• Nenhum resultado encontrado

O estudo atual diferencia-se de estudos anteriores pois avalia efeitos agudos e isolados do LPS e do luzindol sobre a mucosa intestinal. Portanto, tanto quanto pudemos avaliar, é um estudo original. Esse trabalho mostra que o bloqueio agudo da MEL através do luzindol associa-se a alterações morfológicas e de marcadores inflamatórios e pró-oxidantes de curto prazo. Tais achados comprovam o efeito essencial e imediato da MEL como reguladora da homeostase da mucosa intestinal.

REFERÊNCIAS BIBLIOGRÁFICAS

AGAR, E. et al. The effect of ethanol on lipid peroxidation and glutathione level in the brain stem of rat. NeuroReport, v. 10, n. 8, p. 1799–1800, 1999.

ANISIMOV, S. V.; POPOVIC, N. Genetic aspects of melatonin biology. Reviews in

the Neurosciences, v. 15, n. 3, p. 209-230, 2004.

ARAÚJO, C. V. et al. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice. Brazilian Journal of Medical and

Biological Research, v. 45, n. 6, p. 493-501, 2015.

ATES, B. et al. Protective role of melatonin given either before ischemia or prior to reperfusion on intestinal ischemia-reperfusion damage. Journal of Pineal Research, v. 37, n. 3, p. 149–152, 2004.

BECKER, C. E.; O’NEILL, L. A. J. Inflammasomes in inflammatory disorders: The role of TLRs and their interactions with NLRs. Seminars in Immunopathology, v. 29, n. 3, p. 239-248, 2007.

BEERS, R. F.; SIZER, I. W. A spectrophotometric method for measuring the

breakdown of hydrogen peroxide by catalase. The Journal of biological chemistry, v. 195, n. 1, p. 133–140, 1952.

BENITEZ-KING, G. et al. Melatonin prevents cytoskeletal alterations and oxidative stress induced by okadaic acid in N1E-115 cells. Experimental Neurology, v. 182, n. 1, p. 151–159, 2003.

BENÍTEZ-KING, G. Melatonin as a cytoskeletal modulator: Implications for cell physiology and disease. Journal of Pineal Research, v. 40, n. 1, p. 1-9, 2006. BERNARD, M. et al. Melatonin synthesis pathway: circadian regulation of the genes encoding the key enzymes in the chicken pineal gland and retina. Reproduction,

nutrition, development, v. 39, n. 3, p. 325–334, 1999.

BOUDRY, G. et al. Effect of Milk Formula Protein Content on Intestinal Barrier

Function in a Porcine Model of LBW Neonates. Pediatric Research, v. 69, n. 1, p. 4- 9, 2011.

BOURNE, R. S.; MILLS, G. H. Melatonin: Possible implications for the postoperative and critically ill patient. Intensive Care Medicine, v. 32, n. 3, p. 371-379, 2006. BRADLEY, P. P. et al. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. Journal of Investigative Dermatology, v. 78, n. 3, p. 206–209, 1982.

BRANDENBURG, K.; SCHROMM, A. B.; GUTSMANN, T. Endotoxins: Relationship between structure, function, and activity. Sub-Cellular Biochemistry, v. 53, p. 53– 67, 2010.

BREALEY, D. et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet, v. 360, n. 9328, p. 219-223, 2002.

BRZOZOWSKI, T. et al. The role of melatonin and L-tryptophan in prevention of acute gastric lesions induced by stress, ethanol, ischemia, and aspirin. Journal of

pineal research, v. 23, n. 2, p. 79–89, 1997.

BUBENIK, G. A. et al. Immunohistological localization of N-acetylindolealkylamines in pineal gland, retina and cerebellum. Brain Research, v. 81, n. 2, p. 233–242, 1974. BUBENIK, G. A. et al. Melatonin concentrations in the luminal fluid, mucosa, and muscularis of the bovine and porcine gastrointestinal tract. Journal of Pineal

Research, v. 26, n. 1, p. 56–63, 1999.

