• Nenhum resultado encontrado

Em macrófagos murinos infectados por cepa de Leishmania brasiliensis isolada de paciente resistente ao antimônio e tratados com a quimiocina CXCL10 in vitro, é possível concluir que:

- O tratamento com CXCL10 reduziu a carga parasitária em macrófagos após 24 h e 48h de infecção, mediado por óxido nítrico.

- O tratamento com CXCL10 resultou em uma maior produção de TNF-α, IL-12, IL- 10 e inibiu a secreção de IL-4 e TGF- , principalmente após 48h de infecção, sugerindo uma imunomodulação da resposta inflamatória;

- A associação Glucantime + CXCL10, embora tenha reduzido carga parasitária, não induzindo aumento significante de óxido nítrico, mostrando uma indução de TNF-α, IL-12 e reduzindo IL-4.

- Os dados deste trabalho sugerem um promissor efeito imunomodulador da quimiocina CXCL10 na infecção por L. brasiliensis resistente ao antimônio. Novos estudos com outras intervenções e associações com CXCL10 poderão trazer melhor compreensão ao tema.

53   

REFERÊNCIAS

ALEXANDER, J.; BRYSON, K. T helper (h)1/Th2 and Leishmania: paradox rather than paradigm. Immunology Letters, v.99, p.17-23, 2005.

ALEXANDER, J.; BROMBACHER, F. T Helper 1/T Helper 2 cells and resistance/susceptibility to leishmania infection: is this paradigm still relevant?.

Frontiers in Immunology, 2012. doi: 10.3389/fimmu.2012.00080.

ANDRADE, A.C.; FRANÇA, L.A.; ARAUJO, C.F.; ROCHA, V.J.; SILVA, M.C.B.; FIGUEIRAS, C.P.; OLIVEIRA, P.R.; FREITAS, L.A.R.; VERAS, P.S.T.; CARVALHO, L.P. Extracellular Vesicles from Leishmania-Infected Macrophages Confer an Anti-infection Cytokine-Production Profile to Naïve Macrophages. PLoS negleged Tropical Diseases, v.8, n.9, p.3161, Setembro 2014. ANDERSON, C.F.; OUKKA, M.; KUCHROO,V.J.; SACKS, D. CD4+CD25−Foxp3− Th1 cells are the source of IL-10–mediated immune suppression in chronic cutaneous leishmaniasis. The Journal of Experimental Medicine

(JEM),v. 204, n.2, p.285–297, February, 2007.

AWASTHI, A; MATHUR, R. K.; SAHA, B. Immune response to Leishmania infection. Indian Journal Medicine Residence, n.119, p. 238-58, 2004.

BACELLAR, O; LESSA, H; SCHRIEFER, A; MACHADO, P; RIBEIRO, DE JESUS A; DUTRA, W. O; GOLLOB, K. J.; CARVALHO, E. M. Up-regulation of Th1-type responses in mucosal leishmaniasis patients. Infectous Immunology, n. 70, p.6734-40, 2002.

BALASEGARAM, M; RITMEIJER, K; LIMA,M.A.; BURZA, S;GENOVESE, G. O.;MILANI, B;GASPANI, S;POTET, J; CHAPPUIS, F. Liposomal amphotericin B as a treatment for human leishmaniasis. Expert Opin Emerg Drugs, v. 17, n. 4, p. 493–510, December, 2012.

BERMAN, J.D.; WADDELL, D; HANSON, B.D. Biochemical mechanisms of the antileishmanial activity of sodium stibogluconate. Antimicrobial Agents

Chemotherapy, v.27, p.916-920, 1985.

BERMAN, J.D.; GALLALEE, J.V.; BEST, J.M. Sodium stibogluconate (Pentostam) inhibition of glucose catabolism via the glycolytic pathway and fatty acid beta- oxidation in Leishmania mexicana amastigotes. Biochem Pharmacology, v.36, p.197-201, 1987.

BERMAN, J.D.; EDWARDS, N; KING, M; GROGL, M. Biochemistry of Pentostam resistant Leishmania. Am J Trop Med Hyg, v.40, p.159-164, 1989.

