• Nenhum resultado encontrado

Foi desenvolvido um procedimento alternativo às técnicas analíticas mais utilizadas para determinação de AS em materiais vegetais através de extração assistida por micro-ondas, clean-up por EFS em linha e separação com cromatografia por injeção sequencial. O procedimento apresentou recuperações adequadas quando o método das adições de analito foi utilizado para compensar efeitos de matriz.

O procedimento proposto seguiu a tendência de procedimentos ambientalmente amigáveis. Apresentou baixo consumo de solventes orgânicos (apenas ca. 300 L de CH3CN foram gastos por determinação). Foram evitados

solventes orgânicos na etapa de extração do analito das amostras e na EFS em linha utilizou-se tampão fosfato 0,2 mol L-1 pH 5,2. O procedimento apresenta baixa geração de resíduos (ca. 8 mL por determinação).

O procedimento apresentou uma alta frequencia analítica, pois de forma automatizada e rápida incluiu toda etapa de preparo de amostra em linha, condicionamentos e separação cromatográfica com aproximadamente 4 determinações h-1 (ca. 17 min por determinação).

A automação do clean-up amplia a aplicabilidade da SIC, reduz o tempo do procedimento, evita perdas do analito, bem como minimiza erros inerentes a intervenção do analista e riscos de contaminações. Associou-se a estas vantagens a alta reprodutibilidade, o baixo custo por análise e a reutilização da resina C18 da coluna de EFS. A etapa de clean-up em linha na SIC é pioneira na utilização de amostras vegetais, sendo este o segundo estudo de amostras vegetais em SIC. Este estudo confirma a aplicabilidade da SIC a amostras de matriz complexa, em contraponto à aplicação usual à separação de analitos em preparações fármaceuticas.

O procedimento analítico é inédito e adequado à determinação de AS em materiais vegetais com vantagens de ser rápido, suficientemente sensível, seletivo e robusto para a determinação de AS em folhas de soja.

REFERÊNCIAS

1 DAUGHTON, C.G.; TERNES, T.A. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives, Research Triangle Park, v. 107, suppl. 6, p. 907–938, 1999.

2 MACKOWIAK, P. A. Brief history of antipyretic therapy. Clinical Infectious

Diseases, Chicago, v. 31, n. 5, p. 154–156, 2000.

3 SHALMASHI, A.; ELIASSI, A. Solubility of salicylic acid in water, ethanol, carbon tetrachloride, ethyl acetate, and xylene. Journal of Chemical & Engineering Data, Washington, DC, v. 53, n. 1, p. 199–200, 2008.

4 RASKIN, I. Role of salicylic acid in plants. Annual Review of Plant Physiology

and Plant Molecular Biology, Palo Alto, v. 43, p. 439–463, 1992.

5 LAKOWICZ, J.R. Principles of fluorescence spectroscopy. Heidelberg: Springer, 2009. 960 p.

6 RASKIN, I. Salicylate, a new plant hormone. Plant Physiology, Rockville, v. 99, p. 799–803, 1992.

7 WILLIAMS, M.E. Introduction to phytohormones. The Plant Cell, Baltimore, v. 22, n. 3, p. 1–10, 2012.

8 BALCKE, G.U. et al. An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. Plant Methods, London, v. 8, n. 1, p. 47- 57, 2012.

9 FORCAT, S. et al. A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress. Plant Methods, London, v. 4, p. 16-23, 2008.

10 GUTIÉRREZ-CORONADO, M.A.; TREJO-LÓPEZ, C.; LARQUÉ-SAAVEDRA, A. Effects of salicylic acid on the growth of roots and shoots in soybean. Plant

Physiology and Biochemistry , Amsterdam, v. 36, n. 8, p. 563–565, 1998.

11 SRIVASTAVA, M.; DWIVEDI, U. Delayed ripening of banana fruit by salicylic acid. Plant Science, Amsterdam, v. 158, n. 1-2, p. 87–96, 2000.