BUBENIK, G. A. Gastrointestinal melatonin: Localization, function, and clinical relevance. Digestive Diseases and Sciences, v.47, n. 10, p. 2336-2348, 2002. BUBENIK, G. A. Thirty four years since the discovery of gastrointestinal melatonin.

Journal of Physiology and Pharmacology, v. 59, p. 33-51, 2008.

BUBENIK, G. A.; BROWN, G. M. Pinealectomy reduces melatonin levels in the serum but not in the gastrointestinal tract of rats. NeuroSignals, v. 6, n. 1, p. 40–44, 1997.

BUELNA-CHONTAL, M.; ZAZUETA, C. Redox activation of Nrf2 & NF-κB: A double end sword? Cellular Signalling, v. 25, n. 12, p. 2548-2557, 2013.

CARDINALI, D. P. et al. Melatonin site and mechanism of action: Single or multiple?

Journal of Pineal Research, v. 23, n. 1, p. 32–39, 1997.

CARDINALI, D. P. et al. Melatonin effects on bone: Experimental facts and clinical perspectives. Journal of Pineal Research, v. 34, n. 2, p. 81-87, 2003.

CARDINALI, D. P.; ROSNER, J. M. Retinal localization of the hydroxyindole-o-methyl transferase (hiomt) in the rat. Endocrinology, v. 89, n. 1, p. 301–303, 1971.

CARNEIRO-FILHO, B. A. et al. Intestinal Barrier Function and Secretion in

Methotrexate-Induced Rat Intestinal Mucositis. Digestive Diseases and Sciences, v. 49, n. 1, p. 65–72, 2004.

CARNEIRO, R. C. G. et al. Modulation of sympathetic neurotransmission by melatonin. European Journal of Pharmacology, v. 257, n. 1-2, p. 73-77, 1994.

CARPENTIERI, A. et al. New perspectives in melatonin uses. Pharmacological

Research, v. 65, n. 4, p. 437-444, 2012.

CARRILLO-VICO, A et al. Expression of membrane and nuclear melatonin receptor mRNA and protein in the mouse immune system. Cellular and molecular life

sciences : CMLS, v. 60, n. 10, p. 2272–8, 2003.

CARTON, Y.; NAPPI, A. J. Immunogenetic aspects of the cellular immune response of drosophila against parasitoids. Immunogenetics, v. 52, n. 1-3, p. 157-164, 2001. CARVALHO, P. R. A; TROTTA, E. D. A. Advances in sepsis diagnosis and

treatment. Jornal de Pediatria, v. 79, p.195-204, 2003.

CHAMPIER, J. et al. Evidence for tryptophan hydroxylase and hydroxy-indol-O- methyl-transferase mRNAs in human blood platelets. Life Sci, v. 60, n. 24, p. 2191– 2197, 1997.

CHEN, C. Q. et al. Distribution, function and physiological role of melatonin in the lower gut. World Journal of Gastroenterology, v. 17, n. 34, p. 3888–3898, 2011. CHUFFA, G. G. A. et al. Melatonin attenuates the TLR4-mediated inflammatory response through MyD88- and TRIF-dependent signaling pathways in an in vivo model of ovarian cancer. BMC Cancer, v. 15, n. 1, 2015.

CLAUSTRAT, B.; LESTON, J. Melatonin: Physiological effects in humans.

Neurochirurgie, v. 61, n. 2–3, p. 77–84, 2015.

DE MEY, J. R.; FREUND, J.-N. Understanding epithelial homeostasis in the intestine.

Tissue Barriers, v. 1, n. 2, p.24965, 2013.

DENG, Q. H. et al. The prolonged effect of glucagon-like peptide 2 pretreatment on growth performance and intestinal development of weaned piglets. Journal of

Animal Science and Biotechnology, v. 7, p. 28, 2016.

DI BELLA, L.; GUALANO, L. Key aspects of melatonin physiology: thirty years of research. Neuro endocrinology letters, v. 27, n. 4, p. 425-432, 2006.