BHATTACHARYYA, S; GHOSH, S; DASGUPTA, B; MAZUMDER, D; ROY, S; MAJUMDAR, S. Chemokine-induced leishmanicidal activity in murine macrophages via the generation of nitric oxide. Journal Infectious Disease,v.85, n.12, p.1704-8, 2002.

54   

BRANDONISIO, O; PANARO, M.A; FUMAROLA, I; SISTO, M; LEOGRANDE, D; ACQUAFREDDA, A; SPINELLI, R.; MITOLO, V. Macrophage chemotactic protein-1 and macrophage inflammatory protein-1 alpha induce nitric oxide release and enhance parasite killing in Leishmania infantum-infected human macrophages.

Clin Exp Med, v.2, n.3, p.125-9, Nov 2002.

CASTELLANO, L.R.C. Anti-Leishmania immune response and evasion mechanisms,

VITAE Academia Biomédica Digital, n. 25 Oct - Dez 2005. In: http://caibco.ucv.ve.

CHARO, I.F.; RANSOHOFF, R.M. The many roles of chemokines and chemokine receptors in inflammation. New. England. Journal of Medicine. v.9, n.6, p.610-21, 2006.

CHARMOY, M; AUDERSET, F; ALLENBACH, C; TACCHINI-COTTIER, F. The Prominent Role of Neutrophils during the Initial Phase of Infection by Leishmania

Parasites. Journal of Biomedicine and Biotechnology, 2010.

doi:10.1155/2010/719361.

CORLEY, G.N.K.;BOCKENSTEDT, M.M.; LI, H; BOGGIATTO,

P.M.; PHANSE,Y.;PETERSEN, C.A.; BELLAIRE, B.H.; JONES, D.E. An In Vitro Model of Antibody-Enhanced Killing of the Intracellular Parasite Leishmania amazonensis. PLoS One, v.9, n.9, SET. 2014.

COSTA,A.B.G.; VIEIRA, T.S.S.;SILVA, R.P.; MESQUITA, A.L.F.; FERNANDES, J.R.M.; SARAIVA, E.M. 3′nucleotidase/nuclease activity allows leishmania parasites to escape killing by neutrophil extracellular traps. INFECTION AND

IMMUNITY, v.82, n.4, p.1732-1740, Abril, 2014.

COSTA, L; PINHEIRO, R.O.; DUTRA, P.M.L.; SANTOS, R.F.; CUNHA-JÚNIOR, E.F.; SANTOS,E.C.T.; SILVA, A.J.M.; COSTA, P.R.R.; SILVA, S.A.G. Pterocarpanquinone LQB-118 Induces Apoptosis in Leishmania (Viannia) braziliensis and Controls Lesions in Infected Hamsters. Plos One, 23 de outubro, 2014. DOI: 10.1371 / journal.pone.0109672.

COSTA, D.; CARREGARO,V.; LIMA-JÚNIOR, D.S.; SILVA, N.M.; MILANEZI, C.M.; CARDOSO, C.R.; GIUDICE, A; JESUS, A.R.; CARVALHO, E.M.; ALMEIDA, R.P.; SILVA, J.S. BALB/c Mice Infected with Antimony Treatment Refractory Isolate of Leishmania braziliensis Present Severe Lesions due to IL-4 Production. Plos Neglected, Tropical Diseases, v.5, n.3, February, 2011.

CROFT, S.L; COOMBS, G.H. Leishmaniasis current chemotherapy and recent advances in the search for novel drugs. TRENDS in Parasitalogy, v.19, n.11, p.502- 508, November, 2003.

DEY, R; SARKAR, A; MAJUMDER, N; MAJUMDAR, S; ROYCHOUDHURY, K; BHATTACHARYYA,S; ROY,S. Regulation of impaired protein kinase C signaling by chemokines in murine macrophages during visceral leishmaniasis. Infection and

55   

DÍAZ, N.L.; ZERPA, O.; TAPIA, F.J. Chemokines and chemokine receptors expression in the lesions of patients with American cutaneous leishmaniasis.