12 KHAN, W.; PRITHIVIRAJ, B.; SMITH, D.L. Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology, Jena, v. 160, n. 5, p. 485–492, 2003.

13 FRÍAS, M.; BRITO, N.; GONZÁLEZ, C. The Botrytis cinerea cerato-platanin BcSpl1 is a potent inducer of systemic acquired resistance (SAR) in tobacco and generates a wave of salicylic acid expanding from the site of application. Molecular

14 KANG, G.; LI, G.; GUO, T. Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta Physiologiae Plantarum, Krakow, v. 36, n. 9, p. 2287–2297, 2014.

15 KALACHOVA, T. et al. Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade. Plant Physiology and Biochemistry , Amsterdam, v. 66, p. 127–133, 2013.

16 VERNOOIJ, B. et al. Salicylic acid as a signal molecule in plant-pathogen interactions. Current Opinion in Cell Biology, London, v. 6, n. 2, p. 275–279, 1994. 17 GRANT, M.; LAMB, C. Systemic immunity. Current Opinion in Plant Biology, London, v. 9, n. 4, p. 414–420, 2006.

18 HAYAT, Q. et al. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, Oxford, v. 68, n. 1, p. 14–25, 2010.

19 RASKIN, I. et al. Salicylic acid levels in thermogenic and non-thermogenic plants.

Annals of Botany, Oxford, v. 66, p. 369–373, 1990.

20 NAVARRE, D. A.; MAYO, D. Differential characteristics of salicylic acid-mediated signaling in potato. Physiological and Molecular Plant Pathology, London, v. 64, n. 4, p. 179–188, 2004.

21 NACZK, M.; SHAHIDI, F. Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, Oxford, v. 41, n. 5, p. 1523–42, 2006.

22 NACZK, M.; SHAHIDI, F. Extraction and analysis of phenolics in food. Journal of

Chromatography A, Amsterdam, v. 1054, n. 1-2, p. 95–111, 2004.

23 LEE, H.I.; LEÓN, J.; RASKIN, I. Biosynthesis and metabolism of salicylic acid.

Proceedings of the National Academy of Sciences of the USA, Washington, DC,

v. 92, n. 10, p. 4076–4079, 1995.

24 VLOT, A C.; DEMPSEY, D.A.; KLESSIG, D.F. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, Palo Alto, v. 47, p. 177–206, 2009.

25 PHAN-THIEN, K.-Y.; WRIGHT, G.C.; LEE, N.A. Peanut antioxidants: Part 2. Quantitation of free and matrix-bound phytochemicals in five selected genotypes with diverse antioxidant capacity by high performance liquid chromatography (HPLC).

LWT - Food Science and Technology, Amsterdam, v. 57, n. 1, p. 312–319, 2014.

26 IRAKLI, M.N. et al. Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction. Food Chemistry, Barking, v. 134, n. 3, p. 1624–1632, 2012.

27 UDDIN, N. et al. Quantitative analysis of salicylic acid and its derivatives in Primulae radix by high performance liquid chromatography-diode array detec- tion- electrospray ionization mass spectrometry ( HPLC-DAD-ESI-MS ) and simultaneous determination of total polyphenols. Current Analytical Chemistry, Beijing, v. 10, p. 271–279, 2014.

28 PROESTOS, C.; KOMAITIS, M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT - Food Science and

Technology, Amsterdam, v. 41, n. 4, p. 652–659, 2008.

29 IGNAT, I.; VOLF, I.; POPA, V.I. A critical review of methods for characterisation of polyphenolics compounds in fruit and vegetables. Food Chemistry, Barking, v. 126, n. 4, p. 1821–1835, 2011.

30 RASKIN, I.; TURNER, I.M.; MELANDER, W.R. Regulation of heat production in the inflorescences of an Arum lily by endogenous salicylic acid. Proceedings of the

National Academy of Sciences of the USA, Washington, DC, v. 86, p. 2214–2218,

1989.