DOBROVOLSKAIA, M. A et al. Induction of in vitro reprogramming by Toll-like receptor (TLR)2 and TLR4 agonists in murine macrophages: effects of TLR “homotolerance” versus “heterotolerance” on NF-kappa B signaling pathway components. Journal of Immunology, v. 170, n. 1, p. 508-519, 2003.

DONG, W. G. et al. Effects of melatonin on the expression of iNOS and COX-2 in rat models of colitis. World Journal of Gastroenterology, v. 9, n. 6, p. 1307-1311, 2003.

DRAGO, F.; MACAUDA, S.; SALEHI, S. Small doses of melatonin increase intestinal motility in rats. Digestive Diseases and Sciences, v. 47, n. 9, p. 1969–1974, 2002. DUBOCOVICH, M. L. et al. Melatonin receptor antagonists that differentiate hetween the human Mel(1a) and Mel(1b) recombinant subtypes are used to assess the

pharmacological profile of the rabbit retina ML(1) presynaptic heteroreceptor.

Naunyn-Schmiedeberg’s Archives of Pharmacology, v. 355, n. 3, p. 365–375,

1997.

DUBOCOVICH, M. L. et al. Selective MT2 melatonin receptor antagonists block melatonin-mediated phase advances of circadian rhythms. FASEB Journal, v. 12, n. 12, p. 1211–20, 1998.

EKMEKCIOGLU, C. Melatonin receptors in humans: biological role and clinical relevance. Biomedicine & pharmacotherapy, v. 60, n. 3, p. 97–108, 2006. ERRIDGE, C. et al. A high-fat meal induces low-grade endotoxemia: Evidence of a novel mechanism of postprandial inflammation. American Journal of Clinical

Nutrition, v. 86, n. 5, p. 1286–1292, 2007.

ESPOSITO, E. et al. Matrix metalloproteinase-9 and metalloproteinase-2 activity and expression is reduced by melatonin during experimental colitis. Journal of Pineal

Research, v. 45, n. 2, p. 166-173, 2008.

FERNANDEZ-GIL, B. et al. Melatonin protects rats from radiotherapyinduced small intestine toxicity. PLoS ONE, v. 12, n. 4, 2017.

FUKATA, M.; VAMADEVAN, A. S.; ABREU, M. T. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Seminars in Immunology, v. 21, n. 4, p. 242- 253, 2009.

GALANO, A. et al. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: A physicochemical analysis. Journal of Pineal

Research, v. 58, n. 1, p. 107–116, 2015.

GALANO, A.; TAN, D. X.; REITER, R. J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. Journal of Pineal Research, v. 54, n. 3, p. 245-257, 2013.

GALANO, A.; TAN, D. X.; REITER, R. J. Cyclic 3-hydroxymelatonin, a key metabolite enhancing the peroxyl radical scavenging activity of melatonin. RSC Advances, v. 4, n. 10, p. 5220–5227, 2014.

GAO, D.; LI, W. Structures and recognition modes of toll-like receptors. Proteins, v. 85, n. 1, p. 3-9, 2017.

GARCÍA, J. J. et al. Melatonin prevents changes in microsomal membrane fluidity during induced lipid peroxidation. FEBS Letters, v. 408, n. 3, p. 297–300, 1997.

GARCÍA, J. J. et al. Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: A review. Journal of Pineal

Research, v. 56, n. 3, p. 225-237, 2014.

GOOLEY, J. J. et al. Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans. Journal of Clinical

Endocrinology and Metabolism, v. 96, n. 3, p. 463-472, 2011.

GREEN, L. C. et al. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids.

Analytical Biochemistry, v. 126, n. 1, p. 131–138, 1982.

GUO, S. et al. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. American Journal of Pathology, v. 182, n. 2, p. 375–387, 2013.

HAN, C. et al. The Role of Probiotics in Lipopolysaccharide-Induced Autophagy in Intestinal Epithelial Cells. Cellular Physiology and Biochemistry, v. 38, n. 6, p. 2464–2478, 2016.