Memórias do Instituto Oswaldo Cruz, Rio de Janeiro, v.108, n.4, p.446-452, June

2013.

ELMAHALLAWY, E; SAMPEDRO, M.A.; RODRIGUEZ-GRANGER, J; HOYOS-MALLECOT, Y; AGIL, A; NAVARRO, M.J.; GUTIERREZ, F.J. Diagnosis of leishmaniasis. The Journal of Infection in Developing Countries, North America, v. 8, aug. 2014.

FOLLADOR, I; ARAÚJO, C; BACELLAR, O; ARAÚJO, C.B.; CARVALHO, L.P.; ALMEIDA, R.P.; CARVALHO, E.M. Epidemiologic and Immunologic Findings for the Subclinical Form of Leishmania braziliensis Infection. Clinical Infectious

Diseases, v.34, p.54–8, 2002.

GIBSON-CORLEY, K.N.; BOCKENSTEDT, M.M.; LI, H; BOGGIATTO, P.M.; PHANSE,Y.; PETERSEN, C.A.; BELLAIRE, B.H.; JONES, D.E. An In Vitro Model of Antibody-Enhanced Killing of the Intracellular Parasite Leishmania amazonensis.Plos One, v.9, n.9, September, 2014.

GIUDICE, A.; VENDRAME, C.;BEZERRA, C; CARVALHO, L.P.; DELAVECHIA, T; CARVALHO, E.M.; BACELLAR, O. Macrophages participate in host protection and the disease pathology associated with Leishmania braziliensis infection. BMC Infectious Diseases, 2012. in: http://www.biomedcentral.com

GIUDICE, A.; CAMADA, I; LEOPOLDO, P.T.G.; PEREIRA, J.M.B.; RILEY, L.W.; WILSON, M.E.; HO, J.L.; DE JESUS, A.R.; CARVALHO, E.M.; ALMEIDA, R.P. Resistance of Leishmania (Leishmania) amazonensis and Leishmania (Viannia)

braziliensis to nitric oxide correlates with disease severity in Tegumentary

Leishmaniasis. BioMedCentral Infectious Diseases, v.7, n.7, 2007.

doi:10.1186/1471-2334-7-7

GLASER, J; SCHULTHEIS, M; HAZRA, S; HAZRA, B; MOLL, H; SCHURIGT, U; HOLZGRABE, U. Antileishmanial Lead Structures from Nature: Analysis of Structure-Activity Relationships of a Compound Library Derived from Caffeic Acid

Bornyl Ester. Molecules, v.19, n.2, p.1394-1410, 2014.

doi:10.3390/molecules19021394.

GOMES, C.M.; PAULA, N.A.; MORAIS, O.O.; SOARES, K.A.; ROSELINO A.M.; SAMPAIO R.N.R.; Complementary exams in the diagnosis of american tegumentary leishmaniasis. Anais Brasileiros Dermatologia, Rio de Janeiro, v. 89, n.5, Oct. 2014 .

56   

GUERRA, P.V. Efeito protetor de CXCL10 em infecção experimental por

Leishmania braziliensis.2013. 52 f. Dissertação (Mestrado em Patologia) – Faculdade

de Medicina, Universidade Federal do Ceará, Fortaleza, 2013.

GUPTA,G; MAJUMDAR,S; ADHIKARI, A; BHATTACHARYA,P; MUKHERJEE,A. K; MAJUMDAR,S.B; MAJUMDAR,S. Treatment with IP-10 induces host-protective immune response by regulating the T regulatory cell functioning in Leishmania donovani-infected mice. Medical

Microbioogyl.Immunology. v,200. p,241–253. 2011. doi:10.1007/s00430-011-

0197-y

HARHAY, M.O.; OLLIARO, P.L.; COSTA, D.L.; COSTA, C.H.N. Urban parasitalogy: visceral leishmaniasis in Brazil. Trends in Parasitalogy, p. 1–7, 2011.