31 SÁ, M. de et al. A liquid chromatography/electrospray ionisation tandem mass spectrometry method for the simultaneous quantification of salicylic, jasmonic and abscisic acids in Coffea arabica leaves. Journal of the Science of Food and

Agriculture, London, v. 94, n. 3, p. 529–36, 2014.

32 ORLANDO, R.M.; CORDEIRO, D.D. Pré-tratamento de amostras. Vita et

Sanitas, Trindade, v. 3, p. 122–139, 2009.

33 GŁOWNIAK, K.; ZGÓRKA, G.; KOZYRA, M. Solid-phase extraction and reversed-phase high-performance liquid chromatography of free phenolic acids in some Echinacea species. Journal of Chromatography A, Amsterdam, v. 730, n. 1- 2, p. 25–29, 1996.

34 ENGELBERTH, J. et al. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Analytical Biochemistry, New York, v. 312, n. 2, p. 242–50, 2003.

35 SHAPIRO, A.D.; GUTSCHE, A.T. Capillary electrophoresis-based profiling and quantitation of total salicylic acid and related phenolics for analysis of early signaling in Arabidopsis disease resistance. Analytical Biochemistry, New York, v. 320, n. 2, p. 223–233, 2003.

36 MESCHEDE, D.K. et al. Response of sugarcane metabolism to ripener application. Planta Daninha, Viçosa, v. 30, n. 1, p. 113–119, 2012.

37 WILBERT, S.M.; ERICSSON, L.H.; GORDON, M.P. Quantification of jasmonic acid , methyl jasmonate , and salicylic acid in plants by capillary liquid chromatography. Analytical Biochemistry, New York, v. 257, p. 186–194, 1998.

38 SEGARRA, G. et al. Simultaneous quantitative LC-ESI-MS/MS analyses of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic stress. Phytochemistry, Oxford, v. 67, n. 4, p. 395–401, 2006.

39 HUANG, W.E. et al. Quantitative in situ assay of salicylic acid in tobacco leaves using a genetically modified biosensor strain of Acinetobacter sp. ADP1. The Plant

Journal : for Cell and Molecular Biology, Oxford, v. 46, n. 6, p. 1073–83, 2006.

40 DENG, C.; WORDS, K. Rapid determination of salicylic acid in plant materials by gas chromatography – mass spectrometry. Chromatographia, New York, v. 58, p. 225–229, 2003.

41 WANG, C. et al. Separation, identification, and quantitation of phenolic acids in chinese waxberry (Myrica rubra) juice by HPLC-PDA-ESI-MS. Journal of Food

Science, Malden, v. 77, n. 2, p. C272–277, 2012.

42 CHOCHOLOUŠ, P. et al. Advantages of core – shell particle columns in Sequential Injection Chromatography for determination of phenolic acids. Talanta, London, v. 103, p. 221–227, 2013.

43 IDRIS, A.M. The second five years of sequential injection chromatography: significant developments in the technology and methodologies. Critical Reviews in

Analytical Chemistry, Philadelphia, v. 44, n. 3, p. 220–32, 2014.

44 BATISTA, A.D. et al. On-line hyphenation of solid-phase extraction to chromatographic separation of sulfonamides with fused-core columns in sequential injection chromatography. Talanta, London, v. 133, p. 142–149, 2015.

45 BATISTA, A.D. et al. Expanding the separation capability of sequential injection chromatography: Determination of melamine in milk exploiting micellar medium and on-line sample preparation. Microchemical Journal, New York, v. 117, p. 106–110, 2014.

46 BATISTA, A.D.; ROCHA, F.R.P. On-column preconcentration in sequential injection chromatografy: application to paraben determination. Analytical Methods, Cambridge, v. 7, p. 4371-4375, 2015.