HIROTANI, Y. et al. Protective effects of lactoferrin against intestinal mucosal damage induced by lipopolysaccharide in human intestinal Caco-2 cells. Yakugaku

zasshi : Journal of the Pharmaceutical Society of Japan, v. 128, n. 9, p. 1363–8,

2008.

HOFFMANN, W. TFF (trefoil factor family) peptide-triggered signals promoting mucosal restitution. Cellular and Molecular Life Sciences, v. 62, n. 24, p. 2932- 2938, 2005.

HRNCIR, T. et al. Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: Studies in germ-free mice. BMC Immunology, v. 9, 2008.

HSU, S. M.; RAINE, L. Protein A, avidin, and biotin in immunohistochemistry.

Journal of Histochemistry and Cytochemistry, v. 29, n. 11, p. 1349–1353, 1981.

HUETHER, G. The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia, v. 49, n. 8, p. 665- 670, 1993.

HUSSON, I. et al. Melatoninergic neuroprotection of the murine periventricular white matter against neonatal excitotoxic challenge. Annals of Neurology, v. 51, n. 1, p. 82–92, 2002.

KARASEK, M. Melatonin, human aging, and age-related diseases. Experimental

Gerontology, v. 39, n. 11-12, p. 1723-1729, 2004.

of CCK 2 and 5-HT3 receptors. Journal of Physiology and Pharmacology, v. 56, n. 4, p. 543–553, 2005.

KIELA, P. R.; GHISHAN, F. K. Physiology of intestinal absorption and secretion.

Best Practice and Research: Clinical Gastroenterology, v. 30, n. 2, p. 145-159,

2016.

KIESSLICH, R. et al. Local barrier dysfunction identified by confocal laser

endomicroscopy predicts relapse in inflammatory bowel disease. Gut, v. 61, n. 8, p. 1146-1153, 2012.

KOJIMA, S.-I.; TOHEI, A.; IKEDA, M. Melatonin inhibits tachykinin NK 2 receptor- triggered 5-HT release from guinea pig isolated colonic mucosa. British Journal of

Pharmacology, v. 162, p. 1179, 2011.

LANSINK, M. O. et al. Melatonin reduces changes to small intestinal

microvasculature during systemic inflammation. The Journal of surgical research, v. 211, p. 114–125, maio 2017.

LARANJEIRA-SILVA, M. F. et al. Melatonin attenuates Leishmania (L.) amazonensis infection by modulating arginine metabolism. Journal of Pineal Research, v. 59, n. 4, p. 478–487, 2015.

LEE, K. M. et al. Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. European Journal of

Neuroscience, v. 19, n. 12, p. 3375–3381, 2004.

LEE, P. P.; PANG, S. F. Melatonin and its receptors in the gastrointestinal tract. Biol

Signals, v. 2, n. 4, p. 181-193, 1993.

LERNER, A. B. et al. Isolation of melatonin, the pineal gland factor that lightens melanocytes. Journal of the American Chemical Society, v. 80, n. 10, p. 2587- 2587, 1958.

LI, H. M. et al. Berberine protects against lipopolysaccharide-induced intestinal injury in mice via alpha 2 adrenoceptor-independent mechanisms. Acta Pharmacologica

Sinica, v. 32, n. 11, p. 1364–1372, 2011.

LI, J. et al. Effect of melatonin on renewal of chicken small intestinal mucosa. Poultry

Science, v. 96, n. 8, p. 2942–2949, 2017.

LI, R. X. et al. Attenuating effect of melatonin on lipopolysaccharide-induced chicken small intestine inflammation. Poultry science, v. 97, n. 7, p. 2295–2302, jul. 2018. LIU, C. et al. Localization of Aa-nat mRNA in the rat retina by fluorescence in situ hybridization and laser capture microdissection. Cell and tissue research, v. 315, n. 2, p. 197–201, 2004.

LIU, J. et al. MT 1 and MT 2 Melatonin Receptors: A Therapeutic Perspective.

Annual Review of Pharmacology and Toxicology, v. 56, p. 8.1-8.23, 2016.