HOLZMULLER, P; HIDE, M; SERENO, D; LEMESRE, J.L. Leishmania infantum amastigotes resistant to nitric oxide cytotoxicity: Impact on in vitro parasite developmental cycle and metabolic enzyme activities. Infection, Genetics and

Evolution, v.6, p.187–197, 2006.

INCHAUSTEGUI, D.A.; HOGG, A.E.; TULLIANO, G; CUENTAS, A.L.; AREVALO, J; ENDSLEY, J.J.; SOONG, L.CXCL10 Production by Human Monocytes in Response to Leishmania braziliensis Infection. Infection Immunity, v.78, n.1, p.301, 2010.DOI: 10.1128/IAI.00959-09.

KALANTARI, H; HEMMATI, A; BAVARSAD, N; REZAIE, A; AHMADI, S. Effect of topical Nanoliposomes of Paromomycin on Rats Liver and Kidney.

Jundishapur Journal of Natural Pharmaceutical Products, v.9, n.4, Nov,2014.

KIMA, P.E; SOONG, L; Interferon gamma in Leishmaniasis. Frontiers in

Immunology, 2013. doi: 10.3389/fimmu.2013.00156.

KOUTSONI, O; BARHOUMI, M; GUIZANI, I; DOTSIKA, E. Leishmania eukaryotic initiation factor (LeIF) inhibits parasite growth in murine macrophages.

PLoS One, v.9, n.5, May 2014.

LEWNARD, J.A; JIRMANUS, L; JÚNIOR, N.N; MACHADO, P.R; GLESBY, M.J; CARVALHO, E.M; SCHRIEFER, A; WEINBERGER, D.M. Forecasting Temporal Dynamics of Cutaneous Leishmaniasis in Northeast Brazil. PLoS neglected Tropical

Diseases, v.8, n.10, 2014. doi: 10.1371 / journal.pntd.0003283.

LIU, D; UZONNA, J.E. The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response.Frontiers in Cellular

57   

LIU, M.; GUO, S.; HIBBERT, J.M.; JAIN, V.; SINGH, N.; WILSON, N.O.; STILES, J.K. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine & Growth Factor Reviews, v.22, p.121–130, 2011.

MAJUMDER, S; BHATTACHARJEE, S; PAUL CHOWDHURY, B; MAJUMDAR, S. CXCL10 is critical for the generation of protective CD8 T cell response induced by antigen pulsed CpG-ODN activated den- dritic cells. PLoS

ONE, v.7, n.11, 2012. doi:10.1371/journal.pone.0048727.

MANSUETO, P; SEIDITA, A; VITALE, G; CASCIO, A. Leishmaniasis in travelers: A literature review. Travel Medicine and Infectious Disease, 2014. DOI: 10.1016 / j.tmaid.2014.09.007.

MARTINS, A.L.G.P.; BARRETO, J.A.; LAURIS, J.R.P.; MARTINS, A.C.G.P. American tegumentary leishmaniasis: correlations among immunological, histopathological and clinical parameters. ANAIS BRASILEIROS DE

DERMATOLOGIA, v.89, n.1, p. 52–58. Jan-Feb 2014.

MONTEIRO, C.M.C.C. Leishmaniose tegumentar americana: uma abordagem farmacológica. 2009. 63 f. Dissertação (Mestrado em Tecnologia Farmaceutica)- Centro Universitário De Anápolis/Unievangelica, Universidade Católica de Goiás, Goiania, 2009.

MULLER, K.; VAN ZANDBERGEN, G.; HANSEN, B; LAUFS, H; JAHNKE, N; SOLBACH,W; LASKAY, T. Chemokines, natural killer cells and granulocytes in the early course of Leishmania major infection in mice. Medical Microbiology and

Immunology, v.190, p.73–76,2001.

MUKHOPADHYAY, R; MUKHERJEE, S; MUKHERJEE, B; NASKAR, K; MONDAL, D; DECUYPERE, S; OSTYN, B; PRAJAPATI, V,K; SUNDAR, S; DUJARDIN, J.C; ROY,S. Characterisation of antimony-resistant Leishmania donovani isolates: Biochemical and biophysical studies and interaction with host cells. International Journal for Parasitalogy, v.41,p.1311–1321,2011.