47 IDRIS, A.M.; ELGORASHE, R.E.E. Sequential injection chromatography against HPLC and CE: Application to separation and quantification of amoxicillin and clavulanic acid. Microchemical Journal, New York, v. 99, n. 2, p. 174–179, 2011. 48 SATÍNSKÝ, D. et al. Determination of ambroxol hydrochloride, methylparaben and benzoic acid in pharmaceutical preparations based on sequential injection technique coupled with monolithic column. Journal of Pharmaceutical and

Biomedical Analysis, Oxford, v. 40, n. 2, p. 287–293, 2006.

49 HUCLOVÁ, J. Coupling of monolithic columns with sequential injection technique A new separation approach in flow methods. Analytica Chimica Acta, Amsterdam,

50 CHOCHOLOUŠ, P. et al. A novel application of Onyxtrade mark monolithic column for simultaneous determination of salicylic acid and triamcinolone acetonide by sequential injection chromatography. Talanta, London, v. 72, n. 2, p. 854–858, 2007.

51 CHOCHOLOUŠ, P.; SOLICH, P.; SATÍNSKÝ D. An overview of sequential injection chromatography. Analytica Chimica Acta, Amsterdam, v. 600, n. 1-2, p. 129–135, 2007.

52 CHOCHOLOUŠ, P. et al. Enhanced capabilities of separation in Sequential Injection Chromatography-fused-core particle column and its comparison with narrow-bore monolithic column. Talanta, London, v. 85, n. 2, p. 1129–1134, 2011. 53 ANDREU-NAVARRO, A. et al. Usefulness of terbium-sensitised luminescence detection for chemometric classification of wines by their content in phenolic compounds. Food Chemistry, Barking, v. 124, n. 4, p. 1753–1759, 2011.

54 SANTOS JUNIOR, D. et al. Determination of Cd and Pb in food slurries by GFAAS using cryogenic grinding for sample preparation. Analytical and

Bioanalytical Chemistry, Heidelberg, v. 373, n. 3, p. 183–189, 2002.

55 LIAZID, A. et al. Investigation on phenolic compounds stability during microwave- assisted extraction. Journal of Chromatography A, Amsterdam, v. 1140, n. 1-2, p. 29–34, 2007.

56 AZZOUZ, A.; BALLESTEROS, E. Combined microwave-assisted extraction and continuous solid-phase extraction prior to gas chromatography-mass spectrometry determination of pharmaceuticals, personal care products and hormones in soils, sediments and sludge. The Science of the Total Environment, Amsterdam, v. 419, p. 208–215, 2012.

57 MATALLO, M.B. et al. Microwave-assisted solvent extraction and analysis of shikimic acid from plant tissues. Planta Daninha, Viçosa, v. 27, p. 987–994, 2009. 58 TABRIZI, A.B. Cloud point extraction of salicylic acid from human urine and its spectrofluorimetric determination. Chemia Analityzcna, Warsaw, v. 52, p. 823–833, 2007.

59 SKOOG, D.A. et al. Fundamentos de química analítica. 8. ed. São Paulo: Cengage Learning, 2006.1096 p.

60 SEAVER, C.; PRZYYTEK, J. Solvent selection, part II - physical properties. LC-

GC, Iselin, NJ v. 13, n. 3, p. 220–227, 1995.

61 TAGLIARI, M.P. et al. Desenvolvimento e validação de métodos analíticos para determinação de ácido glicirrízico, ácido salicílico e cafeína em nanopartículas de quitosana e alginato. Química Nova, São Paulo, v. 35, n. 6, p. 1228–1232, 2012.

62 POBŁOCKA-OLECH, L. et al. Chromatographic analysis of salicylic compounds in different species of the genus Salix. Journal of Separation Science, Weinheim, v. 30, n. 17, p. 2958–2966, 2007.

63 ROZHON, W. et al. Quantification of free and total salicylic acid in plants by solid- phase extraction and isocratic high-performance anion-exchange chromatography.

Analytical and Bioanalytical Chemistry, Heidelberg, v. 382, n. 7, p. 1620–16277,

2005.

64 KENSTAVICIENÈ, P. et al. Application of high-performance liquid chromatography for research of salicin in bark of different varieties of Salix.

Documentos relacionados