LIU, J. J. et al. Mind the gaps: Confocal endomicroscopy showed increased density of small bowel epithelial gaps in inflammatory bowel disease. Journal of Clinical

Gastroenterology, v. 45, n. 3, p. 240-245, 2011.

LIU, S. et al. Melatonin prevents neural tube defects in the offspring of diabetic pregnancy. Journal of Pineal Research, v. 59, n. 4, p. 508–517, 2015.

LOUI, A. et al. Trace elements and antioxidant enzymes in extremely low birthweight infants. Journal of trace elements in medicine and biology, v. 24, n. 2, p. 111- 118, 2010.

LOWRY, O. H. et al. Protein measurement with the Folin phenol reagent. The

Journal of biological chemistry, v. 193, n. 1, p. 265–275, 1951.

MACÍAS, M. et al. Calreticulin-melatonin: An unexpected relationship. European

Journal of Biochemistry, v. 270, n. 5, p. 832- 840, 2003.

MAITRA, U. et al. Molecular Mechanisms Responsible for the Selective and Low- Grade Induction of Proinflammatory Mediators in Murine Macrophages by

Lipopolysaccharide. The Journal of Immunology, v. 189, n. 2, p. 1014–1023, 2012. MAKOVEC, F. et al. Pharmacological properties of lorglumide as a member of a new class of cholecystokinin antagonists. Arzneimittel-Forschung, v. 37, n. 11, p. 1265– 8, 1987.

MALDONADO, M. D. et al. Possible Involvement of the Inhibition of NF-κB Factor in Anti-Inflammatory Actions That Melatonin Exerts on Mast Cells. Journal of Cellular

Biochemistry, v. 117, n. 8, p. 1926–1933, 2016.

MANOCHA, M.; KHAN, W. I. Serotonin and GI disorders: An update on clinical and experimental studies. Clinical and Translational Gastroenterology, v. 3, n. 4, p. 13, 2012.

MARTIROSYAN, A. et al. Lipopolysaccharides with Acylation Defects Potentiate TLR4 Signaling and Shape T Cell Responses. PLoS ONE, v. 8, n. 2, 2013. MEI, Q. et al. Melatonin reduces colon immunological injury in rats by regulating activity of macrophages. Acta pharmacologica Sinica, v. 23, n. 10, p. 882-886, 2002.

MOZAFFARI, S.; ABDOLLAHI, M. Melatonin, a promising supplement in inflammatory bowel disease: a comprehensive review of evidences. Current

Pharmaceutical Design, v. 17, n. 38, p. 4372-4378, 2011.

type 2 diabetes gene. Diabetologia, v. 52, n. 7, p. 1240–1249, 2009.

NAIK, E.; DIXIT, V. M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. The Journal of experimental medicine, v. 208, n. 3, p. 417– 420, 2011.

NDUHIRABANDI, F.; DU TOIT, E. F.; LOCHNER, A. Melatonin and the metabolic syndrome: A tool for effective therapy in obesity-associated abnormalities? Acta

Physiologica, v. 205, n. 2, p. 209-223, 2012.

NEVES, A. L. et al. Metabolic endotoxemia: A molecular link between obesity and cardiovascular risk. Journal of Molecular Endocrinology, v. 51, n. 2, p. 51-64, 2013.

NIKAIDO, H. Molecular basis of bacterial outer membrane permeability revisited.

Microbiology and molecular biology reviews, v. 67, n. 4, p. 593–656, 2003.

ORIÁ, R. B.; BRITO, G.A.C. Sistema digestório: integração básico-clínica. 1ª edição, cap.12, p. 289-290, 2016.

OXENKRUG, G. F.; REQUINTINA, P. J. N-acetyldopamine inhibits rat brain lipid peroxidation induced by lipopolysaccharide. New York Academy of Sciences, v. 1053, p. 394, 399, 2005.

PANDI-PERUMAL, S. R. et al. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Progress in Neurobiology, v. 85, n. 3, p. 335-353, 2008.

