antimicrobial Agents and Chemotherapy, v. 59, n. 10, p. 6581–6587, 2015.

SULLIVAN, D. J. et al. Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology, v. 141, n. 7, p. 1507–1521, 1995.

SULLIVAN, D. , MORAN, G., COLEMAN, D. Candida dubliniensis: Ten years on. FEMS Microbiology Letters, v. 253, p. 9–17, 2005.

TAVANTI, A. et al. Candida parapsilosis Groups II and III. Journal of Clinical Microbiology, v. 43, n. 1, p. 284–292, 2005.

TSAO, S.; RAHKHOODAEE, F.; RAYMOND, M. Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrobial Agents and Chemotherapy, v. 53, n. 4, p. 1344–1352, 2009.

VALE-SILVA, L. A et al. Azole resistance by loss of function of the sterol Δ5,6-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence. Antimicrobial Agents and Chemotherapy, v. 56, n. 4, p. 1960–1968, 2012.

VANDEPUTTE, P.; FERRARI, S.; COSTE, A. T. Antifungal resistance and new strategies to control fungal infections. International Journal of Microbiology, p. 1–26, 2012.

VENDULA, S.; CHUDA, E.; BERGEROVA, T. Carbapenemase activity detection by matrix- assisted laser desorption ionization – time of flight mass spectrometry. Journal of Clinical Microbiology, v. 49, n. 9, p. 3222–3227, 2011.

VINCENT, B. et al. Fitness trade-offs restrict the evolution of resistance to amphotericin B. Plos Biology, v. 11, n. 10, 2013.

WAHAB, A. et al. High prevalence of Candida dubliniensis in lower respiratory tract secretions from cystic fibrosis patients may be related to increased adherence properties. International Journal of Infectious Diseases, v. 24, p. 14–19, 2014.

WHITE, T. C. Increased mRNA levels of ERG16 , CDR , and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human

immunodeficiency virus. Antimicrobial Agents and Chemotherapy, v. 41, n. 7, p. 1482– 1487, 1997.

WROBEL, L. et al. Molecular phylogenetic analysis of a geographically and temporally matched set of Candida albicans isolates from humans and nonmigratory wildlife in central Illinois. Eukaryot Cell, v. 7, n. 9, p. 1475–1486, 2008.

XIANG, M. et al. Erg11 mutations associated with azole resistance in clinical isolates of

Candida albicans. FEMS Yeast Research, v. 13, n. 4, p. 386–393, 2013. XIE, J. L. et al. Elucidating drug resistance in human fungal pathogens. Future Microbiology, v. 9, n. 4, p. 523–542, 2014.

APÊNDICE I - Preparo do ágar Tween 80™ segundo Slifkin, 2000

Documentos relacionados