MUKHERJEEA, B.; MUKHOPADHYAYA, R.; BANNERJEEA, B.; CHOWDHURYA, S.; MUKHERJEEA, S.; NASKARA, K.; ALLAMB, U. S.; CHAKRAVORTTYB, D.; SUNDARC, S.; DUJARDIND, J. C.; ROY, S. Antimony- resistant but not antimony-sensitive Leishmania donovani up-regulates host IL-10 to overexpress multidrug-resistant protein 1. PNAS, p,E575–E582, January, 2013, in: www.pnas.org/cgi/doi/10.1073/pnas.1213839110.

NADERER, T; MCCONVILLE, M.J. The Leishmania macrophage interaction:a metabolic perspective. Cellular Microbiology, v.10, n.2, p.301–308, 2008.

NÉRIS, P.L.N.; CALDAS, J.P.A.; RODRIGUES, Y.K.S.; AMORIM, F.M.; LEITE, J.A.; MASCARENHAS, S.R.; FILHO, J.M.B.; RODRIGUES,L.C.; MÁRCIA R.

58   

OLIVEIRA,M.R. Neolignan Licarin A presents effect against Leishmania (Leishmania) major associated with immunomodulation in vitro. Experimental

Parasitalogy, v.135, n.2, p.307-313. Outubro de 2013.

NOVAIS, F.O.; SANTIAGO, R.C.; BAFICA, A.; KHOURI, R.; AFONSO, L.; BORGES, V. M.; BRODSKYN, C.; BARRAL-NETTO, M.; BARRAL, A.; DE OLIVEIRA, C. I. Neutrophils and macrophages cooperate in host resistance against

Leishmania braziliensis infection. Journal Immunologo, 2009. doi:183, 8088–8098.

OGHUMU, S.; LEZAMA-DÁVILA, C.M.; MÁRQUEZ, A.P.; SATOSKAR, A.R. Role of chemokines in regulation of immunity against leishmaniasis. Experimental

Parasitalogy, v.126, p.389–396, 2010.

OLIVEIRA,W.N.; RIBEIRO, L.E.; SCHRIEFFER, A; CARVALHO, E.M.; OLÍVIA BACELLAR,O. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of human tegumentary leishmaniasis. Cytokine, v.66, n.2, p.127-132. April 2014.

OLIVEIRA, C.I.; BRODSKYN, C.I. The immunobiology of Leishmania

braziliensis infection. Frontiers in Immunology, v.3,n.145, June, 2012.

OLIVEIRA, M.R.; TAFURI, W.L.; AFONSO, L.C.C.; OLIVEIRA, M.A.P.; NICOLI,J.R.; VIEIRA, E.C.; SCOTT, P.; MELO, M.N.; VIEIRA L.Q. Germ-free mice produce high levels of interferon-gamma in response to infection with

Leishmania major but fail to heal lesions. Parasitalogy, v.131, pp. 477–488, 2005.

PAGAN,A.J.; PETERS,N.C.; DEBRA- BANT, A.; RIBEIRO-GOMES,F.; PEPPER,M.; KARP,C.L.; JENKINS, M.K.; SACKS, D.L. Tracking antigen specific CD4+ T cells throughout the course of chronic Leishmania major infection in resistant mice. Eur.Journ.Immunol. v. 43, n. 2, p.427–438, 2013. doi:10.1002/eji.20124 2715

PEARSON, R.D.; SOUSA, A.Q.; JERONIMO, S.M.B. Leishmania species: visceral (kala-azar), cutaneous, and mucosal leishmaniasis. In: MANDELL, G.L.; BENNETT, J; PEARSON, R.D.; SOUSA, A.Q. Clinical spectrum of Leishmaniasis. Clinical

Infection Diseases,v.22, n.1, p.1-13, 1996.