PAPPOLLA, M. A. et al. The neuroprotective activities of melatonin against the Alzheimer β-protein are not mediated by melatonin membrane receptors. Journal of

Pineal Research, v. 32, n. 3, p. 135–142, 2002.

PARIENTE, R. et al. Participation of MT3 melatonin receptors in the synergistic effect of melatonin on cytotoxic and apoptotic actions evoked by chemotherapeutics.

Cancer Chemotherapy and Pharmacology, v. 80, n. 5, p. 985-998, 2017.

PARIHAR, A. et al. Oxidative stress and anti-oxidative mobilization in burn injury.

Burns, v. 34, n. 1, p. 6-17, 2008.

PARLATO, M.; YERETSSIAN, G. NOD-like receptors in intestinal homeostasis and epithelial tissue repair. International Journal of Molecular Sciences, v. 15, n. 6, p. 9594-9627, 2014.

PERREAU-LENZ, S. et al. In vivo evidence for a controlled offset of melatonin

synthesis at dawn by the suprachiasmatic nucleus in the rat. Neuroscience, v. 130, n. 3, p. 797-803, 2005.

Inflammatory Cytokines in the Intestine of Piglets. Nutritional immunology, v. 134, n. 3, p. 641-647, 2004.

PIRES, A. L. G.; SILVEIRA, T. R. DA; SILVA, V. D. DA. Estudo morfométrico e estereológico digital da mucosa do intestino delgado de crianças eutróficas e desnutridas com diarréia persistente and malnourished children with persistent diarrhea. Jornal de Pediatria, v. 79, n. 4, p. 329–336, 2003.

POIREL, V. J. et al. MT1 melatonin receptor mRNA tissular localization by PCR amplification. Neuroendocrinology Letters, v. 24, n. 1–2, p. 33–38, 2003. POPOVIĆ, B. et al. The influence of ageing on the extrapineal melatonin synthetic pathway. Experimental gerontology, v. 110, p. 151–157, set. 2018.

POZO, M. J. et al. Melatonin, a potential therapeutic agent for smooth muscle-related pathological conditions and aging. Current medicinal chemistry, v. 17, n. 34, p. 4150–65, 2010.

RAETZ, C. R. H.; WHITFIELD, C. Lipopolysaccharide Endotoxins. Annual Review

of Biochemistry, v. 71, n. 1, p. 635–700, 2002.

RAHIMI, R.; NIKFAR, S.; ABDOLLAHI, M. Meta-analysis technique confirms the effectiveness of anti-TNF-alpha in the management of active ulcerative colitis when administered in combination with corticosteroids. Med Sci.Monit., v. 13, n. 7, p. 13- 18, 2007.

REITER, R. J. et al. Actions of melatonin in the reduction of oxidative stress: A review. Journal of Biomedical Science, v. 7, n. 6, p. 444-458, 2000.

REITER, R. J. et al. Neurally-mediated and neurally-independent beneficial actions of melatonin in the gastrointestinal tract. Journal of physiology and pharmacology, v. 54, p. 113-125, 2003.

REQUINTINA, P. J.; OXENKRUG, G. F. Effect of luzindole and other melatonin receptor antagonists on iron- and lipopolysaccharide-induced lipid peroxidation in vitro. Annals of the New York Academy of Sciences, v. 1122, p. 289–294, 2007. RODRIGUEZ, C. et al. Regulation of antioxidant enzymes: A significant role for melatonin. Journal of Pineal Research, v. 36, n. 1, p. 1-9, 2004.

RUAN, Z. et al. Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS.

PLoS ONE, v. 9, n. 6, 2014.

SÁNCHEZ, A.; CALPENA, A. C.; CLARES, B. Evaluating the oxidative stress in inflammation: Role of melatonin. International Journal of Molecular Sciences, v. 16, n. 8, p. 16981-17004, 2015.

SANTELLO, F. H. et al. Suppressive action of melatonin on the TH-2 immune response in rats infected with Trypanosoma cruzi. Journal of Pineal Research, v. 45, n. 3, p. 291–296, 2008.

SCHMID-SCHÖNBEIN, G. W. ANALYSIS OF INFLAMMATION. Annual Review of

Biomedical Engineering, v. 8, n. 1, p. 93–151, 2006.

SCHOLTENS, R. M. et al. Physiological melatonin levels in healthy older people: A systematic review. Journal of Psychosomatic Research, v. 86, p. 20-27, 2016. SEDLAK, J.; LINDSAY, R. H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry, v. 25, n. C, p. 192–205, 1968.

SIAH, K. T. H.; WONG, R. K. M.; HO, K. Y. Melatonin for the treatment of irritable bowel syndrome. World Journal of Gastroenterology, v. 20, n. 10, p. 2492–2498, 2014.

SIEGMUND, S. et al. Animal models in gastrointestinal alcohol research - A short appraisal of the different models and their results. Bailliere’s Best Practice and

Research in Clinical Gastroenterology, v. 17, n. 4, p. 519-542, 2003

SIMON, S. I.; GREEN, C. E. Molecular Mechanics and Dynamics of Leukocyte

Recruitment During Inflammation. Annual Review of Biomedical Engineering, v. 7, n. 1, p. 151–185, 2005.

SIMONNEAUX, V. Generation of the Melatonin Endocrine Message in Mammals: A Review of the Complex Regulation of Melatonin Synthesis by Norepinephrine,

Peptides, and Other Pineal Transmitters. Pharmacological Reviews, v. 55, n. 2, p. 325-395, 2003.

SJÖBLOM, M.; JEDSTEDT, G.; FLEMSTRÖM, G. Peripheral melatonin mediates neural stimulation of duodenal mucosal bicarbonate secretion. The Journal of

clinical investigation, v. 108, n. 4, p. 625–33, ago. 2001.

SLOMINSKI, A. et al. Serotoninergic and melatoninergic systems are fully expressed in human skin. The FASEB journal, v. 16, n. 8, p. 896–898, 2002.

SLOMINSKI, R. M. et al. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Molecular and Cellular Endocrinology, v. 351, n. 2, p. 125-166, 2012.

SÖDERQUIST, F.; HELLSTRÖM, P. M.; CUNNINGHAM, J. L. Human

gastroenteropancreatic expression of melatonin and its receptors MT1 and MT2.

PLoS ONE, v. 10, n. 3, 2015.

SOMMANSSON, A. et al. Long-term oral melatonin administration reduces ethanol- induced increases in duodenal mucosal permeability and motility in rats. Acta

Physiologica, v. 212, n. 2, p. 152–165, 2014.

SOMMANSSON, A.; NYLANDER, O.; SJÖBLOM, M. Melatonin decreases duodenal epithelial paracellular permeability via a nicotinic receptor-dependent pathway in rats in vivo. Journal of Pineal Research, v. 54, n. 3, p. 282–291, 2013.

SONG, G. H. et al. Melatonin improves abdominal pain in irritable bowel syndrome patients who have sleep disturbances: A randomised, double blind, placebo

controlled study. Gut, v. 54, n. 10, p. 1402–1407, 2005.

STUMPF, I.; MÜHLBAUER, E.; PESCHKE, E. Involvement of the cGMP pathway in mediating the insulin-inhibitory effect of melatonin in pancreatic β-cells. Journal of

Pineal Research, v. 45, n. 3, p. 318–327, 2008.

SUGAWARA, T. et al. The melatonin antagonist luzindole protects retinal

photoreceptors from light damage in the rat. Investigative Ophthalmology and

Visual Science, v. 39, n. 12, p. 2458–2465, 1998.

SUGDEN, D. et al. Melatonin, melatonin receptors and melanophores: A moving story. Pigment Cell Research, v. 17, n. 5, p. 454-460, 2004.

TAHAN, G. et al. Melatonin expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic-acid-induced colitis in rats.

Digestive Diseases and Sciences, v. 56, n. 3, p. 715-720, 2011.