RAMOS, P.K.S.; BRITO, M.V.; SILVEIRA, F.T.; SALGADO, C.G.; SOUZA, W; DINIZ, C.W.P.; DINIZ-JUNIOR, J.A.P. In vitro cytokines profile and ultrastructural changes of microglia and macrophages following interaction with Leishmania.

59   

ROCHA, F.J.S.; SCHLEICHER, U.; MATTNER, J; ALBER, G; BOGDAN, C. Cytokines, Signaling Pathways, and Effector Molecules Required for the Control of

Leishmania (Viannia) braziliensis in Mice. INFECTION AND IMMUNITY, v.75,

n.8, p.3823–3832, Aug. 2007.

RODRIGUES, A.M.; HUEB, M.; SANTOS, T.A.R.R.; FONTES, C.J.F. Fatores associados ao insucesso do tratamento da leishmaniose cutânea com antimoniato de meglumina. Revista Sociedade Brasileira de Medicina Tropical,

Uberaba, v.39, n.2, Mar./Apr. 2006.

SACKS, D; NOBEN-TRAUTH, N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat. Rev. Immunol., n.2, p. 845–858, 2002.

SALHI, A; RODRIGUES, V; SANTORO, F; DESSEIN, H; ROMANO, A; CASTELLANO, L.R; SERTORIO, M; RAFATI, S; CHEVILLARD, C; PRATA, A, ALCAIS, A; ARGIRO, L; DESSEIN, A. Immunological and genetic evidence for a crucial role of IL-10 in cutaneous lesions in humans infected with Leishmania

brazilliensis. Journal. Immunology, n.180, p. 6138-6148, 2008.

SANTOS, C.S.; BRODSKYN, C.I. The role of CD4 and CD8 T cells in human cutaneous leishmaniasis. Frontiers in Public health, 29 de setembro de 2014. doi: 10,3389 / fpubh.2014.00165.

SANTOS, D.M.; PETERSEN, A.L.O.A.; CELES, F.S.; BORGES, V.M.; VERAS, P.S.T. OLIVEIRA,C.I. Chemotherapeutic Potential of 17-AAG against Cutaneous Leishmaniasis Caused by Leishmania (Viannia) braziliensis. Plos Neglected Tropical

Diseases, outubro 2014. DOI: 10.1371/journal.pntd.0003275.

SCHNORR, D; MUNIZ, A.C.; PASSOS, S; GUIMARAES, L.H.; LAGO, E.L.; BACELLAR, O; GLESBY, M.J.; CARVALHO, E.M. IFN- Production to Leishmania Antigen Supplements the Leishmania Skin Test in Identifying Exposure to L. braziliensis Infection. PLoS Neglected Tropical Diseases, v. 6, n. 12, p.1947, December, 2012.

SILVA, A.G.; BITTAR, R.C.; NOGUEIRA, R.S.; AMATO, V.S.; MATTOS, M.S.; NETO, M.P.O.; COUTINHO, S.G.; CRUZ, A.M.; Can interferon- and interleukin-10 balance be associated with severity of human Leishmania (Viannia)

braziliensis infection?. Clinical and Experimental Immunology, v. 149, n. 3, p.

440–444, September, 2007.

SILVA, R.C.R.; RIBAS, A.D.; SANTOS, M.C.G.; SILVA, W.V.; LONARDONI, M.V.C.; BORELLI, S.D.; SILVEIRA, T.G.V. Association between HLA genes and American cutaneous leishmaniasis in endemic regions of Southern Brazil. BioMed

Central Infectous Disease, v.13, p. 198, 2013.

SINGH,B.; SUNDAR,S. Leishmaniasis: Vaccine candidates and perspectives. Vaccine. 2012. in: www.elsevier.com/locate/vaccine.

60   

SOUZA, A.S.; GIUDICE, A.; PEREIRA, J.M.B.; GUIMARÃES, L.H.; JESUS, A.R.; MOURA, T.R.; WILSON, M.E.; CARVALHO, E.M.; ALMEIDA,R.P. Resistance of Leishmania (Viannia) braziliensis to nitric oxide: correlation with antimony therapy and TNF-a production. BMC Infectious Diseases, 2010 .IN: http://www.biomedcentral.com/1471-2334/10/209.

STEBUT, E.V. Immunology of cutaneous leishmaniasis: the role of mast cells, phagocytes and dendritic cells for protective immunity. EUR JOURNAL

DERMATOLOGY, v.17, n.2, p.115-22. March-April 2007.

STEIGERWAL, M.; MOLL, H. Leishmania major Modulates Chemokine and Chemokine Receptor Expression by Dendritic Cells and Affects Their Migratory Capacity. Infection and Immunity, v.73, n.4, p.2564-2567, April. 2005.

STEINKE, J.W.; BORISH, L. Cytokines and chemokines. Journal Allergy Clinical

Immunology, v.117, n.2 p.441-445,2006.

TEIXEIRA, M.J.; FERNANDES, J.D.; TEIXEIRA, C.R.; ANDRADE, B.B.; POMPEU, M.L.; SILVA, J.S.; BRODSKYN, C.I.; BARRAL-NETTO, M.; BARRAL, A. Distinct Leishmania braziliensis Isolates Induce Different Paces of Chemokine Expression Patterns. INFECTION AND IMMUNITY, v.73, n.2, p.1191–1195, Feb. 2005.

TEIXEIRA, M.J.; TEIXEIRA, C.R.; ANDRADE, B.B.; BARRAL-NETO, M; BARRAL, A. Chemokines in host-parasite interactions in leishmaniasis, TRENDS

in Parasitalogy, v.22, n.1, January 2006.

TORRES, D.V.; ALVES, M.R.; ROMERO, G.A.S.; DÁVILA, A.M.R.; CUPOLILLO, E. Assessment of drug resistance related genes as candidate markers for treatment outcome prediction of cutaneous leishmaniasis in Brazil. Acta Tropica, v.126, p.132– 141, 2013.

TRIPATHI, P.; SINGH,V.; NAIK, S. Immuneresponse to leishmania:paradox rather than paradigm. FEMS Immunol Med Microbiol, v.51, p.229–242, 2007.

VASCONCELOS, I.A.; VASCONCELOS, A.W.; MOMEN, H.; GRIMALDI, G.J.R.; ALENCAR, J.E. Epidemiological studies on American leishmaniasis in Ceara State, Brazil - Molecular characterization of the Leishmania isolates. Ann. Tropical

Medicine Parasitalogy, n.82, p.547-554, 1988.

VARGAS-INCHAUSTEGUI, D.A.; HOGG, A.E.; TULLIANO, G; LLANOS- CUENTAS, A; AREVALO, J.; ENDSLEY, J.J.; SOONG, L. CXCL10 Production by Human Monocytes in Response to Leishmania braziliensis Infection. INFECTION

AND IMMUNITY, v. 78, n. 1 , p. 301–308, Jan. 2010.

VASQUEZ, R.E.; XIN, L.; SOONG, L. Effects of CXCL10 on Dendritic Cell and CD4 + T-Cell Functions during Leishmania amazonensis. Infection and Immunity, v.76, n.1, p.161. 2008.DOI: 10.1128/IAI.00825-07.

61   

VASQUEZ, R.E.; SOONG, L. CXCL10/gamma interferon-inducible protein 10- mediated protection against Leishmania amazonensis infection in mice. Infection and

Immunity, v.74, p.6769–6777, 2006.

VERMEERSCH, M.; LUZ, R.I.; TOTE´, K; TIMMERMANS, J.P.; COS, P; MAES, L. In Vitro Susceptibilities of Leishmania donovani Promastigote and Amastigote Stages to Antileishmanial Reference Drugs: Practical Relevance of Stage-Specific Differences. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, v.53, n. 9, p. 3855–3859,Sept. 2009.

WILSON, M.E.; JERONIMO, S.M.B.; PEARSON,R.D. Immunopathogenesis of infection with the visceralizing Leishmania species. Microbial Pathogenesis, v.38, p.147–160, 2005.

World Health Organization, (2010). WHO Technical Report Series:CONTROL OF

62   

Documentos relacionados