TÄHKÄMÖ, L.; PARTONEN, T.; PESONEN, A.-K. Systematic review of light

exposure impact on human circadian rhythm. Chronobiology International, v. 00, n. 00, p. 1–20, 2018

TEKBAS, O. F. et al. Melatonin as an antibiotic: New insights into the actions of this ubiquitous molecule. Journal of Pineal Research, v. 44, n. 2, p. 222–226, 2008. THEOBALDO, M. C. et al. Hypertonic saline solution reduces the inflammatory response in endotoxemic rats. Clinics, v. 67, n. 12, 2012.

THOR, P. J. et al. Melatonin and serotonin effects on gastrointestinal motility.

Journal of Physiology and Pharmacology, v. 58, p. 97-103, 2007.

TRAN, AX; WHITFIEL, C. Lipopolysaccharides (Endotoxins). In: In Encyclopedia of

Microbiology. 3a. ed. [s.l.] Oxford: Academic Press, 2009. p. 513–528.

TRENT, M. S. et al. Diversity of endotoxin and its impact on pathogenesis. Journal

of Endotoxin Research, v. 12, n. 4, p. 205–223, 2006.

TRIVEDI, P. P.; JENA, G. B. Melatonin reduces ulcerative colitis-associated local and systemic damage in mice: investigation on possible mechanisms. Digestive

VALKO, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, v. 39, n. 1, p. 44-84, 2007.

VOLK, N.; LACY, B. Anatomy and Physiology of the Small Bowel. Gastrointestinal

Endoscopy Clinics of North America, v. 27, n. 1, p. 1-13, 2017.

WANG, L.-S. et al. Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the wheat (Triticum aestivum L.) seedlings. Environmental toxicology, v. 24, n. 3, p. 296–303, 2009.

WILLIAMS, J. M. et al. A mouse model of pathological small intestinal epithelial cell apoptosis and shedding induced by systemic administration of lipopolysaccharide.

Dis Model Mech, v. 6, n. 6, p. 1388–1399, 2013.

WINCZYK, K. et al. Luzindole but not 4-phenyl-2- propionamidotetralin (4P-PDOT) diminishes the inhibitory effect of melatonin on murine Colon 38 cancer growth in vitro. Neuro endocrinology letters, v. 30, n. 5, p. 657–62, 2009.

WITT-ENDERBY, P. A. et al. Therapeutic treatments potentially mediated by

melatonin receptors: Potential clinical uses in the prevention of osteoporosis, cancer and as an adjuvant therapy. Journal of Pineal Research, v. 41, n. 4, p. 297,305, 2006.

WYNN, T. A.; CHAWLA, A.; POLLARD, J. W. Macrophage biology in development, homeostasis and disease. Nature, v. 496, n. 7446, p. 445-455, 2013.

XIA, M. Z. et al. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells. Journal of Pineal Research, v. 53, n. 4, p. 325–334, 2012. XU, Y. et al. Signaling pathway of autophagy associated with innate immunity.

Autophagy, v. 4, n. 1, p. 110-112, 2008.

YADAV, U. C. S.; RAMANA, K. V. Regulation of NF-κB-induced inflammatory

signaling by lipid peroxidation-derived aldehydes. Oxidative Medicine and Cellular

Longevity, v. 2013, p.1-17, 2013.

YANG, X.-J. et al. Tanshinone IIA Sodium Sulfonate Attenuates LPS-Induced Intestinal Injury in Mice. Gastroenterology Research and Practice, v. 2018, p. 1– 10, 2018.

YU, L. C. H. et al. SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue

mechanism? The FASEB Journal, v. 19, n. 13, p. 1822–1835, 2005.

YUAN, X. et al. Melatonin inhibits IL-1β-induced monolayer permeability of human umbilical vein endothelial cells via Rac activation. Journal of Pineal Research, v.

51, n. 2, p. 220–225, 2011.

ZIELIŃSKA, M. et al. Melatonin, but not melatonin receptor agonists Neu-P11 and Neu-P67, attenuates TNBS-induced colitis in mice. Naunyn-Schmiedeberg’s

ANEXO

Documentos relacionados